Welcome to MAT135 LEC0501 (Assaf)

As you come in, introduce yourself to someone you haven't met yet.

S5.1&5.2 – Riemann Sums, Erors, and Areas

Assaf Bar-Natan

" In the morning I'd awake And I couldn't remember What is love and what is hate The calculations error "

 $-\ensuremath{``}$ In The Morning of the Magicians $\ensuremath{''}$, The Flaming Lips

Jan. 8, 2020

Jan. 8, 2020 - S5.1&5.2 - Riemann Sums, Erors, and Areas

Assaf Bar-Natan 2/19

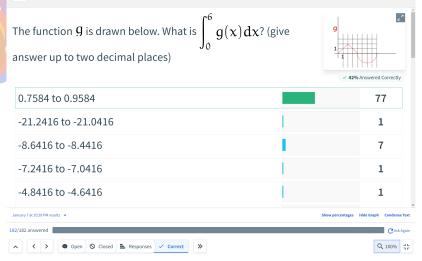
Announcements

- Read the syllabus (it's on Quercus).
- WeBWork is due the night before class
- We do not answer e-mails sent via WeBWork
- TopHat is graded by participation only. If it becomes meaningless, this will change!

Integrals and Areas

In your groups, write a sentence explaining the geometric interpretation of the expression:

$$\int_{a}^{b} f(x) dx$$



The integral of a function between *a* and *b* is the signed area between the function and the *x*-axis.

Let
$$f(x) = log(log(x))$$
. Then the integral $\int_3^5 f''(x) dx$ is

✓ 67% Answered Correctly

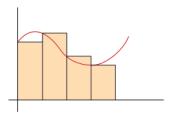
A Positive, and I'm confident in my answer.	18
B Positive, and I'm not confident in my answer.	32
C Negative, and I'm not confident in my answer.	58
D Negative, and I'm confident in my answer.	70
E I have no idea.	12

Takeaway

The fundamental theorem can allow us to compute hard integrals in an instant. We just need to identify them as derivatives!

Computing Integrals – An Idea

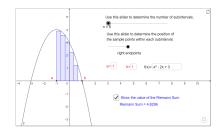
- Draw the function
- Divide the interval
- Pick left- or rightrectangles
- Add up areas



How does this work in practice?

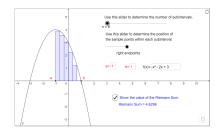
In groups, spend five minutes playing around with the applet:

https://www.geogebra.org/m/xJsZTG2i



For n = 6, the right Riemann sum is $(\Delta t = \frac{1}{3})$:

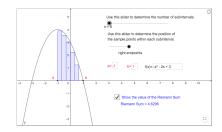
$$\Delta t(f(-\frac{2}{3}) + f(-\frac{1}{3}) + f(0) + f(\frac{1}{3}) + f(\frac{2}{3}) + f(1))$$



For n = 6, the right Riemann sum is $(\Delta t = \frac{1}{3})$:

$$\Delta t(f(-\frac{2}{3}) + f(-\frac{1}{3}) + f(0) + f(\frac{1}{3}) + f(\frac{2}{3}) + f(1))$$

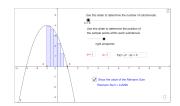
What is the left Riemann sum?



The integral is somewhere between the left and right Riemann sums:

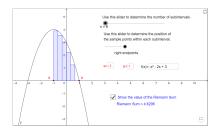
$$---- \leq \int_{-1}^{1} (-x^2 - 2x + 3) dx \leq ----$$

Which Riemann sum goes where?



$$R.H.S \leq \int_{-1}^{1} (-x^2 - 2x + 3) dx \leq L.H.S$$

Rainbow the cat wants to compute the area under the curve using a left-Riemann sum. He wants to know how far away from the true area his computation be.



We know:

$$R.H.S = \Delta t \left(f\left(-\frac{2}{3}\right) + f\left(-\frac{1}{3}\right) + f(0) + f\left(\frac{1}{3}\right) + f\left(\frac{2}{3}\right) + f(1) \right)$$

$$L.H.S = \left(f\left(-1\right) + f\left(-\frac{2}{3}\right) + f\left(-\frac{1}{3}\right) + f(0) + f\left(\frac{1}{3}\right) + f\left(\frac{2}{3}\right) \right)$$

What is L.H.S - R.H.S?

Q: Rainbow wants to compute the area under the curve $-x^2 - 2x + 3$ between x = -1 and x = 1. He wants his computation to fall within 0.02 of the true value. How many rectangles does He need?

Q: Rainbow wants to compute the area under the curve $-x^2 - 2x + 3$ between x = -1 and x = 1. He wants his computation to fall within 0.02 of the true value. How many rectangles does He need?

A: We know that the maximal error is L.H.S - R.H.S, which is given by $\Delta t(f(-1) - f(1))$. Plugging in values, we want:

 $0.02 \ge \Delta t \cdot 4$

Q: Rainbow wants to compute the area under the curve $x^2 - 2x + 3$ between x = -1 and x = 1. He wants his computation to fall within 0.02 of the true value. How many rectangles does He need?

A: We know that the maximal error is L.H.S - R.H.S, which is given by $\Delta t(f(-1) - f(1))$. Plugging in values, we want:

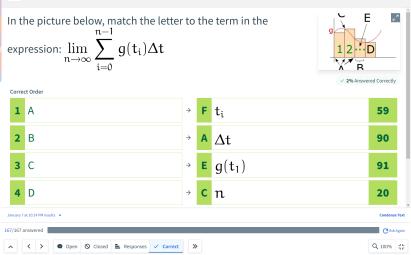
$$0.02 \ge \Delta t \cdot 4$$

We know $\Delta t = \frac{2}{n}$, so to make $\Delta t < 0.005$, we need *n* to be at least 400.

Takeaway

When a function is monotonic, we have a good way to estimate the error between the left- and the right- Riemann sums

Submissions Closed



One-Minute Explanation

Write a sentence explaining what happens to the left- and right-Riemann sums when we take the limit as $n \rightarrow \infty$.

One-Minute Explanation

Write a sentence explaining what happens to the left- and right-Riemann sums when we take the limit as $n \rightarrow \infty$.

"When we take the limit as $n \to \infty$, the left and the right Riemann sums converge to the same thing. This is the signed area under the function, or, the definite integral."

Plans for the Future

For next time: WeBWork 5.3 and read section 5.3