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The Hopf-Poincaré Index FomulaMathcamp 2019, Week 4 Instructor: Assaf

Day 1: The Euler Characteristic of S2

Oh, take me hold me
Remember what you told me

You’d meet me at the dreamer’s ball
I’ll meet you at the dreamer’s ball

– Queen, “Dreamers Ball”

In this class, everything can be freely deformed. That means that, to us, a triangle is three
points with lines connecting them, and these lines can be as squiggly as we want.

Definition 1. A surface is a collection of points (in R3, for example, but later we won’t
care about this) where when we zoom in on each point, the surface looks like a piece of R2.

This definition is a bit wishy-washy, and not very formal. Instead, in this class, we will be
thinking of surfaces as objects glued together from smaller pieces, ie, polygons.

Exercise 1. Eric wants to glue polygons together to make a surface. He starts off with a
bunch of polygons, and glues them along their edges. What rules must Eric follow so that the
glued-together shape satisfies the axioms of being a surface?

Exercise 2. Define a surface with boundary using polygonal gluings. A polygonal gluing
that makes up a surface X will henceforth be called a tiling of X.

Exercise 3. Find three different ways to glue together polygons to get a sphere. For each of
these, compute:

• The total number of vertices,

• The total number of edges,

• The total number of polygons (or, faces).
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The Hopf-Poincaré Index Fomula Day 1: The Euler Characteristic of S2

Exercise 4. What pattern do you see? Use this to define the Euler Characteristic (χ) of the
sphere. It should be a number that is associated to the sphere, that will use a tiling, but not
depend on which one you use.

We will now try and fail to prove that the Euler Characteristic does not depend on the
tiling. Don’t worry though, we will still need this machinery later.

Definition 2. Let T be a tiling that makes up a surface X. A refinement of T is a tiling
S satisfying:

• S makes up X

• Every vertex in T is a vertex in S
• Every edge in T is a union of edges in S.

• Every face in T is a union of faces in S.

Exercise 5. Prove that if S is a refinement of T , then the Euler Characteristic as computed
by T is the same as the Euler Characteristic as computed by S.

Exercise 6. Let T1 and T1 be two gluings of polygons that make up X. Assume that there
exists a tiling of S that is a refinement of both T1 and T2. Show that the Euler Characteristic
as computed by T1 is the same as the one computed by T2.

Exercise 7. Find two tilings of a square that do not have a mutual refinement.
Hint: how would you go about constructing a mutual refinement? What conditions have to be
met?

We will now give a rigorous proof that the Euler Characteristic of the sphere does not
depend on the tiling. The proof for other surfaces will have to wait for later.
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The Hopf-Poincaré Index Fomula Day 1: The Euler Characteristic of S2

Exercise 8. By removing edges and points one by one, prove that the Euler characteristic of
the disk does not depend on the tiling.

Exercise 9. Use the above to prove that the Euler Characteristic of the sphere does not
depend on the tiling.

Exercise 10. Prove the combinatorial Gauss Bonnet theorem:

Theorem 3. Let T be a tiling of a surface X that has no boundary, and where all of the tiles
are triangles. If v is a vertex in the tiling, we define κ(v) to be the number of faces attached
to the vertes. Then

6χ(X) =
∑
v∈V

(6− κ(v))

Definition 4. We say that a tiling is reduced if pairs of tiles share at most one edge.

Exercise 11. Prove that any reduced tiling of the sphere must contain at least one pentagon,
one square, or one triangle. What is the minimal number of each that the tiling must have?

Exercise 12. A soccer ball is comprised of hexagonal tiles of fabric and pentagonal tiles of
fabric. Assuming that the tiling is reduced1, how many pentagons are there in it?

1which is it, if you look up a picture of a soccer ball
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The Hopf-Poincaré Index Fomula Day 1: The Euler Characteristic of S2

Exercise 13. Generalize the combinatorial Gauss Bonnet theorem to surfaces with boundary.

We can also think of a surface in the following way:

Definition 5. A surface is a subset X ⊂ Rn such that for every point x ∈ X, there exists a
smooth map f : R2 → Rn such that

1. df is injective at every point

2. There exists an open set V ⊂ Rn such that f(R2) = V ∩X

3. f is bijective and has a continuous inverse

Exercise 14. Use the above definition to prove that the sphere is a surface.
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The Hopf-Poincaré Index FomulaMathcamp 2019, Week 4 Instructor: Assaf

Day 2: Classification of Surfaces

Keep coming up with love but it’s so slashed and torn
Why, why, why? Love, love, love, love, love

Insanity laughs under pressure we’re breaking

– Queen, “Under Pressure”

Yesterday, we proved the following theorem:

Theorem 6. For any polygonal tiling of S2, V − E + F = 2. In other words, the Euler
characteristic of the sphere is 2.

