Welcome to MAT135 LEC0501 (Assaf)

What is the integral $\int \frac{1}{\text { cabin }} d$ cabin?

Two challenging integrals from last week:

$$
\int \sin \left(e^{t}\right) d t=S i\left(e^{x}\right)+C
$$

For $\int \sqrt{\tan (x)}$, substitute $u=\tan (x)$ to get:

$$
\int \frac{\sqrt{u}}{u^{2}+1}=? ? ?
$$

This is very hard. Further developments next week.

S7.2 - Integration Methods - Integration by Parts

Assaf Bar-Natan

"Sometimes I lie awake, night after night Coming apart at the seams Eager to please, ready to fight Why do I go to extremes?"
-"Why Do I Go To Extremes", Billy Joel

Jan. 27, 2020

Reading Comprehension

- The differentiation rule that gives us integration by parts is the
\qquad rule.
- The integration by parts technique tells us that

$$
\int u v^{\prime} d x=
$$

True / False: When we use integration by parts to compute definite integrals, we need to change the limits of the definite integral.

Takeaway

When faced with an integral that is a product of functions, try integration by parts. (Sometimes this will work for other functions too)

Leibniz and The Product Rule

MANUSCRIPT DATED NOV. $21,1675$.

Let us seek to obtain others in addition, such as

$$
\int t d y=\int y d x
$$

Now this furnishes us with nothing new; but $\int t w+\int x w=x y$ or $t d y+x d y=\overline{d x y}$, and $t=\frac{d x}{d y} y$; hence the latter $=\frac{d x y-x}{d y} \frac{d y}{d}$. Therefore $\overline{d x} y=\overline{d x y}-x \overline{d y}$.

Leibniz and The Product Rule

Let us seek to obtain others in addition, such as

$$
\int t d y=\int y d x .
$$

Now this furnishes us with nothing new; but $\int t w+\int x w=x y$ or $t d y+x d y=\overline{d x y}$, and $t=\frac{d x}{d y} y$; hence the latter $=\frac{d x y-x}{d y} \frac{d y}{}$. Therefore $\overline{d x} y=\overline{d x y}-x \overline{d y}$.

- $d x$ means "the derivative of x "
- $\overline{x y}$ means ($x y$)

Leibniz and The Product Rule

Let us seek to obtain others in addition, such as

$$
\int t d y=\int y d x .
$$

Now this furnishes us with nothing new; but $\int t w+\int x w=x y$ or $t d y+x d y=\overline{d x y}$, and $t=\frac{d x}{d y} y$; hence the latter $=\frac{d x y-x}{d y} \frac{d y}{}$. Therefore $\overline{d x} y=\overline{d x y}-x \overline{d y}$.

- $d x$ means "the derivative of x "
- $\overline{x y}$ means ($x y$)

Leibniz used the fundamental theorem and integration by parts to conclude the product rule!

Building Fur - I.B.P Example

A cold snap hits the cats, and Mia's body starts building up her fur at a rate of $f(t)$ pounds per day. If $f(t)=0.5 * t^{2} e^{-t}$, how much hair has she built up after ten days?

Building Fur - I.B.P Example

A cold snap hits the cats, and Mia's body starts building up her fur at a rate of $f(t)$ pounds per day. If $f(t)=0.5 * t^{2} e^{-t}$, how much hair has she built up after ten days?

- Write an expression that computes this.

Building Fur - I.B.P Example

A cold snap hits the cats, and Mia's body starts building up her fur at a rate of $f(t)$ pounds per day. If $f(t)=0.5 * t^{2} e^{-t}$, how much hair has she built up after ten days?

- Write an expression that computes this.
- Integrate by parts. What should be u ? What should be v ?

Building Fur - I.B.P Example

A cold snap hits the cats, and Mia's body starts building up her fur at a rate of $f(t)$ pounds per day. If $f(t)=0.5 * t^{2} e^{-t}$, how much hair has she built up after ten days?

- Write an expression that computes this.
- Integrate by parts. What should be u ? What should be v ?
- Does this simplify the question?

