Welcome to MAT136 LEC0501 (Assaf)

Next week - We're going digital!
I don't care what the university says.

S9.1 - Sequences (AKA infinite lists)

Assaf Bar-Natan

"Yeah yeah 'cause it goes on and on and on And it goes on and on and on yeah
I throw my hands up in the air sometimes
Saying ayeoh, gotta let go"
-"Dynamite", Taio Cruz

March 13, 2020

What is a sequence?

A sequence is an ordered list of numbers

We can give a sequence in a few ways:

- Explicity: $1,4,9, \ldots$ (like a table of values $f(n)=n^{2}$)
- Closed form: $c_{n}=\frac{1+2 n}{3 n-2}$ (like Taylor coefficients $c_{n}=\frac{1}{n!} \frac{d^{n} f}{d x^{n}}$)
- Recursive: $s_{n+1}=s_{n}+1 / n$ (like Euler's method)

Match the sequences given in different forms


```
` Submissions Closed
```

Find a formula for the nth term of the sequence $\{1 / 2,-4 / 3,9 / 4,-16 / 5,25 / 6 \ldots\}$

$A(-1)^{n} n /(n+1)$	8
$B(-1)^{n+1} n /(n+1)$	8
$C(-1)^{n-1} n /(n+1)$	18
D $(-1)^{n} n^{2} /(n+1)$	16
E $(-1)^{n+1} n^{2} /(n+1)$	67
F $(-1)^{n-1} n^{2} /(n+1)$	17

Invalid da	-		Results	Compare with session							Show percentages	Hide Graph	Condense Text	
134/134 answered													C Ask Again	
\wedge	$<$	>	-		θ Closed		Responses		Correct	>			Q 88\%	尔

Takeaway

We can move back and forth between representations of sequences!

Fill in the Blanks

- If a sequence is $m \ldots$ and b ___ it converges.
- A sequence s_{n} converges to L if s_{n} is as close to ___ as we please if \qquad is \qquad
- A sequence is an ___ list of numbers.
- For a positive integer n, n ! $=$ \qquad .
- A sequence is __ defined if the equation for a general term depends on previous terms.

Fill in the Blanks

- If a sequence is monotonic and bounded, it converges.
- A sequence s_{n} converges to L if s_{n} is as close to L as we please if \mathbf{n} is large.
- A sequence is an ordered list of numbers.
- For a positive integer $\mathrm{n}, \mathrm{n}!=$ $n \times(n-1) \times(n-2) \times \cdots \times 2 \times 1$.
- A sequence is recursively defined if the equation for a general term depends on previous terms.
－Submissions Closed

You can tell if a sequence converges by looking at the first 1000 terms

A True		$\checkmark 65 \%$ Answered Correctly
B False		43

Invalid dat	－		Results	Compare with session					Show percentages	Hide Graph	condens	Text
124／124 answered $\square_{\text {Ask Again }}$												
\wedge	$<$	＞	－		θ Closed	三 Responses	\checkmark Correct	》			Q 100\％	九 7

- Submissions Closed

What value does each of the following sequences converge to?

Correct Order

$1\left\{\frac{1+2 n}{3 n-2}\right\}$		B	$2 / 3$	72
$2\left\{\frac{5+3^{n}}{10+2^{n}}\right\}$	\rightarrow	A	diverges	66
$3\left\{3 / 2+e^{-2 n}\right\}$	\rightarrow	D	3/2	73
$4\left\{3+(-1)^{n} \frac{1}{2^{n}}\right\}$	\rightarrow	C	3	74

Takeaway

We have a few ways to check if a sequence converges. One way is to look at the closed form and plug in big numbers

Champernowne constant

Consider the sequence:

- $C_{1}=0.1$
- $C_{2}=0.12$
- $C_{3}=0.123$

Q: Does this sequence converge? How do you know this?
A: This sequence converges because it is monotonic and bounded.

Champernowne constant

The limit of the sequence $0.1,0.12,0.123, \ldots$ is called Champernowne constant, and its decimal expansion contains every number. Even your phone number!

And now, we meet our friends...

The gang

Inspiration for cat opening mouth question

Kittens in hay

Cats looking

Cuddles

Bulking up for winter

Sunset

Plans for the Future

For next time:
Go over WeBWork 9.2 and section 9.2

