Welcome to MAT135 LEC0501 (Assaf)

Think of a hobby or a skill you have. Did you get a chance to do it this year?

S7.7 – Improper Integrals – Comparisons, Estimation, and Guessing

Assaf Bar-Natan

"Laughing like children, living like lovers Rolling like thunder under the covers And I guess that's why they call it the blues"

-"I Guess That's Why They Call it the Blues", Elton John

Feb. 3, 2020

Feb. 3, 2020 - S7.7 - Improper Integrals - Comparisons, Estimation, and Guessing

The CIQ

Things I noticed

- TopHat and working together got a lot of people engaged
- Things we dislike:
 - When people aren't participating
 - When Assaf skips things
 - Unexplained answers
- Things we like:
 - Explaining after TopHats
 - Other people helping us understand
- Reading summary at the start of class before self-work
- Things that surprised you:
 - How welcoming you were to each other
 - How many friends you made
 - The style of the class

How Do We Learn?

How do people learn?

How Do We Learn?

How do people learn?

What is something you are good at? How did you learn it?

Feb. 3, 2020 - S7.7 - Improper Integrals - Comparisons, Estimation, and Guessing

How Do We Learn?

How do people learn?

What is something you are good at? How did you learn it?

Why do we ask you to read before class?

Feb. 3, 2020 - S7.7 - Improper Integrals - Comparisons, Estimation, and Guessing

Good Reading Strategies

What are some good reading strategies for math?

What are some good reading strategies for math?

Three-time rule:

- Skim don't worry about understanding, just read! (10 mins)
- Note take meticulous notes, and read carefully! (one hour)
- Own Read things one last time to pick up pieces you've missed (10 mins)

What are some good reading strategies for math?

Three-time rule:

- Skim don't worry about understanding, just read! (10 mins)
- Note take meticulous notes, and read carefully! (one hour)
- **Own** Read things one last time to pick up pieces you've missed (10 mins)

Other ideas:

• Ask friends for help

• TAKE NOTES

Do the problems

Ice-Cream Sandwich

Spend a minute to think about:

- Something in the chapter that you've mastered.
- Something in the chapter that you've learned
- Something in the chapter that you've got to revisit

Ice-Cream Sandwich

Spend a minute to think about:

- Something in the chapter that you've mastered.
- Something in the chapter that you've learned
- Something in the chapter that you've got to revisit

Share with your neighbours

The Idea of Comparisons

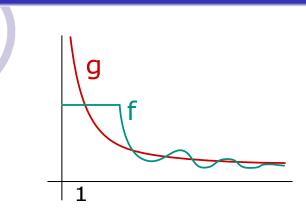
"If it looks like a cat, and meows like a cat, it converges like a cat"

If $f \leq g$ then $\int_a^b f \leq \int_a^b g$, so if g converges, then f converges.

Submissions Closed

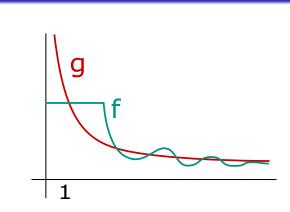


A Graphical Example



If $\int_1^{\infty} g(x) dx$ converges, what can we say about $\int_1^{\infty} f(x) dx$? It must converge, by the comparison test, since f looks like g. If $\int_0^1 g(x) dx$ diverges, what can we say about $\int_0^1 f(x) dx$?

A Graphical Example



If $\int_1^{\infty} g(x) dx$ converges, what can we say about $\int_1^{\infty} f(x) dx$? It must converge, by the comparison test, since f looks like g. If $\int_0^1 g(x) dx$ diverges, what can we say about $\int_0^1 f(x) dx$? $\int_0^1 f(x) dx$ is not an improper integral, so it converges.

Feb. 3, 2020 - S7.7 - Improper Integrals - Comparisons, Estimation, and Guessing

Takeaway

When looking at what integrals to infinity do, we only care about the tail. If the tails look similar, then the functions converge and diverge together.

Spot the Error

Peek, the curious cat, is trying to compute:

$$\int_{1}^{\infty} \frac{-1}{x} dx$$

She writes:

"I know that

$$\int_1^\infty \frac{1}{x^2} = 1$$

I also know that $\frac{-1}{x} \leq \frac{1}{x^2}$ for all $x \geq 1$ So by the comparison test, I can conclude that $\int_1^\infty \frac{-1}{x} dx$ converges."

What was her mistake? Write a takeaway from this example.

Feb. 3, 2020 - S7.7 - Improper Integrals - Comparisons, Estimation, and Guessing

When dealing with negative integrands, we can't just bound things from one side.

Takeaway

When dealing with negative integrands, we can't just bound things from one side.

Aside: This should remind some of you of the squeeze theorem ...

