Perspectives on Cohomology: Čech

I wanna take your hand - lead you from this place
Gonna leave it all behind
(Check out) Check out of this rat race

- Queen, "Ride the Wild Wind"

1 The Setting

The motivating idea behind Čech cohmology is to stitch things together to get a local-to-global thing that will be cohomological. In order to get anything cohomology-related, we better have a chain complex with boundary operator δ :

$$
\rightarrow C^{n} \rightarrow C^{n+1} \rightarrow \cdots
$$

so that we can define $H^{k}=\frac{\operatorname{ker}(\delta)}{\operatorname{Im}(\delta)}$. To do this in our framework, we first introduce the main players in this play.

Definition 1. A covering of a space X is a set of open subsets of X whose union is X.
Example 2. The circle is covered by three intervals.
Definition 3. A presheaf of abelian groups over a topological space X is an association of an abelian group to every open set U of X, denoted by $F(U)$. We also require that if $V \subset U$ is open, then we have a restriction map $F(U) \rightarrow F(V)$ satisfying some reasonable properties.

Example 4. - We can take the same group over every open set, and let the restriction just be the identity.

- If M is a manifold, then we can look at the presheaf $\mathcal{C}^{\infty}(M)$, where $F(U)$ is the set of all smooth functions on U with addition. The restriction map is then the usual function restriction.
- In the same way as above, we can define $\mathcal{C}^{\infty *}(M)$, the presheaf of nonvanishing functions under multiplication, or $\mathcal{O}(M)$ the presheaf of holomorphic functions, etc..

Definition 5. Let \mathcal{U} be an open covering of M, and let \mathcal{F} be a presheaf on M. A n-simplex σ on \mathcal{U} is a collection of $n+1$ sets in \mathcal{U} which have a nonempty intersection. We turn this into a vector space by formal addition.

Definition 6. We define the j-boundary of a simplex $\sigma=\left(U_{0}, \ldots, U_{n}\right)$ by

$$
\partial_{j} \sigma=\left(U_{0}, \ldots, \hat{U}_{j}, \ldots, U_{n}\right)
$$

Exercise 1. Define the boundary of σ by $\partial \sigma=\sum_{j=0}^{n}(-1)^{j+1} \partial_{j} \sigma$. Prove that $\partial \partial \sigma=0$ for any simplex σ.

2 The Chain Complex

A q-cochain of \mathcal{U} with coefficients in \mathcal{F} is a map which associates with each q -simplex σ an element of $F(|\sigma|)$. We denote the set of all q-cochains of \mathcal{U} by $C^{q}(\mathcal{U}, \mathcal{F})$, and make it into an abelian group via formal addition.

Example 7. If \mathcal{F} is $\mathbb{Z} / 2$, then a 0 -cochain is a choice of ± 1 for every set in \mathcal{U}. An explicit example is

$$
3(A, 1)-1(B,-1)+(C, 1)
$$

We think of a cochain as a kind of "function", and we will denote it by f. It is a function in the sense that it takes a simplex and returns a group element, or at least an element in $F(|\sigma|)$ if we're looking at a presheaf.

Definition 8. Let $f \in C^{n}(\mathcal{U}, \mathcal{F})$. We define the coboundary map $\delta f \in C^{n+1}(\mathcal{U}, \mathcal{F})$ by seeing how it acts on an $n+1$-simplex:

$$
(\delta f)(\sigma)=\left.\sum_{j=0}^{n+1}(-1)^{j+1} f\left(\partial_{j} \sigma\right)\right|_{\left|\partial_{j} \sigma\right|}
$$

Exercise 2. $\delta^{2}=0$

I think we need an example:
Example 9. Consider the presheaf \mathcal{C}^{∞}, and let $\left\{U_{i}\right\}$ be the covering of M. A 0 -cochain, f, is a collection of functions $\left\{f_{i}: U_{i} \rightarrow \mathbb{R}\right\}$. We would like to apply $g=\delta f$ to a 1 -cycle. We write:

$$
g\left(\left(U_{i}, U_{j}\right)\right)=\left.f\left(U_{i}\right)\right|_{U_{i} \cap U_{j}}-\left.f\left(U_{j}\right)\right|_{U_{i} \cap U_{j}}
$$

In other words, on the simplex $U_{i} \cap U_{j}$, the cochain $\left\{g_{i j}\right\}$ looks like $g_{i j}=f_{i}-f_{j}$.
Example 10. Similarly, if $\left\{U_{i}\right\}_{i}$ is a covering of M, and $g_{i j}: U_{i} \cap U_{j} \rightarrow \mathbb{R}$ is a cochain, then on triple intersections,

$$
\delta\left\{g_{i j}\right\}=\left\{g_{j k}-g_{i k}+g_{i j}: U_{i} \cap U_{j} \cap U_{k} \neq \emptyset\right\}
$$

Definition 11. Let \mathcal{U} be a covering of M and let \mathcal{F} be a presheaf on M. We define:

$$
\check{H}^{k}(\mathcal{U}, \mathcal{F})=\frac{\operatorname{Ker}\left(\delta^{k}\right)}{\operatorname{Im}\left(\delta^{k-1}\right)}
$$

Where we think of $\delta^{k}: C^{k} \rightarrow C^{k+1}$

3 Double Covers

Why all of this? It turns out that we can use these cohomology groups to classify things about M.

