Welcome to MAT136 LEC0501 (Assaf)

Next week – We're going digital! I don't care what the university says.

S9.1 – Sequences (AKA infinite lists)

Assaf Bar-Natan

"Yeah yeah 'cause it goes on and on and on And it goes on and on and on yeah I throw my hands up in the air sometimes Saying ayeoh, gotta let go"

- "Dynamite", Taio Cruz

March 13, 2020

March 13, 2020 - S9.1 - Sequences (AKA infinite lists)

Assaf Bar-Natan 2/3

A sequence is an ordered list of numbers

We can give a sequence in a few ways:

- Explicity: 1, 4, 9, ... (like a table of values $f(n) = n^2$)
- Closed form: $c_n = \frac{1+2n}{3n-2}$ (like Taylor coefficients $c_n = \frac{1}{n!} \frac{d^n f}{dx^n}$)
- Recursive: $s_{n+1} = s_n + 1/n$ (like Euler's method)

T Submissions Closed

Match the sequences given in different forms

71% Answered Correctly

130/130 answered CAskAgein

Submissions Closed

Find a formula for the n th term of the sequence $\{1/2,-4/3,9/4,-16/5,25/6\dots\}$

✓ 63% Answered Correctly

Takeaway

We can move back and forth between representations of sequences!

Fill in the Blanks

- If a sequence is m_____ and b_____, it converges.
- A sequence s_n converges to L if s_n is as close to _____ as we please if _____ is ____.
- A sequence is an _____ list of numbers.
- For a positive integer n, n! = _____.
- A sequence is <u>defined</u> if the equation for a general term depends on previous terms.

Fill in the Blanks

- If a sequence is monotonic and bounded, it converges.
- A sequence s_n converges to L if s_n is as close to L as we please if **n** is large.
- A sequence is an ordered list of numbers.
- For a positive integer n, n! = $n \times (n-1) \times (n-2) \times \cdots \times 2 \times 1$.
- A sequence is recursively defined if the equation for a general term depends on previous terms.

T Submissions Closed

You can tell if a sequence converges by looking at the first 1000 terms

T Submissions Closed

What value does each of the following sequences converge to?

Correct Order $\left\{\frac{1+2n}{3n-2}\right\}$ **B** 2/3 72 \rightarrow 2 $\left\{ \frac{5+3^{n}}{10+2^{n}} \right\}$ 3 $\{3/2+e^{-2n}\}$ Α diverges 66 \rightarrow \rightarrow D 3/2 73 4 $\left\{3 + (-1)^n \frac{1}{2^n}\right\}$ **C** 3 \rightarrow 74 Invalid date 👻 Condense Text 125/125 answered CAsk Again Q 88% # < > ● Open 🛇 Closed 🗎 Responses 🗸 Correct ~ »

46% Answered Correctly

We have a few ways to check if a sequence converges. One way is to look at the closed form and plug in big numbers

Champernowne constant

Consider the sequence:

- $C_1 = 0.1$
- $C_2 = 0.12$
- $C_3 = 0.123$

Q: Does this sequence converge? How do you know this?

A: This sequence converges because it is monotonic and bounded.

The limit of the sequence 0.1, 0.12, 0.123,... is called Champernowne constant, and its decimal expansion contains every number. Even your phone number!

And now, we meet our friends...

The gang

Inspiration for cat opening mouth question

March 13, 2020 - S9.1 - Sequences (AKA infinite lists)

Assaf Bar-Natan 15/2

Kittens in hay

March 13, 2020 - S9.1 - Sequences (AKA infinite lists)

Assaf Bar-Natan 16/2

Cats looking

Cuddles

March 13, 2020 - S9.1 - Sequences (AKA infinite lists)

Assaf Bar-Natan 18/2

Bulking up for winter

Sunset

Plans for the Future

For next time: Go over WeBWork 9.2 and section 9.2