Last time, we had a trick: if $s = \sqrt{\tan(x)}$, then:

$$\int \sqrt{\tan(x)} dx = \int \frac{1}{\sqrt{2}} \left(\frac{s}{s^2 - \sqrt{2s+1}} - \frac{s}{s^2 + \sqrt{2s+1}} \right) ds$$

We work on the first term (the second is similar):

$$\int \frac{s}{s^2 - \sqrt{2}s + 1} ds = \int \frac{2s - \sqrt{2}}{2(s^2 - \sqrt{2}s + 1)} + \frac{1}{\sqrt{2}(s^2 - \sqrt{2}s + 1)} ds$$

You already know how to compute the first term here!

S11.8 Part 2 – The Perils of: Phase Diagrams, War, and Modeling

Assaf Bar-Natan

" I fought the war but the war won't stop for the love of god. I fought the war but the war won"

- "Monster Hospital", Metric

Feb. 28, 2020

Feb. 28, 2020 - S11.8 Part 2 - The Perils of: Phase Diagrams, War, and Modeling

Assaf Bar-Natan

The SIR Model – Contact Number

$$\frac{dS}{dt} = -\alpha SI$$
$$\frac{dI}{dt} = \alpha SI - \beta I$$

So:

$$\frac{dI}{dS} = \frac{\alpha SI - \beta I}{-\alpha SI} = -1 + \frac{\beta}{\alpha} \frac{1}{S}$$
$$= -1 + \frac{1}{cS}$$

Where we define $c = \frac{\alpha}{\beta}$, the contact number.

Param-	What does is Mea-	Units	Interpretation
eter	sure?		
α	Spreadability		Fraction of S who are in-
			fected, per sick person
			per day.
β	Removal rate		Percent of <i>I</i> that get bet-
			ter per day
$\frac{1}{\beta}$			
,			
C	1.2 M & N		

Param-	What does is Mea-	Units	Interpretation
eter	sure?		
α	Spreadability	1	Fraction of S who are in-
		$\frac{1}{t \times ppl}$	fected, per sick person
			per day.
β	Removal rate	1	Percent of I that get bet-
		$\frac{1}{t}$	ter per day
$\frac{1}{\beta}$		1	
		t	
6			
L	La maria	1 ppl	
		ppi	

at does is Mea-	Units	Interpretation
?		
adability	1	Fraction of S who are in-
	$\overline{t \times ppl}$	fected, per sick person
		per day.
noval rate	1	Percent of <i>I</i> that get bet-
	Ŧ	ter per day
	+	Average amount of time
	L	someone is sick
		Someone is sick
18 mil 18 18	1	
34.1	ppl	
	? eadability	? eadability $\frac{1}{t \times ppl}$

Param-	What does is Mea-	Units	Interpretation
eter	sure?		
α	Spreadability	1	Fraction of S who are in-
		t×ppl	fected, per sick person
			per day.
β	Removal rate	1	Percent of <i>I</i> that get bet-
	100	$\frac{1}{t}$	ter per day
$\frac{1}{\beta}$		t	Average amount of time
			someone is sick
С	Hone:	1 ppl	Fraction of <i>S</i> that are in- fected per sick person

c is a measure of "contagion". It's a quantity that determines how many healthy people a sick person infects, all things considered.

c is a measure of "contagion". It's a quantity that determines how many healthy people a sick person infects, all things considered.

WARNING: some models use $s = \frac{S}{N}$, some models use different constants!

Match real-life scenarios

1:00 Hide Correct Answer

For each scenario on the left, match the constant or quantity that is REDUCED when the scenario happens

All results 👻

Correct Order

1	Public transit is closed down	\rightarrow	в	с	33
2	Infected individuals wear respirators	\rightarrow	A	α	28
3	A vaccine is discovered and used	\rightarrow	D	S	75
4	A cure is found	\rightarrow	E	Ι	54
5	Better hospitals are built	\rightarrow	с	$\frac{1}{\beta}$	47

UofT Model

You, too, can play with the parameters of the SIR model: https://art-bd.shinyapps.io/nCov_control/

