Welcome to MAT136 LEC0501 (Assaf)

Over reading week, did you do something:

- Fun?
- Hard?
- Rewarding?

S11.5 – Growth Models

Assaf Bar-Natan

"Now, for ten years we've been on our own And moss grows fat on a rolling stone But, that's not how it used to be"

-"American Pie", Don McLean

Feb. 24, 2020

Feb. 24, 2020 - S11.5 - Growth Models

Assaf Bar-Natan 2/19

Game Plan

- Today: section 11.5
- Wednesday & Friday: section 11.8
- New WeBWork: Taylor polynomials review "136TaylorSolutions"

Key Points Round Robin

Get into groups of three or four

Key Points Round Robin

Get into groups of three or four

• As a group, come up with three big key ideas from this chapter.

Key Points Round Robin

Get into groups of three or four

- As a group, come up with three big key ideas from this chapter.
- Pick a WeBWork problem from section 11.5. What key ideas does it relate to?

COVID-19 Growth

What function could model this data?

COVID-19 Growth

A reasonable guess:

$$I(t) = I_0 e^{kt}$$

COVID-19 Growth

A reasonable guess:

$$I(t) = I_0 e^{kt}$$

What value should we choose for k?

Possible Reasons for Discrepancy

- Data is imprecise
- S is approximately constant, so I' is approximately proportional to I
- The exponential model is not a good model to use in this case
- The data is not actually an exponential.

https://www.worldometers.info/coronavirus/

Takeaways

We can use a graph to track in real-time whether the SIS model is a good model

Punctuated Lecture: Rainbow's Hairball

Rainbow spits out a hairball in $-8^{\circ}C$ weather. A cat's normal body temperature is around $37^{\circ}C$. After one minute, the ball's temperature was $20^{\circ}C$. We will try to model the hairball's temperature as a function of time.

What's the Differential Equation?

Ö 1:00 Hide Correct Answer

Rainbow spits out a hairball in -8°C weather. A cat's normal body temperature is around 37°C. Newton's Law of Heating and cooling says that the rate of change of temperature is proportional to the temperature difference. Which equation best models the heat of the hairball?

All results 📼

$$\frac{dH}{dt} = k(H+8)$$

$$\frac{dH}{dt} = k(H+8)$$

Q: Should k be positive of negative?

$$\frac{dH}{dt} = k(H+8)$$

Q: Should k be positive of negative?

Q: Solve this differential equation.

$$\frac{dH}{dt} = k(H+8)$$

- **Q:** Should k be positive of negative?
- **Q:** Solve this differential equation.
- **A:** Using separation of variables, $H(t) + 8 = Be^{kt}$.

Submissions Closed

Rainbow spits out a hairball. Rainbow's body temperature is 37 degrees, and after one minute, the ball's temperature was 20 degrees C. We know that $H(t) + 8 = Be^{kt}$. Then B = ______ and k = _____

BLANK1 BLANK2	
44.99 to 45.01	86
-17.01 to -16.99	1
-0.01 to 0.01	2
0.49 to 0.51	1
0.99 to 1.01	6
1.99 to 2.01	2
nvalid date 💌	
5/175 answered	C ^{Ask Aga}
∧ < > Open Open Octosed ► Responses ✓ Correct >>	Q 100%

Submissions Closed

Rainbow spits out a hairball. Rainbow's body temperature is 37 degrees, and after one minute, the ball's temperature was 20 degrees C. We know that $H(t) + 8 = Be^{kt}$. Then B = weak and k = weak

BLANK1 BLANK2	
-0.484 to -0.464	56
2.996 to 3.016	5
-17,004 to :16.084	1
3.996 to 4.016	1
-4.004 to -3.984	1
4.996 to 5.016	4
nvalid date 💌	
75/175 answered	C Ask Again
∧ < > Open Open Closed ≥ Responses ✓ Correct >>	Q 100% 1

Punctuated Lecture: Rainbow's Hairball

$$H(t) + 8 = Be^{kt}$$

We are given that H(0) = 37, so this means that B = 45.

Punctuated Lecture: Rainbow's Hairball

$$H(t) + 8 = Be^{kt}$$

We are given that H(0) = 37, so this means that B = 45. Moreover, we know H(1) = 20, so:

$$28 = 45e^{4}$$

giving us $k \approx -0.474$

Feb. 24, 2020 - S11.5 - Growth Models

Assaf Bar-Natan 14/19

Takeaway

We can use initial conditions and another point to find constants that give a particular solution to a heat-law-type problem

Equilibrium Points

Here's a totally wonky, and completely random differential equation:

$$\frac{dy}{dx} = (y-1)(y+1)$$

Q: What are its equilibrium solutions?

Equilibrium Points

Here's a totally wonky, and completely random differential equation:

$$\frac{dy}{dx} = (y-1)(y+1)$$

Q: What are its equilibrium solutions? **A:** y = 1 and y = -1 Submissions Closed

Below is the slope field for the differential equation y'=(y-1)(y+1). Which solution is a stable equilibrium?

February 23 at 11:58 PM results 👻 Segment Results Compare with session	le Graph Condense Text
175/175 answered	C Ask Again
∧ ✓ > Open So Closed ≥ Responses ✓ Correct ≫	Q 100% 11

Takeaway

We can tell the difference between stable and unstable equilibria by looking at the slope fields.

Plans for the Future

For next time: WeBWork 11.8 and actively read section 11.8