In this class, we will classify all compact surfaces. This will give us a framework to show
that the Euler characteristic does not depend on the tiling, but that will have to come later.

Definition 7. We define the connect sum of two surfaces X1 and X2 as the surface obtained
by cutting a small circle in X1 and in X2, and gluing the rims to each other.

Exercise 1. Identify the following shapes:

Definition 8. The projective plane is the surface obtained by the tiling:

The theorem we will prove is:

Theorem 9. If X is a compact surface, then X is homotopy equivalent to a connect sum of
projective planes and tori.

Exercise 2. Given a tiling of a compact surface X, construct a tiling of X composed of a
single polygon P , where the gluing is along the boundary of P .
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The Hopf-Poincaré Index Fomula Day 2: Classification of Surfaces

In other words, by erasing interior edges, it’s enough for us to examine polygons whose
edges are glued. We label the edges with letters to keep track of what gets glued to what.

Definition 10. Such a diagram is called a planar diagram.

Note that if P is a polygon glued to make X, then we can cut P along any diagonal and
reglue the pieces by pre-existing letters.

To prove the theorem, we will first prove the lemma:

Lemma 11. Let X be a compact surface. Then there exist m,n ∈ N such that X is homotopy
equivalent to a planar diagram where the letters along the boundary spell

a1a1a2a2 · · · ananc1d1c−11 d−11 c2d2c
−1
2 d−12 · · · cmdmc−1m d−1m

Moreover, any planar diagram can be converted into a planar diagram of this sort via a finite
number of cuts and pastes. Moreover, this form minimizes the total number of labels.

The proof of this lemma is left to the end of the worksheet.

Exercise 3. Assume that P is a planar diagram as in the above lemma. Show that after
gluing, there is only one vertex.

Exercise 4. Assume that P is a planar diagram as in the above lemma. Show that there is
no cutting and pasting operation that you can do that reduces the number of edges. Conclude
the last part of the lemma.

Exercise 5. Conclude that the planar diagrams in the form described by the lemma classify
compact surfaces. That is, conclude that any surface is cut-and-paste equivalent to exactly one
polygonal gluing as in the lemma. Is cut-and-paste equivalence the same thing as homotopy
equivalence?
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The Hopf-Poincaré Index Fomula Day 2: Classification of Surfaces

Exercise 6. Show that if X1 has a planar diagram with a string of letters w1, and X2 has
a planar diagram with a string of letters w2, then the planar diagram given with string of
letters w1w2 gives the surface X1#X2.

Exercise 7. Prove the classification theorem

Proving the Lemma

Exercise 8. Show that any planar diagram can be cut and pasted to get a planar diagram
for which all of the vertices are glued into a single vertex.
Hint: colour the vertices by their gluing, and find a cut that reduces the total number of one
colour and increases the total of another. What happens when only one vertex of a colour
remains? How many edges are glued?

We now wish to show that there exists a finite sequence of cut-and-paste operations that
can bring the boundary of the polygon to the form that we want. Note that we have already
proved uniqueness. To do this, consult the diagrams on the next page:
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The Hopf-Poincaré Index Fomula Day 2: Classification of Surfaces

Exercise 9. Consult the following pictures to finish the proof of the lemma:

CLASSIFICATION OF SURFACES 9

We wish now to reduce the number of vertices to one without changing the
homeomorphism type of the diagram. We employ Lemma 3.12 (4), the cutting and
gluing step, to reduce n vertices of an undesirable letter to n − 1 vertices of that
letter and k vertices of a desirable letter to k + 1 vertices of that letter. The steps
are illustrated in Figure 9. By induction, we continue this process until only one
vertex remains.

Step 4: Collecting Twisted Pairs
We again employ cutting and gluing multiple times to bring all twisted pairs

together, as shown in Figure 10.

Figure 10. Bringing non-adjacent twisted pairs together.

We continue by induction, and if the only edges that remain are adjacent twisted
pairs, then the surface is nP2.

Figure 11. A word consisting of adjacent twisted pairs is the
connected sum of multiple projective planes.

