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Abstract. While this paper is largely an exposition of the mathemat-
ical portion of Spencer-Brown’s book, The Laws of Form [1], it also
provides a fully canonical form for arbitrary elements of the Spencer-
Brown algebra (theorems 11.3 and 11.6) and various related results. An
epilogue contains some brief remarks concerning ‘complex’ extensions of
the Spencer-Brown theory.

Introduction

This work arose from attempts to come to terms with the first ten chapters
of Spencer-Brown’s book The Laws of Form, [1], although the initial portion
still seem rather opaque. So, although there may be an occasional comment
on that earlier portion, the real starting point of this essay is somewhere
around chapter 4, where his philosophical principles have been crystallized
into mathematics.

The exposition portion of this paper (§2–§10) introduces arrangement
graphs (§3), a companion notation to Spencer-Brown’s expressions. These
graphs are useful in understanding his ideas, in part because of the termi-
nology they provide. For completeness, the appendix gives proofs of other
identities in [1] that are not needed for this exposition.

In §11, what appears to be a new canonical form for expressions in the
Spencer-Brown algebra is given, along with various consequences.

In the epilogue the Varela-Kauffman ([2], [3]) extension of the Spencer-
Brown algebra is considered briefly. This is a complete algebra that, in a
certain sense, ‘complexifies’ the Spencer-Brown algebra by the introduction
of a third ‘truth value’ paradox which, like

?
´1, is the solution of an equation

that has no solution in the Spencer-Brown context.
I would like to thank John Mason, Joy Anderson, Mary Sharpe and es-
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1. an informal look at arrangements

Let A be a finite collection of non-empty rectangular regions in the plane.
We say that A is an arrangement if it is perfectly continent,1 meaning that if
any two of these rectangles overlap, then one is contained within the other.

The real subject under review here is the study of things related to the
pattern of inclusions that an arrangement determines. A pattern of inclu-
sions is just the information telling us which rectangles are included in which
other rectangles, ignoring both their size and disposition in the plane. Such
a pattern can be very complicated; how could one provide such informa-
tion? Spencer-Brown’s expressions do exactly that. We note the obvious
fact that while an arrangement determines a pattern of inclusions, there are
many different arrangements that have the same pattern of inclusions. For
example, moving an arrangement by translating and rotating it gives a new
arrangement with the same pattern of inclusions as the original.

As Louis Kauffman has pointed out, Spencer-Brown’s notation for the
basic element of a pattern of inclusions (refered to as a cross), is modeled on
rectangular subsets of the plane. For example, Spencer-Brown’s expression

can be seen as an arrangement in the informal sense of this section as

Spencer-Brown includes also the empty arrangement – the one with no
rectangles – denoting it by an empty space. We denote it by .

There are two fundamental operations that act on arrangements: multi-
plication and crossing. These, with the collection of all the possible patterns
of inclusions, form the ensemble that is the Spencer-Brown arithmetic.

To multiply together two arrangements in the plane we simply place one
of them in the left half of the plane and the other in the right half of the
plane. As an operation on patterns of inclusions, this is clearly associative
and commutative and uniquely yields a new pattern of inclusions. In terms
of Spencer-Brown’s notation it is simply juxtaposition, e.g.,

ˆ ÞÑ

To cross an arrangement is to add to it one more rectangle that contains
the whole of the original arrangement. This operation also induces an op-
eration on the associated patterns of inclusion. Here is an example given in
Spencer-Brown’s notation:

ÞÑ

1Spencer-Brown introduces this term without explanation on page 1 of his book Laws
of Form. I understand it in the sense of containing perfectly.
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2. the spencer-brown arithmetic

The set of all patterns of inclusion may be formalized as an arrangement
graph.

2.1 . An arrangement graph is a rooted tree, with root denoted by
8. We let F denote the set of all arrangement graphs. R

Note that the edges of a rooted tree are canonically oriented by the direction
pointing toward the root. We will regard the root as being at the top of the
tree. From this point of view a vertex is above (below) another if it is closer
(further) to (from) the root.

Clearly an element of F determines a pattern of inclusions in which the
vertices u, v etc. correspond to rectangles Ru, Rv in the plane with Ru Ă Rv
if and only if ru, vs is an oriented edge.

Elements of F are multiplied together by identifying their roots. Then
multiplication is an associative and commutative operation µ : F ˆ F Ñ F.
The map : F Ñ F is defined by gluing an additional edge to 8 and
replacing the old 8 by a new one at the other end of the new edge. These
operations are illustrated in the following diagram.