Why is our model (the SIR model) impe		2 No Correct Answer
A Reply	Orderes	d by Most Liked 👻
🔔 Shankavy Paramanathan		a day ago
 Some people are naturally immune a R represents both dead and recover immigrating emigrating 		ivors
Comments 🔲 0 🏻 🎁 3		• · ·
🔔 Miguel Weerasinghe		a day ago
1.yo my dude 2.acing this shizz		
3.hold my beer	bet geographics and berrieves event	
nah for serious likely dude to the fact t	that geographics and barnerss arent	
accounted for. epidemiology bros		
Comments 🔍 0 📫 3		I ×
🛓 XINYU ZHANG		a day ago
93/93 answered		
∧ < >	► Resume	Q 100%

Discussion: Why is our model imperfect?

- Changes in policy
- Constants are not actually constant
- Demographics are different
- Vaccines, medications

• ...

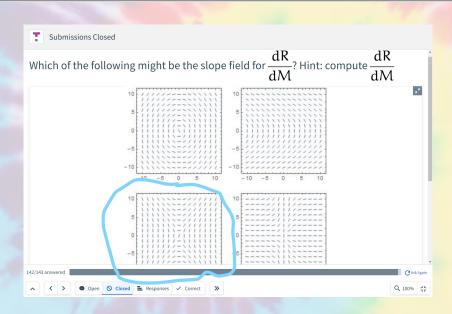
Cat Fight!

Marzipan and Rainbow are having a fight, and they brought all the other cats into it. They muster up their armies, and fight at midnight. Let R(t) be the number of cats remaining in Rainbow's army, t minutes after midnight. Define M(t) similarly. We apply Lanchester's model:

$$\frac{dR}{dt} = -0.5M(t)$$
$$\frac{dM}{dt} = -0.3R(t)$$

Cat Fight!

Marzipan and Rainbow are having a fight, and they brought all the other cats into it. They muster up their armies, and fight at midnight. Let R(t) be the number of cats remaining in Rainbow's army, t minutes after midnight. Define M(t) similarly. We apply Lanchester's model:

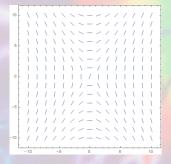

$$\frac{dR}{dt} = -0.5M(t)$$
$$\frac{dM}{dt} = -0.3R(t)$$

"I don't care how long the battle takes, I just want to win."

-Marzipan

Feb. 28, 2020 - S11.8 Part 2 - The Perils of: Phase Diagrams, War, and Modeling

Assaf Bar-Natan

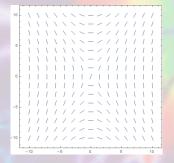


Feb. 28, 2020 - S11.8 Part 2 - The Perils of: Phase Diagrams, War, and Modeling

Assaf Bar-Natan

11 / 15

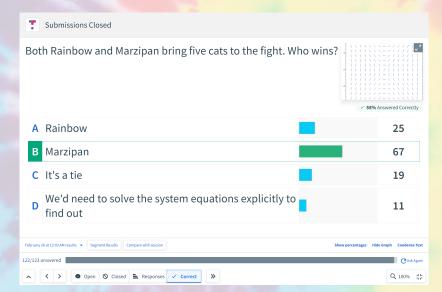
 $\frac{dR}{dM} = \frac{0.5}{0.3} \frac{M}{R}$


An **Equilibrium point** is a point where:

 $\frac{\frac{dR}{dt}}{\frac{dM}{dt}} = 0$

Feb. 28, 2020 - S11.8 Part 2 - The Perils of: Phase Diagrams, War, and Modeling

Assaf Bar-Natan


 $\frac{dR}{dM} = \frac{0.5}{0.3} \frac{M}{R}$

An **Equilibrium point** is a point where:

 $\frac{\frac{dR}{dt}}{\frac{dM}{dt}} = 0$

Q: Does there exist an equilibrium point for this system of differential equations? Yes! At R = 0, M = 0

We don't need to solve the differential equation! The slope field can tell us quite a bit!

For more: see the SIR model example in the text.

Plans for the Future

For next time: Review Taylor polynomials!