Step 5: Collecting Pairs of Opposing Pairs
Given Steps 1 through 4, we know that these pairs of opposing pairs exist.
The alternative, that is, a single opposing pair, means that the remaining edges

will be twisted pairs. We then have a word of the form w1aw2a
−1 where w1 and

w2 are words consisting of adjacent twisted pairs. We will see that if Step 3 were
carried out, then this is impossible, that is, we will find more than one vertex.
Label the vertex between w1 and a P . P begins a and is found throughout w1 since

10 JUSTIN HUANG

Figure 12. Manipulating a Pair of Opposing Pairs to form cdc−1d−1.

w1 consists of adjacent twisted pairs, where there are vertices both beginning and
ending the same edge. Since no edge in w1 is identified to an edge in w2, we have
to start labelling with another vertex, Q, and so we have clearly not carried out
Step 3.

We perform a series of cutting and gluing maneuvers to bring pairs of opposing
pairs into the form aba−1b−1. By induction, we have combinations of adjacent
opposing pairs and adjacent twisted pairs.

Step 6: T2 and P2 At this point we either have S2, connected sums of T2,
or a planar diagram with twisted pairs and pairs of opposing pairs. The following
lemma shows that these can be reduced to twisted pairs.
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The Hopf-Poincaré Index FomulaMathcamp 2019, Week 4 Instructor: Assaf

Day 3: A Perfect Invariant

We gonna tear it up
Stir it up

Break it up - baby

– Queen, “Tear It Up”

Yesterday, we proved the following theorem:

Theorem 12. Any compact surface is a connect sum of tori and projective planes, or is a
sphere.

Today we will talk about orientability and the Euler characteristic. We will show that
the Euler characteristic is an invariant - that is, that it does not depend on the tiling. It is
true for surfaces (and topological spaces in general), but we will only show it for orientable
surfaces.

Definition 13. (intuitive) A compact surface X is called orientable if it has a well-defined
inside and outside.

Exercise 1. Assume that the tiles used to construct a compact surface X have front and
back faces, coloured red and green. Come up with a criterion on the gluing of the tiles that
would ensure that X is orientable.

Exercise 2. Classify all compact orientable surfaces.

Exercise 3. Find all possible values of χ(X) where X is a compact orientable surface.

Theorem 14. If T and S are two tilings of a compact orientable surface X, then the Euler
characteristic as measured by either of them is equal.
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The Hopf-Poincaré Index Fomula Day 3: A Perfect Invariant

Proof. • Embed X in R3

• Refine T until we can approximate curves.

• Cut along a curve, and glue in faces.

• Apply induction

Exercise 4. Piecing everything we have, prove the following:

Theorem 15. Let X and Y be a compact orientable surfaces. Then χ(X) = χ(Y ) if and
only if X and Y are homotopically equivalent.

In other words, the Euler characteristic is a perfect invariant for compact orientable
surfaces.

Warm-up to Hopf-Poincaré

Definition 16. A often-used analogy of a vector field on a surface is wind velocity at every
point on that surface. A vector field on a surface X is a continuous function v : X → R3 such
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The Hopf-Poincaré Index Fomula Day 3: A Perfect Invariant

that v(x) is . We say that v is nonvanishing if .
Hint: Consult the following picture:

Exercise 5. Assume that X has a nonvanishing continuous vector field v. Convince yourself
that we can find a triangulation of X with the following properties:

• The edges are never parallel to the vector field

• The triangles are sufficiently small so that the vector field is approximately constant on
each one.

Exercise 6. Using the triangulation above, put a positive charge on every vertex, a negative
charge at the center of each edge, and a positive charge on each face. What is the total charge
on X?

Exercise 7. Think of v as wind on X, and let it blow the charges just a little bit. Compute
the total charge on the sphere by computing the charge on each triangle.

Exercise 8. Prove the hairy ball theorem.

Wait, what? The hairy ball theorem? We actaully proved a stronger theorem:

Theorem 17. If X admits a nonvanishing vector field, then χ(X) = 0.

The Hopf-Poincaré index theorem is a generalization of this, relating to the index of a
vector field.
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The Hopf-Poincaré Index Fomula Day 3: A Perfect Invariant

A Bit on Three-Manifolds

Exercise 9. Define a three-manifold (ie, a 3-D surface) using tilings. Define a compact
manifold similarly.

Exercise 10. Define the Euler characteristic of a compact 3-manifold.

Fact 18. The Euler characteristic is an invariant, meaning that it does not depend on the
tiling of the 3-manifold.

It turns out that the Euler characteristic is not a perfect invariant. In fact,

Theorem 19. Let M be a compact 3-manifold. Then χ(M) = 0.

Exercise 11. Prove the above theorem.
Hint: show that χ(M) = −χ(M)

Corollary 20. (hard - we can try doing this later) Every 3-manifold admits a nonvanishing
vector field.