∞
∞∞ ∞ ∞

x μ

The correspondences among Spencer-Brown’s notation, arrangements and
arrangement graphs are indicated by:

∞

~~

Because the Spencer-Brown and graphical notations are equivalent we will
use whichever is most convenient in the sequel.

Note that the root corresponds to the whole plane, the finite vertices cor-
respond to rectangles, and the arrows correspond to crosses (the boundaries
of the rectangles).

2.2 . The Spencer-Brown arithmetic consists of the set F of ar-
rangement graphs with the operations of multiplication and crossing. R

2.3 . The depth of a vertex u in an arrangement graph is defined
to be the number of edges (i.e., the number of arrows) in the shortest chain
from α to 8. The depth of an arrangement graph is the maximum of the
depths of its vertices. R
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2.4 . The simple arrangement graphs are the following two rooted
trees to which we give the names and .

∞= ∞=
R

Note that in multiplication, always acts as the identity.
∞

∞
∞

μ

2.5 . (Factorization) Let e P F. Then e can be written as a
product of factors e “ e1 . . . en where for each k “ 1 . . . n, ek has a single
edge leading to 8.

. If there are n edges meeting 8 let ek denote the subtree of e that
connects to 8 through the kth of these n edges. Then e “ e1 . . . en. The ek
are the factors of e. �

2.6 . (Leading Factors) If e P F has depth d, the leading factors of
e are the factors of depth d. R

2.7 . Let e P F. The leading factors of depth two have the form:

…
…

∞

and those of depth three have the form:

… ……

…

∞

…… ……

q

3. the laws of calling and crossing

Spencer-Brown introduced an equivalence relation on his expressions, which
we denote i, generated by the following two elementary relations:

The Law of Calling (I1): “ ; i.e., whenever the form
appears in an expression it can be replaced by .

The Law of Crossing (I2): “ ; i.e., whenever the form appears
in an expression, it can be replaced by .

The simplest cases of these two laws appear in arrangement graphs of three
vertices:
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Law of Calling Law of Crossing
∞ ∞ ∞ ∞ ∞

cancel 
oppositely
oriented edgesrotate together

and identitfy
rotate

together

More generally, if these pictures appear in the context of a larger graph,
similar operations obtain. For the law of calling, the two lower vertices
must be minimal, and for the law of crossing the middle (hinge) vertex
must meet only the two edges shown. These are illustrated in the following
pictures.

Law of Calling Law of Crossing

3.1 . I1 and I2 can be used to simplify expressions in the free arith-
metic as follows:

“ (I2) three times

“ ( is the multiplicative identity)

“ (I1)

“ (I2) twice

“ ( is the multiplicative identity) p

In the next section we show (proposition 4.6) that, using the two laws (I1)
and (I2), every expression in F can be transformed into either or .

4. the spencer-brown invariant

4.1 . V “ t , u Ă F is the set of values of the Spencer-Brown
arithmetic. R

4.2 . The Spencer-Brown invariant σ : F Ñ V is defined by an
inductive process that marks each of the vertices with one or another of the
elements of V, and defines σpAq to be the value at 8. The induction starts
by labeling all the minimal vertices as . The remaining vertices are then
labelled inductively as follows. If we have already labelled all the immediate
predecessors of a vertex α, and if all of those labels agree, then we label α
oppositely; otherwise we label α by . R
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4.3 . The following diagrams calculate the invariants of and .
(For clarity we display the labels within cartouches.)

∞ σ ∞ σ

Note that this shows σ splits the inclusion ι : V Ă F in the sense that
σ ˝ ι “ id V. p

4.4 . Here is another example of calculating the Spencer-Brown in-
variant.

∞
σ =

p

4.5 . The operations (I1) and (I2) leave the Spencer-Brown in-
variant unchanged.

. The following graphs are labelled for calculating the Spencer-Brown
invariant:

Law of Calling Law of Crossing

α

β a

a

a’ a

In the diagram for the law of crossing, when the procedure for labeling
vertices arrives at the vertex α it receives (say) a label a P V from what is
below it. Continuing the labeling, the next vertex receives the label a1 (the
opposite of a) and the vertex β receives the label a again. It is therefore
clear that the Spencer-Brown invariant will be the same in both cases of the
before and after pictures. �

4.6 . Let e P F be any expression. Applying the laws I1 and I2,
e can be reduced to σpeq.

. Let G be the arrangement graph of e and let `pGq be the number of
vertices in G. First we show that if `pGq ě 3 then the laws I1 and I2 allow
us to reduce `pGq.

If the depth is 1, then the graph must have the form:

∞
…
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and so `pGq can be reduced by (I1), the law of calling.
If the depth is greater than 1, consider a vertex α at the greatest depth,

along with its successor β. If there is a second vertex below β then it must
also be minimal and so, as above, the number of vertices can be reduced by
1. However if α is the only vertex below β, considering also the successor γ
of β, we have the following picture of the arrangement graph.

