Welcome to MAT135 LEC0501 (Assaf)

What is the integral $\int \frac{1}{\text{cabin}} d$ cabin?

Two challenging integrals from last week:

$$\int \sin(e^t)dt = Si(e^x) + C$$

For $\int \sqrt{\tan(x)}$, substitute $u = \tan(x)$ to get:

$$\int \frac{\sqrt{u}}{u^2 + 1} = ???$$

This is very hard. Further developments next week.

S7.2 – Integration Methods – Integration by Parts

Assaf Bar-Natan

"Sometimes I lie awake, night after night Coming apart at the seams Eager to please, ready to fight Why do I go to extremes?"

- "Why Do I Go To Extremes", Billy Joel

Jan. 27, 2020

Reading Comprehension

- The differentiation rule that gives us integration by parts is the _____ rule.
- The integration by parts technique tells us that $\int uv'dx = \underline{\qquad} \underline{\qquad}$.

Submissions Closed

True / False: When we use integration by parts to compute definite integrals, we need to change the limits of the definite integral.

A True		26
B False		99
C Only in	some cases.	49

√ 57% Answered Correctly

Takeaway

When faced with an integral that is a product of functions, try integration by parts. (Sometimes this will work for other functions too)

Leibniz and The Product Rule

107

Let us seek to obtain others in addition, such as $\int t \, dy = \int y \, dx.$

Now this furnishes us with nothing new; but $\int tw + \int xw = xy$

or
$$t dy + x dy = \overline{dxy}$$
, and $t = \frac{dx}{dy}y$; hence the latter $= \frac{dxy - x}{dy} \frac{dy}{dy}$.
Therefore $\overline{dx} v = \overline{dxy} - x \overline{dy}$.

Leibniz and The Product Rule

107

Let us seek to obtain others in addition, such as $\int t \, dy = \int y \, dx.$

Now this furnishes us with nothing new; but $\int tw + \int xw = xy$

or
$$t\,dy+x\,dy=\overline{dxy}$$
, and $t=\frac{dx}{dy}\,y$; hence the latter $=\frac{dxy-x\,dy}{dy}$. Therefore $\overline{dx}\,y=\overline{dxy}-x\,\overline{dy}$.

- dx means "the derivative of x"
- \overline{xy} means (xy)

Leibniz and The Product Rule

MANUSCRIPT DATED NOV. 21, 1675.

107

Let us seek to obtain others in addition, such as $\int t \, dy = \int y \, dx.$

Now this furnishes us with nothing new; but $\int tw + \int xw = xy$

or
$$t\,dy+x\,dy=\overline{dxy}$$
, and $t=\frac{dx}{dy}\,y$; hence the latter $=\frac{dxy-x\,dy}{dy}$. Therefore $\overline{dx}\,y=\overline{dxy}-x\,\overline{dy}$.

- dx means "the derivative of x"
- \overline{xy} means (xy)

Leibniz used the fundamental theorem and integration by parts to conclude the product rule!

A cold snap hits the cats, and Mia's body starts building up her fur at a rate of f(t) pounds per day. If $f(t) = 0.5 * t^2 e^{-t}$, how much hair has she built up after ten days?

A cold snap hits the cats, and Mia's body starts building up her fur at a rate of f(t) pounds per day. If $f(t) = 0.5 * t^2 e^{-t}$, how much hair has she built up after ten days?

• Write an expression that computes this.

A cold snap hits the cats, and Mia's body starts building up her fur at a rate of f(t) pounds per day. If $f(t) = 0.5 * t^2 e^{-t}$, how much hair has she built up after ten days?

- Write an expression that computes this.
- Integrate by parts. What should be u? What should be v?

A cold snap hits the cats, and Mia's body starts building up her fur at a rate of f(t) pounds per day. If $f(t) = 0.5 * t^2 e^{-t}$, how much hair has she built up after ten days?

- Write an expression that computes this.
- Integrate by parts. What should be u? What should be v?
- Does this simplify the question?

We wish to compute:

$$\int_0^{10} 0.5 t^2 e^{-t} dt$$

We wish to compute:

$$\int_0^{10} 0.5 t^2 e^{-t} dt$$

Setting

$$u = t^2$$
 $v' = e^{-t}$
 $u' = 2t$ $v = -e^{-t}$

gives:

$$\int_0^{10} 0.5t^2 e^{-t} dt = \left[0.5t^2 (-e^{-t}) \right]_0^{10} + \int_0^{10} t e^{-t} dt$$

We wish to compute:

$$\int_0^{10} 0.5 t^2 e^{-t} dt$$

Setting

$$u = t^2$$
 $v' = e^{-t}$
 $u' = 2t$ $v = -e^{-t}$

gives:

$$\int_0^{10} 0.5t^2 e^{-t} dt = \left[0.5t^2 (-e^{-t}) \right]_0^{10} + \int_0^{10} t e^{-t} dt$$

Does this simplify the question?

$$\int_0^{10} 0.5t^2 e^{-t} dt = \left[0.5t^2 (-e^{-t}) \right]_0^{10} + \int_0^{10} t e^{-t} dt$$

We integrate by parts again, to solve the integral on the right. What should u be?

$$\int_0^{10} 0.5t^2 e^{-t} dt = \left[0.5t^2 (-e^{-t}) \right]_0^{10} + \int_0^{10} t e^{-t} dt$$

We integrate by parts again, to solve the integral on the right. What should u be?

$$\int_0^{10} 0.5t^2 e^{-t} dt = \left[0.5t^2 (-e^{-t}) \right]_0^{10} + \int_0^{10} t e^{-t} dt$$
$$= \left[0.5t^2 (-e^{-t}) \right]_0^{10} + \left[t (-e^{-t}) \right]_0^{10} + \int_0^{10} e^{-t} dt$$

$$\int_0^{10} 0.5t^2 e^{-t} dt = \left[0.5t^2 (-e^{-t}) \right]_0^{10} + \int_0^{10} t e^{-t} dt$$

