Cech Cohomology Mathcamp 2019, Week 5 Instructor: Assaf

Perspectives on Cohomology: Cech

I wanna take your hand - lead you from this place
Gonna leave it all behind
(Check out) Check out of this rat race

— Queen, “Ride the Wild Wind”

1 The Setting

The motivating idea behind Cech cohmology is to stitch things together to get a local-to-global
thing that will be cohomological. In order to get anything cohomology-related, we better
have a chain complex with boundary operator J:

— O™ — O™ — .

ker ()

so that we can define H* = IETOR To do this in our framework, we first introduce the main

players in this play.

Definition 1. A covering of a space X is a set of open subsets of X whose union is X.
Example 2. The circle is covered by three intervals.

Definition 3. A presheaf of abelian groups over a topological space X is an association
of an abelian group to every open set U of X, denoted by F(U). We also require that if
V' C U is open, then we have a restriction map F(U) — F (V) satisfying some reasonable
properties.

Example 4. e We can take the same group over every open set, and let the restriction
just be the identity.

e If M is a manifold, then we can look at the presheaf C*°(M), where F'(U) is the set of
all smooth functions on U with addition. The restriction map is then the usual function
restriction.

e In the same way as above, we can define C>* (M), the presheaf of nonvanishing functions
under multiplication, or O(M) the presheaf of holomorphic functions, etc..
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Definition 5. Let U be an open covering of M, and let F be a presheaf on M. A n-simplex
o on U is a collection of n 4+ 1 sets in U which have a nonempty intersection. We turn this
into a vector space by formal addition.

Definition 6. We define the j-boundary of a simplex o = (Uy, ..., U,) by
ajO': (UQ,...,Uj,...,Un)

Exercise 1. Define the boundary of ¢ by do = >"_(~1)’*'9;0. Prove that 900 = 0 for
any simplex o.

2 The Chain Complex

A g-cochain of U with coefficients in F is a map which associates with each g-simplex o an
element of F'(|o|). We denote the set of all g-cochains of U by C(U, F), and make it into an
abelian group via formal addition.

Example 7. If F is Z/2, then a 0-cochain is a choice of £1 for every set in &. An explicit
example is

3(A,1) — 1(B,—1)+ (C,1)

We think of a cochain as a kind of “function”, and we will denote it by f. It is a function
in the sense that it takes a simplex and returns a group element, or at least an element in
F(|o]) if we're looking at a presheaf.

Definition 8. Let f € C™(U, F). We define the coboundary map §f € C"(U, F) by seeing
how it acts on an n + 1-simplex:

n+1

(6f)(0) = D (=11 F(D50) 0,01

Jj=0

Exercise 2. 62 =0
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I think we need an example:

Example 9. Consider the presheaf C*, and let {U;} be the covering of M. A 0-cochain, f, is
a collection of functions {f; : U; — R}. We would like to apply g = 6 f to a 1-cycle. We write:

9((Us, Uy)) = f(U)|vinw; — f(U;)

In other words, on the simplex U; N U;, the cochain {g;;} looks like g;; = fi — f;.

UiﬂUj

Example 10. Similarly, if {U;}; is a covering of M, and g¢;; : U; N U; — R is a cochain, then
on triple intersections,

5{gi;} ={9jrx — 9 + 955 : Ui NU; N U # 0}
Definition 11. Let U be a covering of M and let F be a presheaf on M. We define:

Ker(6%)

HUF) = 1)

Where we think of 6% : Ck — Ck+1

3 Double Covers

Why all of this? It turns out that we can use these cohomology groups to classify things
about M.

Definition 12. A double cover of M is a manifold F with a surjective map 7 : £ — M
that is 2 to 1, and such that if U is a small open set in M, then 7! (U) is homeomorphic to
two disjoint copies of U.

Example 13. Two disjoint circles are a double cover of the circle. Another double cover of
the circle is the boundary of the mobius strip, where 7 is the “shrinking” map that sends the
boundary of the strip to its middle.

We will show that a double cover of M can be thought of as an element in H'(U,Z/2),
and vice-versa. In other words, H'(i,7Z/2) classifies all double covers of M.

Let E be a double cover of M, and let U = {U;} be an open covering so that 7' (U;)
is homeomorphic to two disjoint copies of U;!, label them +1 and —1. We’d like to get a
1-cocycle. To do this, we define

1 the labelings of 77 1(U;) and 7—!(U;) agree
—1 otherwise

9:;(UiNU;) = {

! Any good covering has this property. A good covering is one where all of the sets are homeomorphic to
balls, and all of their intersections are too. It turns out that such coverings do exist.
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Exercise 3. Check that this is a cocycle.

We need to check that this is well-defined. That is, that if {f;, U;} is some 0-chain, and
MNfit = {f,-fj_l, U; N U;}, then multiplying g;; by fifj_1 does not change the double cover.
Indeed, if f; = —1, then all of the transition functions g¢;; get multiplied by —1, which
essentially just means that we’ve fipped the labels of +1 and —1. Hey! This also means that
the labels were arbitrary when going into cohomology!

Now, note that we can use a cohomology class to stitch together a double cover using the
gi;’s as a gluing guideline. Thus,

Theorem 14. The set of double-coverings of M is given by H'(U,7/2).

It turns out that if M is a closed orientable manifold, then H*(i4,Z/2) = H'(M,Z/2), so
this proves that the circle has only two double covers, which were the ones shown above.

3.1 Line Bundles

Definition 15. A line bundle over M is a manifold E together with a surjective map
7 : E — M such that 7—!(z) has the structure of a real 1-dimensional vector space.

We can think of a line bundle in terms of coverings {U,} in the following manner:

Example 16. Let {U,} be a covering of M. A line bundle can be thought of as the disjoint
union UU, xR, but where we glue the fibers together along U, NUjp via some linear isomorphism
on each fiber. But a linear isomorphism is just a nonzero scalar multiplication!

Thus, a line bundle can be thought of as a covering, together with a collection of functions
Jop + Us N Uz — R*. We check that 0{gas} = 0. Indeed, 0{gas} = {98792 g} Which
corresponds to tracking the multiplication constant when we go from « to 8 to v to « again,
which is just the identity map!

Next, note that multiplying gas by f,f, ' maintains the vector bundle shape - it’s just a
reparametrization of the fiber, like in the double cover case!

Thus, we get an association of a line bundle E to an element in H'(U,C>").

Now, if {gas} € H', we can use them to glue together a line bundle by reversing the
process above.

Similarly, if £ = F'| then the linear isomorphism on the fibers is given by a nonzero scalar
multiple at every point, so in fact, the cohomology class we get is unique up to isomorphism
of the line bundle.
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