Welcome to MAT136 LEC0501 (Assaf)

We continue to solve $\int \sqrt{\tan (x)}$. After computing the last integral, and subbing in everything...

$$
\begin{aligned}
& \int \sqrt{\tan (x)} d x=\frac{1}{2 \sqrt{2}} \log (\tan (x)-\sqrt{2 \tan (x)}+1) \\
&-\frac{1}{2 \sqrt{2}} \log (\tan (x)+\sqrt{2 \tan (x)}+1) \\
&+\frac{1}{\sqrt{2}} \tan ^{-1}(\sqrt{2 \tan (x)}+1) \\
&-\frac{1}{\sqrt{2}} \tan ^{-1}(1-\sqrt{2 \tan (x)}) \\
& \text { Easy, right? }
\end{aligned}
$$

Areas and Volumes - Rotating, Spinning, and a Bit of Slicing

Assaf Bar-Natan

"My head is in a spin, My feet don't touch the ground.

Because you're near to me
My head goes round and round."
-"Feels Like I'm in Love", Kelly Marie
March 6, 2020

CIQ summary

- You were most engaged when using TopHat. Specifically, discussing with groups, and discussing things together.
- You were engaged during the lectures about COVID-19, SIR model, and the Excel spreadsheet activity
- You were sad that people leave before class is over, or talk over me.
- Some of you were distanced when doing the SIR model stuff. A lot of you were confused at slope fields.
- At times, the lecture was moving fast, and you disliked skipped questions.
- You did not gain a lot from classes when you did not do the reading.

CIQ summary - Cont.

Things you liked:

- Taking up WeBWork and TopHat questions (through discussions, or on slides)
- The amount of interaction and group discussion
- Traditional lecturing
- Each other

Things that confused you:

CIQ summary - Cont.

Things you liked:

- Taking up WeBWork and TopHat questions (through discussions, or on slides)
- The amount of interaction and group discussion
- Traditional lecturing
- Each other

Things that confused you:

- idk (this annoyed a lot of of you, too)

CIQ summary - Cont.

Things you liked:

- Taking up WeBWork and TopHat questions (through discussions, or on slides)
- The amount of interaction and group discussion
- Traditional lecturing
- Each other

Things that confused you:

- idk (this annoyed a lot of of you, too)
- Going too fast

Draw a cross-section of this shape, when sliced with vertical sections (ie, planes perpendicular to the x axis). What are the dimensions of these crosssections?

Ordered by Last Name *

- Thomas Aalbers
\square

CIQ summary - Cont.

Things that surprised you:

CIQ summary - Cont.

Things that surprised you:

- 0/1000000000

CIQ summary - Cont.

Things that surprised you:

- 0/1000000000
- "The friends I made in this class"

CIQ summary - Cont.

Things that surprised you:

- 0/1000000000
- "The friends I made in this class"
- SIR/Coronavirus modeling

CIQ summary - Cont.

Things that surprised you:

- 0/1000000000
- "The friends I made in this class"
- SIR/Coronavirus modeling
- Difference in marks between those who attended the class on the day of the mid term and those who did not

CIQ summary - Cont.

Things that surprised you:

- 0/1000000000
- "The friends I made in this class"
- SIR/Coronavirus modeling
- Difference in marks between those who attended the class on the day of the mid term and those who did not
- Cats?

A First Application of Slices

To find the arc-length of a function:

$$
\begin{aligned}
\Delta \text { Arc length } & =\sqrt{\Delta x^{2}+\Delta y^{2}} \\
& =\sqrt{\Delta x^{2}+\left(f^{\prime}(x)^{2}\right) \Delta x^{2}} \\
& =\sqrt{1+\left(f^{\prime}\right)^{2}} \Delta x
\end{aligned}
$$

Integrate to get Arclength $=\int \sqrt{1+\left(f^{\prime}\right)^{2}} d x$

Slices - Areas and Volumes

Previously, on MAT136:

Taking the slices to be really small...

$$
\text { Area }=\int_{a}^{b}(f(x)-g(x)) d x
$$

Slices - Areas and Volumes

Now, on MAT136: Find the volume of the solid obtained by rotating the region in the first quadrant bounded by and $y=x^{2}, y=x$ around the $y=3$ axis.
Q: What does the base region look like?

Slices - Areas and Volumes

Now, on MAT136: Find the volume of the solid obtained by rotating the region in the first quadrant bounded by and $y=x^{2}, y=x$ around the $y=3$ axis.
Q: What does the base region look like?