βγ α

This can be reduced by (I2), of the law of crossing.
Thus, by induction, we see that every arrangement graph G can be re-

duced to an arrangement graph of at most two vertices, i.e., to graphs cor-
responding to either or , which are their own Spencer-Brown invariants.
And since, by proposition 4.5, the Spencer-Brown invariant is unchanged
under the operations (I1) and (I2), the result must be σpeq. �

Then the following corollary is obvious.

4.7 . F{i “ V.

5. the spencer-brown algebra

In ordinary arithmetic, an arithmetic expression becomes an algebraic ex-
pression upon introducing variables (or monomials) at various places in the
expression.2 The variables are regarded as placeholders that may be re-
placed, either by an arithmetic expression, or by another algebraic expres-
sion. The analogue for arrangement graphs is to decorate some of the vertices
by variables or monomials.

5.1 . (Algebraic Arrangement Graph) An algebraic arrangement
graph consists of an arrangement graph in which some (or all, or none) of
the vertices have been decorated by marking them with monomials. Two
algebraic arrangement graphs are the same if they correspond to the same
elements of F and have the same monomial markings. As a set, the Spencer-
Brown algebra A is the set of all such graphs. R

5.2 . (Spencer-Brown Algebra) The set A becomes the Spencer-
Brown algebra when the operations of multiplication and cross are included.
These are straightforward extensions of those operations as they exist in F
with the understanding that the monomial at the root of a product is the
product of the monomials at the roots of the factors.3 R

2E.g., 3` 6` 2 ù 3x2 ` 6y ` 2xz.
3Other than this special treatment of monomials at 8, both multiplication, and the

action of , work in A exactly as they did in F, with the finite vertices carrying their
monomials along with them.
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5.3 . (Substitution) If e is an arrangement graph with a vertex
α decorated by x (or by a monomial containing x), then substituting an
arrangement graph f for x at α means removing the variable x from the
monomial at α and gluing a copy of f onto e by identifying the root of
f to α. We denote the result of the substitution by e|α,x“f . Making this
substitution at every appearance of x in e is denoted by e|x“f . R

Here is a picture showing how substitution works for an arrangement graph
and its corresponding Spencer-Brown expression:

∞

α
∞e = f =

∞
α, x = fe|            =substitution

substitution

xu
z

z z u

z
u

xu

Here is the simplest picture of multiplying monomials at infinity, both as
Spencer-Brown expressions and as arrangement graphs.

∞ ∞

,

∞

m mn

m mnn

n

,

multiply

multiply

5.4 . The notion of depth of an expression in F applies without
change to A. q

5.5 . (Expressions of Depth 2) The discussion in §2 tells us every
expression in F of depth 2 is a product of factors of the form

pαq , pβq , and pγq . . .

Similarly, every expression in A of depth 2 is a product of expressions of the
following kinds:

pαq m, pβq m , pγq m m . . . m

where the ms are monomials (but not necessarily the same monomials!) q

5.6 . (Expressions of Depth 3) The same discussion tells that every
expression e P F of depth 3 is a product of expressions of the form

. . .

´

. . .

¯

. . .

´

. . .

¯

and expressions of depth ă 3. This implies that every expression of depth 3
in A is a product of expressions of the form

m m . . . m

´

m m . . . m

¯

. . .

´

m m . . . m

¯

and factors of depth at most 2. q
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6. evaluation equivalence

6.1 . (Evaluation Equivalence) Let e, f P A involve only the vari-
ables x1, . . . , xn. Write ~x “ px1, . . . , xnq so e “ ep~xq, f “ fp~xq, and let
~a “ pa1, . . . , anq P Vn. Define evaluation equivalence by

e „ f ðñ ep~aq “ fp~aq for all ~a P Vn R

Note that because Vn has 2n elements, the relation e „ f can be verified by
checking 2n cases. Clearly „ determines an equivalence relation on A.

6.2 . Let p be a variable. Then p p „ .

. Let us compute the Spencer-Brown invariant when we replace the
variable p by an expression e P F with σpeq “ α P V. Let α1 P V denote the
opposite invariant.

p

∞

p

p p   =
∞

e =
a

When we substitute e for p the resulting graph is already sufficiently labelled
to calculate its Spencer-Brown invariant:

∞

a

a

a’

a =     or   

The vertex just below 8 has a label conflict, so it is labelled ; then 8 is
labelled (which is the value of .) �

6.3 . pr qr „ p q r.

