Welcome to MAT136 LEC0501 (Assaf)

https://www.youtube.com/watch?v=KasOtIxDvrg An interesting video on COVID-19 modeling and exponential growth. Q: What model (SI, SIR, or SIS) is this video using?

S8.4 – Density and Slicing

Assaf Bar-Natan

" Come gather 'round people Wherever you roam And admit that the waters Around you have grown"

- "The Times They Are 'a Changin'", Simon and Garfunkel

March 9, 2020

March 9, 2020 - S8.4 - Density and Slicing

Assaf Bar-Natan 2/16

WeBWork Round Robin

In your groups, go in a circle, and:

• Say a problem from the WeBWork you struggled with.

WeBWork Round Robin

In your groups, go in a circle, and:

- Say a problem from the WeBWork you struggled with.
- Discuss the solution to each problem that the group mentioned.

WeBWork Round Robin

In your groups, go in a circle, and:

- Say a problem from the WeBWork you struggled with.
- Discuss the solution to each problem that the group mentioned.
- Write a hint for a student struggling with the problem.

Takeaway

In life, and on the exam, you will be asked to communicate your math using complete sentences.

The writing exercises we do in class are for your practice!

What is Density?

Flood has a long tail, and the fur-density is given by a function, $h(I)\frac{\text{hairs}}{\text{m}}$, where *I* is the length along her tail. If Flood's tail is 30cm long, how many hairs does Flood have?

What is Density?

Flood has a long tail, and the fur-density is given by a function, $h(I)\frac{\text{hairs}}{\text{m}}$, where *I* is the length along her tail. If Flood's tail is 30cm long, how many hairs does Flood have?

Hairs
$$\approx \sum h(l)\Delta l = \int_a^b h(l)dl$$

Q: What are *a* and *b*? (Hint: units!)

What is Density?

Flood has a long tail, and the fur-density is given by a function, $h(I)\frac{\text{hairs}}{\text{m}}$, where *I* is the length along her tail. If Flood's tail is 30cm long, how many hairs does Flood have?

Hairs
$$\approx \sum h(l)\Delta l = \int_a^b h(l)dl$$

Q: What are *a* and *b*? (Hint: units!) a = 0 and b = 0.3m = 30cm.

Takeaway

Torontopolis

The fictional city of Torontopolis radially has a population density of $4000e^{-0.02r^2}$ people per km², where *r* is the radius (in km) from the CM-tower.

We are interested in finding the total population living within a certain radius of the CM-tower.

Submissions Closed

Put the steps for solving a slicing problem in order.

59% Answered Correctly

Correct Order

- **B** Slice the object or process into pieces where you can approximate quantity.
- E Approximate the quantity on each slice.
- F Add up the slices to get an approximation for the total.
- A Take a limit as the number of slices approaches infinity to get the exact value for the total.
- **D** Interpret your limit as an integral.
- C Use the FTC to find an exact value for the total.

Invalid date 💌	Condense	se Text
172/172 answered	CAsk	« Again
∧ ✓ Open O Closed ≥ Responses ✓ Correct ≫	Q 88%	45

Slice object where density is constant

Discussion: Along what "slices" of Torontopolis is the population density approximately constant?

Slice object where density is constant

Discussion: Along what "slices" of Torontopolis is the population density approximately constant?

A: Annuli of small thickness centered at the CM-tower.

Submissions Closed

True or False: A different city, Montrealville, occupies a region in the xy-plane, with population density $\delta(y) = 1 + y$. To set up an integral representing the total population in the city, we should slice the region into...

55% Answered Correctly

Add up slices

Discussion: What is the total population living on an annulus of radius r_i and of width Δr ?

Add up slices

Discussion: What is the total population living on an annulus of radius r_i and of width Δr ? **A:** $4000e^{-0.02r^2} \times 2\pi r \times \Delta r$

Discussion: What is the total number of people who live within a *3km* radius of the CM-tower? Write your answer as a Riemann sum.

Discussion: What is the total number of people who live within a 3km radius of the CM-tower? Write your answer as a Riemann sum. **A:** We partition the interval [0, 3] into *n* pieces. So $\Delta r = \frac{3}{n}$. What is r_i ? **Discussion:** What is the total number of people who live within a 3km radius of the CM-tower? Write your answer as a Riemann sum. **A:** We partition the interval [0,3] into n pieces. So $\Delta r = \frac{3}{n}$. What is r_i ? **A:** $r_i = \frac{3i}{n}$, so the sum becomes: **Discussion:** What is the total number of people who live within a 3km radius of the CM-tower? Write your answer as a Riemann sum. **A:** We partition the interval [0,3] into *n* pieces. So $\Delta r = \frac{3}{n}$. What is r_i ? **A:** $r_i = \frac{3i}{n}$, so the sum becomes: $\sum_{i=1}^{n} 2\pi r_i \times 4000e^{-0.02r_i^2} \times \frac{3}{n}$

To get the true quantity, take the limit.

T Submissions Closed

We've seen that the number of people who live within 2km of the CM tower in Torontopolis is given by

$$\lim_{n \to \infty} \sum_{i=1}^{n} 8000\pi \frac{3i}{n} e^{-0.02 \times (3i/n)^2} \frac{3}{n}.$$
 What will evaluate this?
A $8000\pi \int_{0}^{1} r e^{-0.02r^2} dr$
B $8000\pi \int_{0}^{1} 9r e^{-0.02 \times 9r^2} dr$
C $8000\pi \int_{0}^{1} 3r e^{-0.02 \times 3r^2} dr$
12

D 8000 π 3re^{-0.02×9r²} dr March 8 at 10:14 PM results
Segment Results Compare with session Show percentages Hide Graph Condense Text 176/176 answered C Ask Again ● Open 🛇 Closed 🗎 Responses 🗸 Correct Q 88% 12 ~ < > ≫

69

Compute the Integral

The total number of people who live within a 3km radius of the CM-tower is:

$$8000\pi \int_0^1 9r e^{-0.02 \times 9r^2} dr = 8000\pi \int_0^3 r e^{-0.02r^2} dr$$

Compute the Integral

The total number of people who live within a 3km radius of the CM-tower is:

$$8000\pi \int_0^1 9r e^{-0.02 \times 9r^2} dr = 8000\pi \int_0^3 r e^{-0.02r^2} dr \approx 103,000$$

Reminder: for ALL slicing problems, you need to show all the steps on the exam!

Plans for the Future

For next time: Go over WeBWork 8.4 and section 8.4

Ban cars on campus