Remark 21. This is a very soft example of what’s called Poincaré Duality, which states
that if M is an n-dimensional compact manifold, then, under certain conditions (orientability
being one of them), there is an isomorphism Hk(M) ∼= Hn−k(M), where Hi(M) and H i(M)
are the homology and cohomology groups of M . This symmetry allows one to show that
χ(M) = 0 for any compact odd-dimensional orientable manifold.
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The Hopf-Poincaré Index FomulaMathcamp 2019, Week 4 Instructor: Assaf

Day 4: The Hopf Poincaré Index Formula

Ride the wild wind
(Live life on the razors edge) hey hey hey

Gonna ride the whirlwind
It ain’t dangerous - enough for me

– Queen, “Ride the Wild Wind”

Yesterday, we proved two big theorems:

Theorem 22. Let Σg be the connect sum of g tori. Then χ(Σg) = 2− 2g (for any tiling ofΣg)

Theorem 23. If a compact orientable surface X admits a nonvanishing vector field (is
combable), then χ(X) = 0.

But what happens if we’re allowed to vanish or be undefined at one or two points?

Exercise 1. Draw a vector field on S2 that vanishes at:

• exactly 2 points,

• exactly 3 points,

• (bonus) exactly 1 point.

Definition 24. Let v be a vector field on an orientable surface X, and let x ∈ X. We define
the index of v at x, indx(v) in the following manner:

• Pick a small loop around x

• compute the total change in angle as you go around the loop counter-clockwise

• Divide by 2π.

Exercise 2. Compute the index of the following vector fields at the singular points:
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The Hopf-Poincaré Index Fomula Day 4: The Hopf Poincaré Index Formula

Exercise 3. Show that the index does not make sense on a non-orientable surface.

Exercise 4. Prove that the index is always an integer.

Exercise 5. Prove that the index does not depend on the loop you choose.
Hint: consider a continuous deformation of the loop, and note that every continuous function
to Z must be constant

Exercise 6. Prove that if v is a continuous vector field that is nonvanishing at x, then
indx(v) = 0.
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The Hopf-Poincaré Index Fomula Day 4: The Hopf Poincaré Index Formula

Exercise 7. Compute the indices of the vector fields you drew in Exercise 1, and add them
up.

Theorem 25. Let X be a compact orientable manifold, and let v be a vector field on X that
has a finite number of vanishing points. Then∑

indx(v) = χ(X)

Proof. • Prove that the left-hand side does not depend on the vector field.

• Find a specific vector field for which the sum of the indices is χ.
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The Hopf-Poincaré Index FomulaMathcamp 2019, Week 4 Instructor: Assaf

Day 5: Lie Groups

So dear friends your love is gone
Only tears to dwell upon

I dare not say as the wind must blow

– Queen, “Dear Friends”

A Bit on Lie Groups

Definition 26. A compact manifold of dimension n is an object obtained by gluing
n-dimensional polyhedra (ie, simplices, or cubes) in a way that does not leave any n − 1-
dimensional faces unglued.

Exercise 1. By induction, prove that Sn, then n-dimensional sphere, is a manifold.

Exercise 2. Generalize the definition of the Euler characteristic, and compute it for Sn.

Exercise 3. Let M be a manifold. Prove that if M is combable, then χ(M) = 0.

Fact 27. The converse of the above is true. That is, if χ(M) = 0, then M is combable.

Definition 28. A Lie group is a manifold G, together with the following:

• An associative continuous map × : G×G→ G (continuous in both co-ordinates).

• An identity element x0 ∈ G, such that x0 × x = x× x0 = x for all x ∈ G.

• A continuous map i : M →M such that i(x)× x = x× i(x) = x0 for all x ∈ G.
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The Hopf-Poincaré Index Fomula Day 5: Lie Groups

Exercise 4. Prove that S1 can be given the structure of a Lie group.

Theorem 29. Let G be a Lie group of dimension n, then G is combable. Moreover, G is
orientable. Moreover, G is parallelizable, that is, it admits n vector fields that are linearly
independent at every point.

Proof. We will only show that G is parallelizable. To do this, we take n linearly independent
vectors at the identity, and move them around with the group multiplication.

Exercise 5. Classify all 2-dimensional compact Lie groups

Exercise 6. Show that GLn(R) is a Lie group and compute its dimension.

Exercise 7. Show that RP 3, the real projective plane, defined by S3/(x ∼ −x) is paralleliz-
able.
Hint: Use the fact that S3 is a Lie group
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