. Consider the arrangement graphs for these two expressions:

p r r q

pr   qrf = g = p  q  r

∞

p

r

q

∞

depth 2
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Let us compute the Spencer-Brown invariants of these expressions when the
variable r is replaced by an expression e P F. There are two cases, σpeq “
and σpeq “ .

If σpeq “ , it forces the labels at depth 2 in the graph for f to be ,
which yields σpfq “ . For the expression g, since the label at r is , so
σpgq “ .

On the other hand, if σpeq “ , then the labeling of both arrangement
graphs is as if the vertices labelled r are absent, in which case the graphs
are identical and so have identical Spencer-Brown invariants. �

6.4 . (Decomposition) Let e P A be an arrangement graph with
a vertex α specified, and let v be a variable not appearing in e.

‚ Let e0 denote the arrangement graph consisting of the vertex α in e
as root, and everything below it.

‚ Let e1 be the arrangement graph obtained from e by removing ev-
erything below α, and marking α with the variable v (or including
v as a factor if there is already a monomial present there).

Then e “ e1|v“e0 .4

. This is obvious from the definition of substitution. �

7. the quotient algebra A{j

The algebra A{j is derived from the Spencer-Brown algebra A by dividing by
the equivalence relation j generated by the two relations (called by Spencer-
Brown initials):

(J1) p p „j (Position)

(J2) pr qr „j p q r (Transposition)

Here are the graphical versions of these:

p

r

qp r r q

∞ ∞

p
p

∞ ∞

These elementary relations are to be roughly understood as “Whenever these
elementary graphs appear as portions of larger graphs which are identical
except for these portions, the two larger graphs are again equivalent.” Pre-
cisely stated in terms of substitution we have:

e|α,z“LHS (or RHS) “ e|α,z“RHS (or LHS)

4Note that if α is either a minimal vertex (so that e1 “ e) or the infinite vertex (so
that e0 “ e), the decomposition is trivial.
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where e is some expression and LHS and RHS denote the left and right hand
sides of either (J1) or of (J2).

Spencer-Brown derives twelve identities as consequences of J1 and J2. Of
these we prove here only five: C1, C2, C3, C7 and T10. Only these are
needed in the remainder of this paper.5

(C1) a “ a.

.

a “ a a a (J1) (with a “ pq

“ a a a a (J2) (with a “ r

“ a a (J1)

“ a a a a (J1) (and a rearrangement)

“ a a a (J2)

“ a (J1) �

(C2) ab b “ a b

.

ab b “ a b b (C1) (twice)

“ a b b b (J2)

“ a b (J1)

“ a b (C1) �

(C3) a “

.

a “ a a (C2)

“ a a (C1)

“ (J1) �

The following “Echelon Identity” is important because it equates an expres-
sion of depth 3 to one of depth 2. It will be used in propositions 9.1 and 9.2
to reduce the depth of every expressions to one of depth 2.

(C7) a b c “ a b ac

5The remaining seven are proved in the Appendix, §13.
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.

a b c “ a b c (C1)

“ a b ac (J2)

“ a b ac (C1) �

(T10) a1 . . . an´1 an r “ a1r . . . an´1r anr

. If n “ 1 this is just a r “ ar “ ar (C1) , twice)

If n “ 2 this is J2.

If n ą 2, and the result holds for k ă n then

a1 . . . an´2 an´1 an r

“ a1 . . . an´2 an´1 an r (C1)

“ a1r . . . an´2r an´1 an r by induction

“ a1r . . . an´2r an´1r anr (J2)

“ a1r . . . an´2r an´1r anr (C1) �

8. independence

The multitude of identities in A{j raises the question whether (J1) has (J2)
as a consequence, or whether (J2) has (J1) as a consequence. Neither of
these is true as shown in:

8.1 . The relations (J1) and (J2) are independent.

. The proof depends on ‘counting arrows’ in the arrangement graphs
corresponding to these identities.

p
p

4 arrows

p p    

∞

7 arrows

pr  qr  

∞
p

q
rr

6 arrows

p  q  r

∞

0 arrows

.

∞

p

q
r

(J1) cannot be derived from (J2) because (J2) always leaves at least six
arrows after its use, whereas (J1) can reduce the number of arrows to zero.

(J2) cannot be derived from (J1) because (J1) does not alter the number
(mod 4) of arrows, whereas (J2) can change the number of arrows by one. �
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9. spencer-brown’s standard form

9.1 . Every expression of depth 3 in A is equivalent, mod j, to a
product of expressions of depth at most 2.

. Remark 5.6 says that every expression of depth 3 in A is a product
of an expression of depth at most 2 and additional factors of the form

m m . . . m

´

m m . . . m

¯

. . .