We integrate by parts again, to solve the integral on the right. What should u be?

$$\int_0^{10} 0.5t^2 e^{-t} dt = \left[0.5t^2 (-e^{-t}) \right]_0^{10} + \int_0^{10} t e^{-t} dt$$
$$= \left[0.5t^2 (-e^{-t}) \right]_0^{10} + \left[t (-e^{-t}) \right]_0^{10} + \int_0^{10} e^{-t} dt$$

Does this simplify the question enough to solve?

$$\int_0^{10} 0.5t^2 e^{-t} dt = \left[0.5t^2 (-e^{-t}) \right]_0^{10} + \int_0^{10} t e^{-t} dt$$

We integrate by parts again, to solve the integral on the right. What should u be?

$$\int_0^{10} 0.5t^2 e^{-t} dt = \left[0.5t^2 (-e^{-t}) \right]_0^{10} + \int_0^{10} t e^{-t} dt$$
$$= \left[0.5t^2 (-e^{-t}) \right]_0^{10} + \left[t (-e^{-t}) \right]_0^{10} + \int_0^{10} e^{-t} dt$$

Does this simplify the question enough to solve? Evaluating the last integral, and plugging in the bounds gives $\int_0^{10} 0.5t^2e^{-t}dt \approx 0.997$.

Takeaway

Integration by parts is useful when there is a product of functions, and we want one of them to "disappear".

dETAILS Mnemonic

$$\int uv'dx = uv - \int vu'dx$$

Here is a mnemonic for what functions to use for v' (read backwards for what functions to use as u)

d erivative function (ie, the v' in $\int uv' = uv - \int u'v$)

dETAILS Mnemonic

$$\int uv'dx = uv - \int vu'dx$$

Here is a mnemonic for what functions to use for v' (read backwards for what functions to use as u)

- d erivative function (ie, the v' in $\int uv' = uv \int u'v$)
- E xponents
- T rigonometric
- A Igebraic (ie polynomials, ratios of polynomials)
- I nverse trigonometric
- L ogarithms
- S pecial functions (like Si(x))

dETAILS Mnemonic

$$\int uv'dx = uv - \int vu'dx$$

Here is a mnemonic for what functions to use for v' (read backwards for what functions to use as u)

- d erivative function (ie, the v' in $\int uv' = uv \int u'v$)
- **E** xponents
- T rigonometric
- A Igebraic (ie polynomials, ratios of polynomials)
- I nverse trigonometric
- L ogarithms
- S pecial functions (like Si(x))

Bonus: find $\int xSi(x)dx$.

Integration by Parts – Functions Given Strangely

Let's say we have two functions, f, and g. g is given as a table of values, and f is given as a formula. Which of the following are easy to estimate?

- $f \cdot g$ evaluated at some point
- $\int_a^b f'gdx$
- $\int_a^b fg' dx$
- $\int_a^b f'g'dx$

Integration by Parts – Functions Given Strangely

Let's say we have two functions, f, and g. g is given as a table of values, and f is given as a formula. Which of the following are easy to estimate?

- $f \cdot g$ evaluated at some point
- $\int_a^b f'gdx$
- $\int_a^b fg' dx$
- $\int_a^b f'g'dx$

Hint: For which of these integrands can you write a table of values?

Integration by Parts – Functions Given Strangely

Let's say we have two functions, f, and g. g is given as a table of values, and f is given as a formula.

$$\int_{a}^{b} f(x)g'(x) = [fg]_{a}^{b} - \int_{a}^{b} f'(x)g(x)dx$$

We can now write a table for f'(x), for g(x), and f'(x)g(x), and estimate the integral on the right.

What is Easy to Compute?

Worth 1 participation point and 0 correctness points

What is Easy to Compute? Show Correct Answer Let's say that f(x) is a function given as a formula, and g(x) is a function given as a table of values. Which of the following can you easily estimate? All results f(a)g(a) for some value of a 86 16 $\int_{a}^{b} f'(x)g(x)dx$ 38

39

Graphical Estimation

$$\int_0^5 f(x)g'(x) = f(5)g(5) - f(0)g(0) - \int_0^5 g(x)f'(x)dx$$
$$= -\int_0^5 2g(x)$$

Spot The Error

The Calculus Cats find a note on the floor. It reads:

To compute $\int \tan(x)dx$, we integrate by parts.

$$u = \frac{1}{\cos(x)} \qquad v' = \sin(x)$$
$$u' = \tan(x)\sec(x) \qquad v = -\cos(x)$$

so

$$\int \tan(x)dx = \int uv'dx = uv - \int vu'dx = -1 + \int \tan(x)$$

Simplifying, we get 0 = -1.

The cats are stressed by this, to say the least. Can you help them?

Spot The Error

The Calculus Cats find a note on the floor. It reads:

To compute $\int_{\pi/6}^{\pi/4} \tan(x) dx$, we integrate by parts.

$$u = \frac{1}{\cos(x)} \qquad v' = \sin(x)$$
$$u' = \tan(x)\sec(x) \qquad v = -\cos(x)$$

so

$$\int_{\pi/6}^{\pi/4} \tan(x) dx = \int_{\pi/6}^{\pi/4} uv' dx = uv - \int_{\pi/6}^{\pi/4} vu' dx = -1 + \int_{\pi/6}^{\pi/4} \tan(x)$$

Simplifying, we get 0 = -1.

The cats are even more stressed by this. Can you help them?

Plans for the Future

For next time:

Integration and Computer Algebra Systems. No reading, but bring a computer, and review what we've done!