Building Fur - I.B.P Example

We wish to compute:

$$
\int_{0}^{10} 0.5 t^{2} e^{-t} d t
$$

Building Fur - I.B.P Example

We wish to compute:

$$
\int_{0}^{10} 0.5 t^{2} e^{-t} d t
$$

Setting

$$
\begin{array}{rl}
u=t^{2} & v^{\prime}=e^{-t} \\
u^{\prime}=2 t & v=-e^{-t}
\end{array}
$$

gives:

$$
\int_{0}^{10} 0.5 t^{2} e^{-t} d t=\left[0.5 t^{2}\left(-e^{-t}\right)\right]_{0}^{10}+\int_{0}^{10} t e^{-t} d t
$$

Building Fur - I.B.P Example

We wish to compute:

$$
\int_{0}^{10} 0.5 t^{2} e^{-t} d t
$$

Setting

$$
\begin{array}{rl}
u=t^{2} & v^{\prime}=e^{-t} \\
u^{\prime}=2 t & v=-e^{-t}
\end{array}
$$

gives:

$$
\int_{0}^{10} 0.5 t^{2} e^{-t} d t=\left[0.5 t^{2}\left(-e^{-t}\right)\right]_{0}^{10}+\int_{0}^{10} t e^{-t} d t
$$

Does this simplify the question?

Building Fur - I.B.P Exmample

$$
\int_{0}^{10} 0.5 t^{2} e^{-t} d t=\left[0.5 t^{2}\left(-e^{-t}\right)\right]_{0}^{10}+\int_{0}^{10} t e^{-t} d t
$$

We integrate by parts again, to solve the integral on the right. What should u be?

Building Fur - I.B.P Exmample

$$
\int_{0}^{10} 0.5 t^{2} e^{-t} d t=\left[0.5 t^{2}\left(-e^{-t}\right)\right]_{0}^{10}+\int_{0}^{10} t e^{-t} d t
$$

We integrate by parts again, to solve the integral on the right. What should u be?

$$
\begin{aligned}
\int_{0}^{10} 0.5 t^{2} e^{-t} d t & =\left[0.5 t^{2}\left(-e^{-t}\right)\right]_{0}^{10}+\int_{0}^{10} t e^{-t} d t \\
& =\left[0.5 t^{2}\left(-e^{-t}\right)\right]_{0}^{10}+\left[t\left(-e^{-t}\right)\right]_{0}^{10}+\int_{0}^{10} e^{-t} d t
\end{aligned}
$$

Building Fur - I.B.P Exmample

$$
\int_{0}^{10} 0.5 t^{2} e^{-t} d t=\left[0.5 t^{2}\left(-e^{-t}\right)\right]_{0}^{10}+\int_{0}^{10} t e^{-t} d t
$$

We integrate by parts again, to solve the integral on the right. What should u be?

$$
\begin{aligned}
\int_{0}^{10} 0.5 t^{2} e^{-t} d t & =\left[0.5 t^{2}\left(-e^{-t}\right)\right]_{0}^{10}+\int_{0}^{10} t e^{-t} d t \\
& =\left[0.5 t^{2}\left(-e^{-t}\right)\right]_{0}^{10}+\left[t\left(-e^{-t}\right)\right]_{0}^{10}+\int_{0}^{10} e^{-t} d t
\end{aligned}
$$

Does this simplify the question enough to solve?

Building Fur - I.B.P Exmample

$$
\int_{0}^{10} 0.5 t^{2} e^{-t} d t=\left[0.5 t^{2}\left(-e^{-t}\right)\right]_{0}^{10}+\int_{0}^{10} t e^{-t} d t
$$

We integrate by parts again, to solve the integral on the right. What should u be?

$$
\begin{aligned}
\int_{0}^{10} 0.5 t^{2} e^{-t} d t & =\left[0.5 t^{2}\left(-e^{-t}\right)\right]_{0}^{10}+\int_{0}^{10} t e^{-t} d t \\
& =\left[0.5 t^{2}\left(-e^{-t}\right)\right]_{0}^{10}+\left[t\left(-e^{-t}\right)\right]_{0}^{10}+\int_{0}^{10} e^{-t} d t
\end{aligned}
$$

Does this simplify the question enough to solve? Evaluating the last integral, and plugging in the bounds gives $\int_{0}^{10} 0.5 t^{2} e^{-t} d t \approx 0.997$.

Match the integral to the first technique you would use to compute it.

Takeaway

Integration by parts is useful when there is a product of functions, and we want one of them to "disappear".