´

m m . . . m

¯

In such an additional factor there are, let us say, q subexpressions of the
form

e “

´

m m . . . m

¯

Let us write this additional factor in the form

a “ m m . . . m

´

m m . . . m

¯

. . .
loooooooooooooooooooooooomoooooooooooooooooooooooon

A

´

m m . . . m
loooooooomoooooooon

B

m

¯

where A contains q´1 subexpressions of the form e and B “ m m . . . m .
Then a may be written as

a “ A B m “ A B Am mod j (Echelon identity)

where both factors on the right have forms similar to a, but in which the
number of subexpressions of the form e has dropped to q ´ 1.

Repeating this argument inductively we can eliminate all of the subex-
pressions of the form e, leaving only an expression of depth 2. �

The next result completes the proof of Spencer-Brown’s Theorem 14.

9.2 . Let e P A. Then there is an f P A of depth at most 2 with
e “ f mod j.

. Let e be any expression of depth d ě 3. Let ` be the number of
vertices at depth d, i.e., minimal vertices. Choose one of them, say α, and
let β be the (unique) vertex three above it. (This is possible, since d ě 3.)
Then, as in proposition 6.3, we may decompose e as e “ e1|β“e0 , where e0
consists of the vertex α (playing the role of 8 for e0) and everything below
it. Then e0 has depth 3, and so, by proposition 9.1, is equivalent, mod j,
to an expression f of depth 2. This reduces the number ` of vertices of e
at depth d. Continuing inductively, we can reduce the number of vertices
at depth d to zero, so that the expression e is equivalent to one of depth at
most d´ 1. The whole argument may now be repeated inductively to show
e can be represented by an expression of depth at most 2. �

The following two results prepare for the proof of Spencer-Brown’s Theorem
15 (our Theorem 9.7)

9.3 . a bv “ a b a v
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.

a bv “ a b w where w “ v

“ a b aw Echelon Identity

“ a b a v substitution �

9.4 . Let e P A, and let v be a variable. Then e may be written, mod
j, as a product of elements of the form

A Bv C v

where A, B, and C are all independent of v.

. Since, by theorem 9.2, e is equivalent, mod j, to an expression of
depth at most 2, then, by remark 6.3, every e P A is equivalent to a product

of expressions of the form: pαq m pβq m pγq m0 m1 . . . mq , where
the mj are monomials.

Now consider how v can appear in these three expressions. For those of
the form (α) and (β), the monomial m either contains v or does not contain
v, so the expressions (α) and (β) may be written in the following ways:

(1) n

(2) nv

(3) n

(4) nv

where the ns are monomials free of v.

Similarly, for an expression of the form (γ), each of the monomials

m0,m1, . . . ,mq

either contains or does not contain v, so the expression (γ) may be written
in one of the following four ways:

(5) n0 n1 . . . nq

(6)

n0 n1 . . . nt nt`1v . . . nqv

“ a bv by (T10) where a “ n0 n1 . . . nt

and b “ nt`1 . . . nq

“ a b a v (by lemma 9.3)

“A B v where A and B are free of v

(7) n0v n1 . . . nq “ Bv where B is free of v
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(8)

n0v n1 . . . nt nt`1v . . . nqv

“ n0v n1 . . . nt nt`1 . . . nq by pC2q

“ Bv where B is free of v

where again, the njs are all free of v. Clearly each of these eight expressions

may be written as A Bv C v where A,B, and C are free of v. �

9.5 . A subset B Ă A is a subalgebra if it contains and is closed
under multiplication. R

9.6 . Fix a variable v and consider B Ă A consisting of all the
expressions of the form

A Bv C v P A
where the coefficients A,B,C are independent of v. Then B is a subalgebra.6

. B contains because “ v v P B. B is closed under
multiplication because the product of two element of the given form is again
of the given form as the following calculation shows:

A Bv C v A1 B1v C 1 v

“AA1 Bv B1v C v C 1 v Rearrange

“AA1 Bv B1v C v C 1 v (C1)

“AA1 B B1 v C C 1 v (J2)

PB �

The following result is Spencer-Brown’s T15.

9.7 . (Spencer-Brown’s standard form with respect to one variable)
Let v be a variable and let e P A be an expression. Then e may be written
as

e “ A Bv C v mod j

where A,B,C P A are independent of v.