Slices - Areas and Volumes

rotate the region between the curves around the line $y=3$

Use slices here, and make them really small...

Finding the Volume

Get into groups.

- In your groups, draw the cross-section of the slices

Finding the Volume

Get into groups.

- In your groups, draw the cross-section of the slices
- Write an expression for the volume of each slice.

Finding the Volume

Get into groups.

- In your groups, draw the cross-section of the slices
- Write an expression for the volume of each slice.

$$
V=\Delta x \pi\left(\left(3-x^{2}\right)^{2}-(3-x)^{2}\right)
$$

- Write an integral that computes the total volume

Finding the Volume

Get into groups.

- In your groups, draw the cross-section of the slices
- Write an expression for the volume of each slice.

$$
V=\Delta x \pi\left(\left(3-x^{2}\right)^{2}-(3-x)^{2}\right)
$$

- Write an integral that computes the total volume

$$
\int_{0}^{1} \pi\left(\left(3-x^{2}\right)^{2}-(3-x)^{2}\right) d x
$$

We rotate the graph of $y=(x+1)^{2}$ around the x-axis. The approximate volume of the slice of the solid that is X_{i} units away from the y-axis is given by:

A $\left(x_{i}+1\right)^{2} \Delta x$	1
B $\pi x_{i}^{2} \Delta x$	11
C $\pi\left(x_{i}+1\right)^{2} \Delta x$	30
D $\pi\left(x_{i}+1\right)^{4} \Delta x$	119

Cats and Troughs

The cats are stealing food from the sheep's trough (pictured below schematically):

Assume that the trough has a cubic cross-section $y=2 x^{3}$, and that its length is $2 m$. At the start of the day, the food in the trough is $0.4 m$ high in the trough. At the end of the day, it's $0.39 m$ high. How much food did the cats eat?

```
F Submissions Closed
```

We can slice the volume of food at the start of the day using vertical slices or horizontal slices. Each of these slices then has a different area. Match the type of slicing to the formula giving the area of the slice.

Correct Order

$\mathbf{1}$ Horizontal slice at somey	\rightarrow	B $2 \times \sqrt[3]{y / 2}$
$\mathbf{2}$ Vertical slice at some x	\rightarrow	A $2 \times\left(0.4-2 x^{3}\right)$
$\mathbf{8 4}$		

Cats and Troughs

Vertical Slices
Horizontal Slices
$\Delta \mathrm{V}$ (start of day)
$=2 \times\left(0.4-2 x^{3}\right) \times \Delta x$
$\Delta V($ start of day $)$
$=2 \times \sqrt[3]{y / 2} \times \Delta y$

```Submissions Closed
```

We can slice the volume of food at the start of the day in two ways. Which of the following give an integral that evaluates the volume of food at the start of the day?

A $2 \int_{0}^{0.4}\left(0.4-2 t^{3}\right) d t$
B $2 \int_{0}^{\sqrt[3]{0.2}}\left(0.4-2 t^{3}\right) d t$
C $2 \int_{0}^{0.4} \sqrt[3]{t / 2} d t$
D $2 \int_{0}^{\sqrt[3]{0.4 / 2}} \sqrt[3]{t / 2} d t$

Cats and Troughs

At the start of the day...

Vertical Slices

Horizontal Slices

$$
\begin{aligned}
\Delta \mathrm{V} & =2 \times\left(0.4-2 x^{3}\right) \times \Delta x & \Delta \mathrm{~V} & =2 \times \sqrt[3]{y / 2} \times \Delta y \\
\mathrm{~V} & =2 \int_{0}^{\sqrt[3]{0.2}}\left(0.4-2 x^{3}\right) d x & \mathrm{~V} & =2 \int_{0}^{0.4} \sqrt[3]{y / 2} d y
\end{aligned}
$$

Both are equal to ≈ 0.3508

Cats and Troughs

So how much did the cats eat?

Cats and Troughs

So how much did the cats eat?

$$
\begin{aligned}
\mathrm{V}(\text { start of day }) & -\mathrm{V}(\text { end of day }) \\
& =2 \int_{0}^{0.4} \sqrt[3]{y / 2} d y-2 \int_{0}^{0.39} \sqrt[3]{y / 2} d y \\
& =2 \int_{0.39}^{0.4} \sqrt[3]{y / 2} d y \approx 0.011 m^{2}=11 L
\end{aligned}
$$

Plans for the Future

For next time:
WeBWork 8.4 and actively read section 8.4

