Welcome to MAT136 LEC0501 (Assaf)

Was the midterm what you expected? What surprised you? What would you change next time?

S11.4 – Separation of Variables – $\frac{dy}{dx}$ is Still not a Fraction

Assaf Bar-Natan

" How long, how long will I slide? Separate my side, I don't I don't believe it's bad"

- "Otherside", Red Hot Chili Peppers

Feb. 14, 2020

Feb. 14, 2020 – S11.4 – Separation of Variables – $\frac{dy}{dx}$ is Still not a Fraction

Assaf Bar-Natan 2/16

Ice Cream Sandwich

In your groups, share:

• A time you had a good success

Ice Cream Sandwich

In your groups, share:

- A time you had a good success
- A time you failed

Ice Cream Sandwich

In your groups, share:

- A time you had a good success
- A time you failed
- A time you recovered

What is Separation of Variables?

We wish to solve:

$$\frac{dy}{dx} = g(x)f(y)$$

Thinking of $\frac{dy}{dx}$ as a ratio (it's not), we get:

$$\int \frac{1}{f(y)} dy = \int g(x) dx$$

Feb. 14, 2020 – S11.4 – Separation of Variables – $\frac{dy}{dx}$ is Still not a Fraction

What is Separation of Variables?

We wish to solve:

$$\frac{dy}{dx} = g(x)f(y)$$

Thinking of $\frac{dy}{dx}$ as a ratio (it's not), we get:

$$\int \frac{1}{f(y)} dy = \int g(x) dx$$

This gives us an relation between x and y, which is the solution to the differential equation

Which Equations?

Worth 1 participation pointand 0 correctness points

Which of the following differential equations are separable? Click all that are separable

All results 📼

Submissions Closed

What calculus technique is used to justify the method separation of variables?

A Integration by parts	19		
B The interpretation of the derivative	42		
C The chain rule	47		
D The product rule	11		
E The fact that the derivative is a ratio of $\mathrm{d}y$ and $\mathrm{d}x$	18		
February 13 at 10.51 PH results + Segment Results Compare with ression Share precentages Hide Graph Condense Text			
137/137 answered CAdAgain			
∧ ✓ > Open S Closed ≡ Responses ✓ Correct ≫	Q 100% 1		

✓ 34% Answered Correctly

Justification for Separation of Variables

A differential equation is called *separable* if it can be written in the form

$$\frac{dy}{dx} = g(x) f(y).$$

Provided $f(y) \neq 0$, we write f(y) = 1/h(y), so the right-hand side can be thought of as a fraction,

$$\frac{dy}{dx} = \frac{g(x)}{h(y)}.$$

If we multiply through by h(y), we get

$$h(y)\frac{dy}{dx} = g(x).$$

Thinking of y as a function of x, so y = y(x), and dy/dx = y'(x), we can rewrite the equation as

$$h\left(y\left(x\right)\right)\cdot y'\left(x\right) = g\left(x\right).$$

Now integrate both sides with respect to x:

$$\int h\left(y\left(x
ight)
ight)\cdot y'\left(x
ight) \;dx=\int g\left(x
ight)\;dx\,.$$

The form of the integral on the left suggests that we use the substitution y = y(x). Since dy = y'(x) dx, we get

$$\int h(y) \, dy = \int g(x) \, dx$$
.

If we can find antiderivatives of h and g, then this gives the equation of the solution curve.

Feb. 14, 2020 – S11.4 – Separation of Variables – $\frac{dy}{dx}$ is Still not a Fraction

Assaf Bar-Natan 7/16

While $\frac{dy}{dx}$ is not a fraction, it can be useful to think of it as one. The textbook is a useful resource!!!!!

Last time, we modeled the population of cats by:

$$\frac{dy}{dt} = y(1 - y/30)$$

Question: Use separation of variables to write this differential equation as an equality of integrals.

Last time, we modeled the population of cats by:

$$\frac{dy}{dt} = y(1 - y/30)$$

Question: Use separation of variables to write this differential equation as an equality of integrals.

$$t = \int \frac{dy}{y - y^2/30}$$

Punctuated Lecture: The Cat Population

Last time, we modeled the population of cats by:

$$\frac{dy}{dt} = y(1 - y/30)$$

This is solved by:

$$t = \int \frac{dy}{y - y^2/30}$$

Question: Verify that

$$\log\left(\frac{y}{30-y}\right)$$

is an antiderivative of $\frac{1}{y-y^2/30}$. (You may use a computer)

Feb. 14, 2020 – S11.4 – Separation of Variables – $\frac{dy}{dx}$ is Still not a Fraction

Assaf Bar-Natan 10/16

Punctuated Lecture: The Cat Population

Last time, we modeled the population of cats by:

$$\frac{dy}{dt} = y(1 - y/30)$$

This is solved by:

$$t = \log\left(\frac{y}{30 - y}\right)$$

Question: Write y as a function of t.

Punctuated Lecture: The Cat Population

Last time, we modeled the population of cats by:

$$\frac{dy}{dt} = y(1 - y/30)$$

This is solved by:

$$y(t) = \frac{30e^t}{1+e^t}$$

Question: We earlier said that the number of cats at t = 0 was 20, but plugging in t = 0 above does not yield 20. What happened?

Feb. 14, 2020 – S11.4 – Separation of Variables – $\frac{dy}{dx}$ is Still not a Fraction

Submissions Closed

Using separation of variables to solve a differential equation, we can always get y as an explicit function of \boldsymbol{x}

115/115 answered Chatage	Invalid date Segment Results Compare with session	Show percentages Hide Gra	aph Condense Text
∧ < > ● Open S Closed = Responses	115/115 answered		C Ask Again
	∧ <	»	Q 100% 45

Separation of Variables – Practice

Solve the following differential equation using separation of variables:

$$y' = \frac{1}{1+y^4}$$

Takeaway

Separation of variables gives an implicit solution to the differential equation, not an explicit one

Plans for the Future

For next time: WeBWork 11.5 and actively read section 11.5