. By lemma 9.4, e is equivalent, mod j, to a product of elements of the
form

A Bv C v P A
where A,B,C P A are independent of v and A is a monomial. By proposition
9.6, products of expressions of this form are again of this form. �

6 We might also define an involutive subalgebra as a subalgebra that is also closed
under cross. Then it is easily verified that B is also an involutive subalgebra.
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10. completeness

In definition 6.1 we defined the evaluation equivalence relation „ on A using
arithmetic, saying that two algebraic expressions are equivalent if all their
evaluations in the value arithmetic V are the same. In §8 we introduced
a second, algebraic, equivalence relation „j on A. Proposition 10.2 below
shows these two equivalence relations are identical, which is to say that
the algebra A{j is complete. This means in particular that we can verify
the equality of two elements of A{j using either arithmetical evaluation or
algebraic equivalence on their representatives in A. (See example 11.8 and
the appendix for various cases of this.)

The following lemma is a preparation for the proof of completeness. It is
a consequence of (C9), but we give a separate proof here.

10.1 . Bv C v “ B v C v

.

Bv C v “ Bv C Bv v (Echelon)

“ Bv C B v (C2)

“ Bv

´

B v

¯

C B v (C2)

“ Bv B v C B v (C1)

“ B B v C B v (J2)

“ v C B v (J1) �

10.2 . (Completeness) Let f, g P A. Then

f „j g ðñ f „ g

. ( ùñ ) To say that f „j g is to say there is a sequence of steps

f “ f1 „j f2 „j ¨ ¨ ¨ „j fk “ g

where each elementary step fi „j fi`1 has the form

(‹) fi “ ei|αi,zi“LHS (or RHS) “ ei|αi,zi“RHS (or LHS) “ fi`1

where, as before, LHS and RHS stand for the two sides of either (J1) or of
(J2). It is clear from propositions 6.2 and 6.3 that whenever we evaluate
both sides of all the equations p‹q, the resulting values in V will be the same.
It follows that f „ g.
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p ðù q We prove this by induction on the total number n of variables
in the two expressions f and g.

If n “ 0 then f, g P F Ă A, so it suffices to show that the laws of calling
and crossing are consequences of (J1) and (J2). But setting a “ in (C3)
yields “ , the law of calling, and setting a “ in (C1) yields the

equation “ , the law of crossing.
Now suppose the result is true for all cases of fewer than n variables. Let

f and g have a total number of n variables and let v be one of these. Then,
by theorem 9.7, f and g may be represented, mod j, by

A Bv C v and A1 B1v C 1 v

respectively, where A,B,C,A1, B1, C 1 P A are free of v and so have fewer

than n variables. Since f „j A Bv C v ùñ f „ A Bv C v and
similarly for g, we have

A Bv C v „ f „ g „ A1 B1v C 1 v

Substituting v “ and v “ in this equation yields

A B C „ A1 B1 C 1 and A B C „ A1 B1 C 1

or

A B „ A1 B1 and A C „ A1 C 1

and so, since A,B,C,A1, B1, C 1 P A have fewer than n variables, we have

(˚) A B „j A
1 B1 and A C „j A

1 C 1

Then calculating mod j, we have

f “ A Bv C v

“ A B v C v (C1), (Lemma 10.1)

“ A B v A C v (J2)

“ A1 B1 v A1 C 1 v p˚q

“ g (reversing the first three steps) �

11. canonical forms

11.1 . If ε P V and f P A, define

xε |fy “

#

f if ε “

f if ε “

More generally, if ~ε “ pε1, . . . , εqq P Vq and ~f “ pf1, . . . , fqq P Aq, write

x~ε | ~fy “

q
ź

k“1

xεk |fky R
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11.2 . If ε, µ P V (so that µ P V Ă A) then

xε |µy “

"

if ε “ µ

if ε ‰ µ

And if ~ε, ~µ P Vq, (so that ~µ P Vq Ă Aq) then7

p~ε |~µq “

#

if ~ε “ ~µ

if ~ε ‰ ~µ

That is, xε |µy and x~ε |~µy behave like delta functions. q

11.3 . (General Canonical Form I) Let ep~x, ~yq P A be a function of
the variables x1, . . . , xq and y1, . . . , yn. Then

ep~x, ~yq “
ź

~µPVq

ep~µ, ~yq x~µ |~xy mod j

. Let f denote the product. It suffices to show that all evaluations of
e and f are identical.

Fixing an arbitrary element ~τ “ pτ1, . . . , τqq P Vq we have (mod j)

f | ~x“~τ “
ź

~µPVq

ep~µ, ~yq x~µ |~τy mod j

“ ep~τ , ~yq
ź

~µPVq ,~µ‰~τ

ep~µ, ~yq mod j

“ ep~τ , ~yq
ź

~µPVq ,~µ‰~τ

mod j

“ ep~τ , ~yq mod j

Since all evaluations of e and f are equal, by completeness, e “ f mod j. �

11.4 . (Constant Functions) How does this work for the constant
functions of two variables? First consider epx, yq “ . We have

ź

µPV
epµ, yq xµ |xy “

ź

µPV
xµ |xy

“
ź

µPV

“

7 The product will be iff each factor is , i.e., εk “ µk for each k. Otherwise the
product is .
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Now consider epx, yq “ .

