Welcome to MAT136 LEC0501 (Assaf)

Was the midterm what you expected? What surprised you? What would you change next time?

S11.4 - Separation of Variables - $\frac{d y}{d x}$ is Still not a Fraction

Assaf Bar-Natan
" How long, how long will I slide?
Separate my side, I don't
I don't believe it's bad"
-"Otherside", Red Hot Chili Peppers

Feb. 14, 2020

Ice Cream Sandwich

In your groups, share:

- A time you had a good success

Ice Cream Sandwich

In your groups, share:

- A time you had a good success
- A time you failed

Ice Cream Sandwich

In your groups, share:

- A time you had a good success
- A time you failed
- A time you recovered

What is Separation of Variables?

We wish to solve:

$$
\frac{d y}{d x}=g(x) f(y)
$$

Thinking of $\frac{d y}{d x}$ as a ratio (it's not), we get:

$$
\int \frac{1}{f(y)} d y=\int g(x) d x
$$

What is Separation of Variables?

We wish to solve:

$$
\frac{d y}{d x}=g(x) f(y)
$$

Thinking of $\frac{d y}{d x}$ as a ratio (it's not), we get:

$$
\int \frac{1}{f(y)} d y=\int g(x) d x
$$

This gives us an relation between x and y, which is the solution to the differential equation

Which Equations?

Worth 1 participation pointand 0 correctness points

Which of the following differential equations are separable? Click all that are separable

All results

What calculus technique is used to justify the method separation of variables?

Justification for Separation of Variables

A differential equation is called separable if it can be written in the form

$$
\frac{d y}{d x}=g(x) f(y) .
$$

Provided $f(y) \neq 0$, we write $f(y)=1 / h(y)$, so the right-hand side can be thought of as a fraction,

$$
\frac{d y}{d x}=\frac{g(x)}{h(y)}
$$

If we multiply through by $h(y)$, we get

$$
h(y) \frac{d y}{d x}=g(x) .
$$

Thinking of y as a function of x, so $y=y(x)$, and $d y / d x=y^{\prime}(x)$, we can rewrite the equation as

$$
h(y(x)) \cdot y^{\prime}(x)=g(x) .
$$

Now integrate both sides with respect to x :

$$
\int h(y(x)) \cdot y^{\prime}(x) d x=\int g(x) d x
$$

The form of the integral on the left suggests that we use the substitution $y=y(x)$. Since $d y=y^{\prime}(x) d x$, we get

$$
\int h(y) d y=\int g(x) d x
$$

If we can find antiderivatives of h and g, then this gives the equation of the solution curve.

Takeawy

While $\frac{d y}{d x}$ is not a fraction, it can be useful to think of it as one.

The textbook is a useful resource!!!!!

Punctuated Lecture: The Cat Population

Last time, we modeled the population of cats by:

$$
\frac{d y}{d t}=y(1-y / 30)
$$

Question: Use separation of variables to write this differential equation as an equality of integrals.

Punctuated Lecture: The Cat Population

Last time, we modeled the population of cats by:

$$
\frac{d y}{d t}=y(1-y / 30)
$$

Question: Use separation of variables to write this differential equation as an equality of integrals.

$$
t=\int \frac{d y}{y-y^{2} / 30}
$$

Punctuated Lecture: The Cat Population

Last time, we modeled the population of cats by:

$$
\frac{d y}{d t}=y(1-y / 30)
$$

This is solved by:

$$
t=\int \frac{d y}{y-y^{2} / 30}
$$

Question: Verify that

$$
\log \left(\frac{y}{30-y}\right)
$$

is an antiderivative of $\frac{1}{y-y^{2} / 30}$. (You may use a computer)

Punctuated Lecture: The Cat Population

Last time, we modeled the population of cats by:

$$
\frac{d y}{d t}=y(1-y / 30)
$$

This is solved by:

$$
t=\log \left(\frac{y}{30-y}\right)
$$

Question: Write y as a function of t.

Punctuated Lecture: The Cat Population

Last time, we modeled the population of cats by:

$$
\frac{d y}{d t}=y(1-y / 30)
$$

This is solved by:

$$
y(t)=\frac{30 e^{t}}{1+e^{t}}
$$

Question: We earlier said that the number of cats at $t=0$ was 20, but plugging in $t=0$ above does not yield 20. What happened?

Using separation of variables to solve a differential equation, we can always get y as an explicit function of x
$\checkmark \mathbf{7 0 \%}$ Answered Correctly
A True, and I am confident in my answer. 8

B True, and I am not confident in my answer. \square
C False, and I am not confident in my answer. $\square 52$
D False, and I am confident in my answer. \square

Feb. 14, 2020 - S 11.4 - Separation of Variables $-\frac{d y}{d x}$ is Still not a Fraction

Separation of Variables - Practice

Solve the following differential equation using separation of variables:

$$
y^{\prime}=\frac{1}{1+y^{4}}
$$

Takeaway

Separation of variables gives an implicit solution to the differential equation, not an explicit one

Plans for the Future

For next time:

WeBWork 11.5 and actively read section 11.5