dETAILS Mnemonic

$$
\int u v^{\prime} d x=u v-\int v u^{\prime} d x
$$

Here is a mnemonic for what functions to use for v^{\prime} (read backwards for what functions to use as u)
d erivative function (ie, the v^{\prime} in $\int u v^{\prime}=u v-\int u^{\prime} v$)

dETAILS Mnemonic

$$
\int u v^{\prime} d x=u v-\int v u^{\prime} d x
$$

Here is a mnemonic for what functions to use for v^{\prime} (read backwards for what functions to use as u)
d erivative function (ie, the v^{\prime} in $\int u v^{\prime}=u v-\int u^{\prime} v$)
E xponents
T rigonometric
A Igebraic (ie polynomials, ratios of polynomials)
I nverse trigonometric
L ogarithms
S pecial functions (like $\operatorname{Si}(x)$)

dETAILS Mnemonic

$$
\int u v^{\prime} d x=u v-\int v u^{\prime} d x
$$

Here is a mnemonic for what functions to use for v^{\prime} (read backwards for what functions to use as u)
d erivative function (ie, the v^{\prime} in $\int u v^{\prime}=u v-\int u^{\prime} v$)
E xponents
T rigonometric
A Igebraic (ie polynomials, ratios of polynomials)
I nverse trigonometric
L ogarithms
S pecial functions (like $\operatorname{Si}(x)$)
Bonus: find $\int x \operatorname{Si}(x) d x$.

Integration by Parts - Functions Given Strangely

Let's say we have two functions, f, and $g . g$ is given as a table of values, and f is given as a formula. Which of the following are easy to estimate?

- $f \cdot g$ evaluated at some point
- $\int_{a}^{b} f^{\prime} g d x$
- $\int_{a}^{b} f g^{\prime} d x$
- $\int_{a}^{b} f^{\prime} g^{\prime} d x$

Integration by Parts - Functions Given Strangely

Let's say we have two functions, f, and $g . g$ is given as a table of values, and f is given as a formula. Which of the following are easy to estimate?

- $f \cdot g$ evaluated at some point
- $\int_{a}^{b} f^{\prime} g d x$
- $\int_{a}^{b} f g^{\prime} d x$
- $\int_{a}^{b} f^{\prime} g^{\prime} d x$

Hint: For which of these integrands can you write a table of values?

Integration by Parts - Functions Given Strangely

Let's say we have two functions, f, and $g . g$ is given as a table of values, and f is given as a formula.

$$
\int_{a}^{b} f(x) g^{\prime}(x)=[f g]_{a}^{b}-\int_{a}^{b} f^{\prime}(x) g(x) d x
$$

We can now write a table for $f^{\prime}(x)$, for $g(x)$, and $f^{\prime}(x) g(x)$, and estimate the integral on the right.

What is Easy to Compute?

Worth 1 participation pointand 0 correctness points

What is Easy to Compute?

Let's say that $f(x)$ is a function given as a formula, and $g(x)$ is a function given as a table of values. Which of the following can you easily estimate?

All results

A $\quad f(a) g(a)$ for some value of a

B $\int_{a}^{b} f(x) g(x) d x$

Estimate $\int_{0}^{5} f(x) g^{\prime}(x) d x$ if $f(x)=2 x$ and $g(x)$ is given by the graph below.

A 40
23
B 20 121

C 10
30
D -10
21
E This integral cannot be done using integration by parts

Graphical Estimation

$$
\begin{aligned}
\int_{0}^{5} f(x) g^{\prime}(x) & =f(5) g(5)-f(0) g(0)-\int_{0}^{5} g(x) f^{\prime}(x) d x \\
& =-\int_{0}^{5} 2 g(x)
\end{aligned}
$$

Spot The Error

The Calculus Cats find a note on the floor. It reads:
To compute $\int \tan (x) d x$, we integrate by parts.

$$
\begin{aligned}
u=\frac{1}{\cos (x)} & v^{\prime}=\sin (x) \\
u^{\prime}=\tan (x) \sec (x) & v=-\cos (x)
\end{aligned}
$$

so

$$
\int \tan (x) d x=\int u v^{\prime} d x=u v-\int v u^{\prime} d x=-1+\int \tan (x)
$$

Simplifying, we get $0=-1$.
The cats are stressed by this, to say the least. Can you help them?

Spot The Error

The Calculus Cats find a note on the floor. It reads:

To compute $\int_{\pi / 6}^{\pi / 4} \tan (x) d x$, we integrate by parts.

$$
\begin{aligned}
u=\frac{1}{\cos (x)} & v^{\prime}=\sin (x) \\
u^{\prime}=\tan (x) \sec (x) & v=-\cos (x)
\end{aligned}
$$

so

$$
\int_{\pi / 6}^{\pi / 4} \tan (x) d x=\int_{\pi / 6}^{\pi / 4} u v^{\prime} d x=u v-\int_{\pi / 6}^{\pi / 4} v u^{\prime} d x=-1+\int_{\pi / 6}^{\pi / 4} \tan (x)
$$

Simplifying, we get $0=-1$.
The cats are even more stressed by this. Can you help them?

Plans for the Future

For next time:
Integration and Computer Algebra Systems. No reading, but bring a computer, and review what we've done!