ź

µPV
epµ, yq xµ |xy “

ź

µPV
xµ |xy

“
ź

µPV
xµ |xy

“ x x “ x x “ p

The following special case of theorem 11.3 improves Spencer-Brown’s The-
orem 15.

11.5 . (Canonical form with respect to one variable) Let epx, ~yq P
A. Then

e „ Ax B x

where A “ ep , ~yq and B “ ep , ~yq . In particular, if A and B do not
involve any other variables, then e is equivalent to one of the following four
expressions: , x, x , x x.

. Proposition 11.3 with q “ 1 yields

e „
ź

µPV
epµ, ~yq xµ |xy

“ ep , ~yq x |xy ep , ~yq x |xy

“ Ax B x

If A and B are constant, then there are four cases:

A “ , B “ ùñ e „ x x “ “ “

A “ , B “ ùñ e „ x x “ x x “ x x “

A “ , B “ ùñ e „ x x “ x “ x “ x

A “ , B “ ùñ e „ x x “ x “ x “ x �

11.6 . (General Canonical Form II) Let e P A contain only the
variables x1, . . . , xn and set ~x “ px1, . . . , xnq so that we may write e “ ep~xq.
Let

Se “ t~µ P Vn | ep~µq “ u

Then

e “
ź

~µPSe

x~µ |~xy mod j
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. By theorem 11.3 we know that e is equivalent pmod jq to

ź

~µPVn

epµq x~µ |~xy “
ź

~µPVn,ep~µq“

epµq x~µ |~xy
ź

~µPVn,ep~µq“

epµq x~µ |~xy

“
ź

~µPVn,ep~µq“

x~µ |~xy
ź

~µPVn,ep~µq“

x~µ |~xy

“
ź

~µPSe

x~µ |~xy �

11.7 . (Number of Expressions) Arx1, . . . , xns{j has 22
n

elements.

. Let S Ă Vn, set ~x “ px1, . . . , xnq, and set fSp~xq “
ś

~µPS x~µ |~xy .

Since fSp~νq “ for ν P S and otherwise, we see that the fS are distinct.
Moreover by theorem 11.6, every element of Ar~xs is represented by some fS .
Therefore the elements of Arx1, . . . , xns{j are in bijective correspondence
with the subsets of Vn of which there are 22

n
. �

11.8 . Let us calculate the canonical form for the expression

epxq “ x Ax B x

with respect to x. Then

ep q “ A B “ A and ep q “ A B “

Thus

e „ A x x „ Ax x „ Ax x „ A x

Since similarity in the Spencer-Brown algebra A is the same as equality in
the algebra A{j, we should be able to transform e into f using the initials
(J1) and (J2) and their consequences. In fact we have:

e “ x Ax B x

“ x A Bx x (C2) twice

“ x A B (J1) and (I2)

“ x A (C3)

“ x A (C1) p

11.9 . Now let’s see how the canonical form deals with the case of
a function of a two variables x, y. We take

epx, yq “ A Bx Cy Dy Ex
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where the expressions A,B,C,D may contain variables other than x and y.
Then

ep , q “ A B C D E “ A B C D E

ep , q “ A B C D E “ A B

ep , q “ A B C D E “ A D

ep , q “ A B C D E “ A

and therefore

e “
ź

pµ1,µ2qPV2

epµ1, µ2q xpµ1, µ2q | px, yqy mod j

“ ep , q xy ep , q x y ep , q x y ep , q x y

“ A B C D E xy A B x y ˆ

A D x y A x y

“ A B C D E xy A B x y A D x y A x y p

11.10 . Theorem 11.6 involves expressions

e~µ “ x~µ|~xy “
n
ź

k“1

xµk|xky “
ź

uk“

xk
ź

uk“

xk

The factors on the right side of this equation have one or the other of the
following two arrangement graphs.