Definition 12. A double cover of M is a manifold E with a surjective map $\pi: E \rightarrow M$ that is 2 to 1 , and such that if U is a small open set in M, then $\pi^{-1}(U)$ is homeomorphic to two disjoint copies of U.

Example 13. Two disjoint circles are a double cover of the circle. Another double cover of the circle is the boundary of the mobius strip, where π is the "shrinking" map that sends the boundary of the strip to its middle.

We will show that a double cover of M can be thought of as an element in $\check{H}^{1}(\mathcal{U}, \mathbb{Z} / 2)$, and vice-versa. In other words, $\breve{H}^{1}(\mathcal{U}, \mathbb{Z} / 2)$ classifies all double covers of M.

Let E be a double cover of M, and let $\mathcal{U}=\left\{U_{i}\right\}$ be an open covering so that $\pi^{-1}\left(U_{i}\right)$ is homeomorphic to two disjoint copies of $U_{i}{ }^{1}$, label them +1 and -1 . We'd like to get a 1-cocycle. To do this, we define

$$
g_{i j}\left(U_{i} \cap U_{j}\right)= \begin{cases}1 & \text { the labelings of } \pi^{-1}\left(U_{i}\right) \text { and } \pi^{-1}\left(U_{j}\right) \text { agree } \\ -1 & \text { otherwise }\end{cases}
$$

[^0]Exercise 3. Check that this is a cocycle.

We need to check that this is well-defined. That is, that if $\left\{f_{i}, U_{i}\right\}$ is some 0-chain, and $\delta\left\{f_{i}\right\}=\left\{f_{i} f_{j}^{-1}, U_{i} \cap U_{j}\right\}$, then multiplying $g_{i j}$ by $f_{i} f_{j}^{-1}$ does not change the double cover. Indeed, if $f_{i}=-1$, then all of the transition functions $g_{i j}$ get multiplied by -1 , which essentially just means that we've fipped the labels of +1 and -1 . Hey! This also means that the labels were arbitrary when going into cohomology!

Now, note that we can use a cohomology class to stitch together a double cover using the $g_{i j}$'s as a gluing guideline. Thus,

Theorem 14. The set of double-coverings of M is given by $\check{H}^{1}(\mathcal{U}, \mathbb{Z} / 2)$.
It turns out that if M is a closed orientable manifold, then $\check{H}^{k}(\mathcal{U}, \mathbb{Z} / 2)=H^{1}(M, \mathbb{Z} / 2)$, so this proves that the circle has only two double covers, which were the ones shown above.

3.1 Line Bundles

Definition 15. A line bundle over M is a manifold E together with a surjective map $\pi: E \rightarrow M$ such that $\pi^{-1}(x)$ has the structure of a real 1-dimensional vector space.

We can think of a line bundle in terms of coverings $\left\{U_{\alpha}\right\}$ in the following manner:
Example 16. Let $\left\{U_{\alpha}\right\}$ be a covering of M. A line bundle can be thought of as the disjoint union $\sqcup U_{\alpha} \times \mathbb{R}$, but where we glue the fibers together along $U_{\alpha} \cap U_{\beta}$ via some linear isomorphism on each fiber. But a linear isomorphism is just a nonzero scalar multiplication!

Thus, a line bundle can be thought of as a covering, together with a collection of functions $g_{\alpha \beta}: U_{\alpha} \cap U_{\beta} \rightarrow \mathbb{R}^{*}$. We check that $\delta\left\{g_{\alpha \beta}\right\}=0$. Indeed, $\delta\left\{g_{\alpha \beta}\right\}=\left\{g_{\beta \gamma} g_{\alpha \gamma}^{-1} g_{\alpha \beta}\right\}$ which corresponds to tracking the multiplication constant when we go from α to β to γ to α again, which is just the identity map!

Next, note that multiplying $g_{\alpha \beta}$ by $f_{\gamma} f_{\alpha}^{-1}$ maintains the vector bundle shape - it's just a reparametrization of the fiber, like in the double cover case!

Thus, we get an association of a line bundle E to an element in $\breve{H}^{1}\left(\mathcal{U}, \mathcal{C}^{\infty *}\right)$.
Now, if $\left\{g_{\alpha \beta}\right\} \in \check{H}^{1}$, we can use them to glue together a line bundle by reversing the process above.

Similarly, if $E \cong F$, then the linear isomorphism on the fibers is given by a nonzero scalar multiple at every point, so in fact, the cohomology class we get is unique up to isomorphism of the line bundle.

[^0]: ${ }^{1}$ Any good covering has this property. A good covering is one where all of the sets are homeomorphic to balls, and all of their intersections are too. It turns out that such coverings do exist.