Review: Known Improper Integrals

Integral	Condition on parameter (p or a)	Converges/diverges
$\int_0^1 x^p$	p>-1	
$\int_0^1 x^p$	$ ho \leq -1$	
$\int_1^\infty x^p$	$p\geq -1$	
$\int_1^\infty x^p$	ho < -1	
$\int_0^\infty e^{-ax}$	<i>a</i> > 0	
$\int_0^\infty e^{-ax}$	$a \leq 0$	

Review: Known Improper Integrals

Integral	Condition on parameter (p or a)	Converges/diverges
$\int_0^1 x^p$	p>-1	Converges
$\int_0^1 x^p$	$p\leq -1$	Diverges
$\int_1^\infty x^p$	$p\geq -1$	Diverges
$\int_1^\infty x^p$	p < -1	Converges
$\int_0^\infty e^{-ax}$	<i>a</i> > 0	Converges
$\int_0^\infty e^{-ax}$	<i>a</i> ≤ 0	Diverges

"If it looks like a cat, and meows like a cat, it converges like a cat"

What known improper integrals do the following integrals look like:

$$\int_{6}^{\infty} \frac{1}{(x-5)^2} dx$$
$$\int_{0}^{5} \frac{1+\sin^2(x)}{\sqrt{x}} dx$$
$$\int_{5}^{\infty} \frac{1+\sin^2(x)}{\log(x)} dx$$

$$\int_6^\infty \frac{1}{(x-5)^2} dx$$

Key ideas:

٥

$$x-5 < x$$
 so $\frac{1}{(x-5)^2} \ge \frac{1}{x^2}$. This won't help.

• Substitute
$$u = x - 5$$
 to get $\int_{1}^{\infty} \frac{1}{u^2} du$

• When x is big,
$$\frac{1}{(x-5)^2} \approx \frac{1}{x^2}$$

$$\int_6^\infty \frac{1}{(x-5)^2} dx$$

•
$$x-5 < x$$
 so $\frac{1}{(x-5)^2} \ge \frac{1}{x^2}$. This won't help.

Key ideas:

• Substitute
$$u = x - 5$$
 to get $\int_1^\infty \frac{1}{u^2} du$
• When x is big, $\frac{1}{(x-5)^2} \approx \frac{1}{x^2}$

This integral converges

Key ideas:

$$\int_{0}^{5} \frac{1 + \sin^{2}(x)}{\sqrt{x}} dx$$

$$\frac{1}{\sqrt{x}} \leq \frac{1 + \sin^{2}(x)}{\sqrt{x}} \leq \frac{2}{\sqrt{x}}$$

$$\frac{1}{\sqrt{x}} \leq \frac{1 + \sin^{2}(x)}{\sqrt{x}} \leq \frac{2}{\sqrt{x}}$$

$$\frac{1}{\sqrt{x}} \leq \frac{1 + \sin^{2}(x)}{\sqrt{x}} \leq \frac{2}{\sqrt{x}}$$

$$\int_{0}^{5} \frac{1 + \sin^{2}(x)}{\sqrt{x}} dx$$

Key ideas:
• $\frac{1}{\sqrt{x}} \leq \frac{1 + \sin^{2}(x)}{\sqrt{x}} \leq \frac{2}{\sqrt{x}}$
• When x is small, integrand looks like $\frac{1}{\sqrt{x}}$

This integral converges

$$\int_5^\infty \frac{1+\sin^2(x)}{\log(x)} dx$$

• The 1 + sin²(x) term is a distraction that just oscillates a bit.

Key ideas:

Looks like ∫₅[∞] 1/log(x)
When x is big, x > log(x) so 1/x < 1/log(x)

$$\int_5^\infty \frac{1+\sin^2(x)}{\log(x)} dx$$

• The 1 + sin²(x) term is a distraction that just oscillates a bit.

Key ideas:

Looks like ∫₅[∞] 1/log(x)
When x is big, x > log(x) so 1/x < 1/log(x)

This integral diverges

Takeaway

When comparing integrals, be mindful of easy substitutions, but also watch for the bounds!

The Cat's Tail

Does the integral:

$$\int_{a}^{\infty} \frac{1}{x^2} dx$$

(where a > 1) converge?

The Cat's Tail

Does the integral:

$$\int_{a}^{\infty} \frac{1}{x^2} dx$$

(where a > 1) converge? Yes!

$$\int_{1}^{\infty} \frac{1}{x^2} dx = \int_{1}^{a} \frac{1}{x^2} dx + \int_{a}^{\infty} \frac{1}{x^2} dx$$

So we get:

$$1 = 1 - \frac{1}{a} + \int_a^\infty \frac{1}{x^2} dx$$

and we can solve for the integral.

Feb. 3, 2020 - S7.7 - Improper Integrals - Comparisons, Estimation, and Guessing

Plans for the Future

For next time: WeBWork 11.1 and actively read section 11.1