∞

x
x

∞

x

x
k

k

k k

So e~µ and e~µ have, respectively, arrangement graphs of the forms

∞
∞

…

…

…

…

where the n black vertices denote the distinct variables x1, . . . , xn. Since
the canonical form for e is

e “
ź

~µPSe

e~µ mod j

its arrangement graph assumes the form
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…

…

…

…

∞

…

p

11.11 . Let f~µp~xq “
śn
i“1 xµi|xiy where ~µ P Vn. Then

f~µp~xq “
ź

~ν‰~µ

x~ν|~xy

12. epilogue

In the preface to the first American edition of [1] Spencer-Brown expresses
his hope that there might be a ‘complex’ extension of his algebra based
perhaps on three ‘truth values’

VC “ t , , u

where is the solution to the liar’s paradox, defined as the solution of the
equation “ . In his paper [2] Varela took up this direction using the
multiplication table

ˆ

His next step was to provide an algebra associated to this arithmetic by
replacing the Spencer-Brown axioms with

(V1) p q p „ p

(V2) pr qr „ p q r

(V3) p p „ p

hoping to obtain a complete algebra. However, as Kauffman pointed out
in [3], Varela’s proof of completeness fails because of a neglected term, and
indeed Varela’s axioms appear to be insufficient to prove completeness. In
the same paper Kaufmann succeeded in proving completeness upon replacing
Varela’s axiom (V3) with:

(K3) p p “ .

We note that any complete set of axioms for an algebra is equivalent to any
other complete set of axioms. Kaufmann’s axioms are quite simple, so it is
unlikely that any simpler (but of course equivalent) axioms can be found.

It is an open question as to whether there exist useful canonical forms for
the Varela-Kauffman algebra.
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However, to more fully correspond with the properties of the usual com-
plexification of the real numbers, one should require more than just com-
pleteness from an extension of the Spencer-Brown algebra. One would also
want to know that the algebra is also complete in the sense that every non-
trivial equation in a single variable of the form fpxq “ gpxq always has a
solution. In the Varela-Kauffman algebra, the only values the expression
x x can assume are and . Therefore x x “ has no solution there.

Is there a doubly complete extension of the Spencer-Brown algebra?

13. appendix: more identities from spencer-brown

In this appendix we give proofs of the remaining seven identities Spencer-
Brown provides in his book. Our proofs depend upon the completeness of
the Spencer-Brown algebra.

13.1 . Let a, b, . . . be variables. Then:

(C4) a b a “ a

(C5) aa “ a

(C6) a b a b “ a

(C8) a br cr “ a r a b c

(C9) b r a r x r y r “ r ab rxy

(T11) a1 a2r . . . anr “ a1 a2 . . . an a1 r

(T12) an r . . . a1 r x1 r . . . xn r “ r a1 . . . an rx1 . . . xn

. (C4) We want to show that a b a “ a ba a. Setting a “ the

equation becomes b “ b which is true. Setting a “ it becomes
“ which is also true. Therefore (C4) is true by completeness.

(C5) We want to show that aa “ a. But this is true for a “ and for a “ ,
so (C5) is true by completeness.

(C6) We are trying to show that a b a b “ a. But whether b “

or b “ the equation reads a “ a, which is true by (C1), so the original
is true by completeness.

(C8) We are trying to show that a br cr “ a r a b c .

If r “ the equation reads a b c “ a b c , which is true. If

r “ it reads a “ a a b c which is true whether a “ (by C1) or
a “ , so (C8) is true by completeness.
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(C9) We want to verify b r a r x r y r “ r ab rxy .

If we set r “ the equation becomes xy “ xy which is true. If r “ ,

the equation becomes ba “ ab , which is also true. Therefore (C9) is
true by completeness.

(T11) We want to verify a b1r . . . bnr “ a b1 . . . bn a r

If we set r “ the equation becomes a b1 . . . bn “ a b1 . . . bn

which is true. If r “ , the equation becomes a “ a b1 . . . bn a (by
C1), which is also true, since it is true whether a “ or a “ . Therefore
(T11) is true by completeness.

(T12) We want to verify

an r . . . a1 r x1 r . . . xn r “ r a1 . . . an rx1 . . . xn

If r “ the equation reads x1 . . . xn “ x1 . . . xn , which is true by

(C1). If r “ the equation reads an . . . a1 “ a1 . . . an which
is also true by (C1). Thus (T12) is true by completeness.

(T13) Spencer-Brown’s final identity is best expressed in terms of its ar-
rangement graphs:

g  

a   1

∞
…

~

g  

a g   1

∞

…

~

g  

a   1

∞

…

~

a  3

a  2
a  3

a  2
a  3

a2 g  
~

g  

a   1

∞

…

~ etc.

a  3

a2

g  

The first equivalence in this diagram is just (C2). The second equivalence
arises in two stages. First we use (C2) to add the g next to a2. Then we
use (C2) again to remove the g next to the a1. This can all be repeated
inductively to insert gs against all the ak for k ď n and then we use (C2)
again to remove gs appearing beside all the ak with 1 ď k ă n. �
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