
Choiceless Computation and Symmetry

Benjamin Rossman∗

June 6, 2010

Abstract

Many natural problems in computer science concern structures like graphs where elements
are not inherently ordered. In contrast, Turing machines and other common models of compu-
tation operate on strings. While graphs may be encoded as strings (via an adjacency matrix),
the encoding imposes a linear order on vertices. This enables a Turing machine operating on
encodings of graphs to choose an arbitrary element from any nonempty set of vertices at low cost
(the Augmenting Paths algorithm for Bipartite Matching being an example of the power of
choice). However, the outcome of a computation is liable to depend on the external linear order
(i.e., the choice of encoding). Moreover, isomorphism-invariance/encoding-independence is an
undecidable property of Turing machines. This trouble with encodings led Blass, Gurevich and
Shelah [3] to propose a model of computation known as BGS machines that operate directly
on structures. BGS machines preserve symmetry at every step in a computation, sacrificing
the ability to make arbitrary choices between indistinguishable elements of the input struc-
ture (hence “choiceless computation”). Blass et al. also introduced a complexity class CPT+C
(Choiceless Polynomial Time with Counting) defined in terms of polynomially bounded BGS
machines. While every property finite structures in CPT+C is polynomial-time computable in
the usual sense, it is open whether conversely every isomorphism-invariant property in P belongs
to CPT+C. In this paper we give evidence that CPT+C 6= P by proving the separation of the
corresponding classes of function problems. Specifically, we show that there is an isomorphism-
invariant polynomial-time computable function problem on finite vector spaces (“given a finite
vector space V , output the set of hyperplanes in V ”) that is not computable by any CPT+C
program. In addition, we give a new simplified proof of the Support Theorem, which is a key
step in the result of [3] that a weak version of CPT+C absent counting cannot decide the parity
of sets.

1 Introduction

Is there a “logic” capturing exactly the polynomial-time computable properties of finite structures?
This question was raised by Gurevich [9] in the mid 80s, nearly a decade after Fagin [8] showed that
the NP properties of finite structures are precisely what can be defined in existential second-order
logic. Today this question remains a central open problem in finite model theory.

Addressing this question, Blass, Gurevich and Shelah [3, 4] introduced an logic/complexity
class known as CPT+C or Choiceless Polynomial Time with Counting. CPT+C is based on
a model of computation known as BGS machines (after the inventors). BGS machines operate
∗Computer Science and Artificial Intelligence Laboratory, MIT. Supported by the NSF Graduate Research Fel-

lowship.

1

directly on structures in a manner that preserves symmetry at every step of a computation. By
contrast, Turing machines encode structures as strings. This encoding violates the symmetry of
structures like graphs (which might possess nontrivial automorphisms) by imposing a linear order
on elements. Note that Turing machines are able to exploit this linear order to efficiently choose
an element from any set constructed in the course of a computation. Thus, it is not uncommon
in the high-level description of an algorithm (say, the well-known Augmenting Paths algorithm for
Bipartite Matching) to read something along the lines of “let w be any unmatched neighbor of
the vertex v”. A description like this (implicit) carries a claim that the ultimate outcome of the
computation will not dependent on the choice of w. However, the validity of such claims cannot
be taken for granted: by Rice’s Theorem, encoding-invariance is an undecidable property of Turing
machines.

The BGS machine model of computation is said to be “choiceless” because it disallows choices
which violate the inherent symmetry of the input structure. Pseudo-instructions of the form “let i
be an arbitrary element of the set I” is forbidden. Similarly, “let w be the first neighbor of v” is
meaningless (unless referring to an explicitly constructed linear order on vertices). The inability of
BGS machines to choose is compensated by parallelism (the power to explore all choices in parallel)
and the machinery of set theory (the power to build sets using comprehension).

BGS machines may in fact be viewed as the syntactic elements (i.e., formulas) of a logic, whose
semantics is well-defined on any structure. One rough description BGS logic is:

BGS logic = propositional logic +

• a least-fixed-point operator

• a cardinality operator

• basic set-theoretic predicates (∈, ∪, etc.) and

• comprehension terms of the form {term1(x) : x ∈ term2 : formula(x)}

evaluated in the domain HF(A) = A ∪ ℘(A) ∪ ℘(A ∪ ℘(A)) ∪ · · · of hereditarily
finite objects over a structure A with universe A.

The complexity class CPT+C or Choiceless Polynomial Time with Counting (itself also a logic) is
obtained by imposing polynomial bounds on the running time and number of processors required to
run a BGS machine. (Somewhat more precisely: this involves requiring that fixed-points converge
in polynomially many steps and that only polynomial many elements of HF(A) participate in
the evaluation of a formula.) Every CPT+C computable property of structures like graphs can
be implemented on a polynomial-time Turing machine (on encodings on such structures). Thus,
CPT+C ⊆ P. However, it is open whether, conversely, every isomorphism-invariant polynomial-
time property of finite structures is computable in CPT+C.

The main result of this paper (Theorem 6.1) suggests that CPT+C 6= P. We show that there
is an isomorphism-invariant polynomial-time computable function problem on finite vector spaces
(“given a finite vector space V , output the set of hyperplanes in V ”) that is not computable by any
CPT+C program. An additional result of this paper (Theorem 5.1) is a new simplified proof of
the Support Theorem of [3], which is a key step in the result of [3] that a weak version of CPT+C
absent counting cannot decide the parity of sets.

Outline of the paper. In §2 we present all relevant definitions. §3 contains a brief summary of
the key results on CPT and CPT+C from previous work of Blass et al. [3] and others. In §4 we

2

introduce some new notions relating BGS machines to the automorphism groups of structures. In §5
we prove that the symmetric group has a certain “support property”, leading to a simplified proof
of the Support Theorem from the original paper of Blass et al. [3]. In §6 we establish a similar result
for the general linear group; as a corollary, we show that there is a polynomial-time computable
function problem on finite vector spaces that is not computable by any CPT+C program.

2 Definitions

We begin by defining hereditarily finite expansions of structures in §2.1. We then define BGS
logic and classes CPT and CPT+C in §2.2. The definition of BGS logic presented here differs
from the BGS machines of Blass, et al. [3], but classes CPT and CPT+C are exactly the same.
BGS logic has a bare-bones syntax that is well-suited for induction, whereas the BGS machines
of [3] have an intuitive and attractive syntax (borrowing from Abstract State Machines) that is
recommended for the actual description of CPT+C algorithms (see [3] for examples). Let us also
mention that CPT(+C) is elsewhere [3, 4, 7] written as C̃PT(+C), the tilde over C evoking the
“less” in “choiceless”.

2.1 Hereditarily Finite Expansion

For every structure A in a signature σ, we define a structure HF(A) in an enlarged signature σHF

called the hereditarily finite expansion of A.

Definition 2.1 (Hereditarily Finite Objects). Let A be for a set (a special case being the universe
of a structure A) whose elements we call atoms and assume to be non-set entities (or “ur-elements”).

1. HF(A) denote the (unique) smallest set such that A ⊆ HF(A) and B ∈ HF(A) for every finite
subset B of HF(A). Elements of HF(A) are called hereditarily finite objects (h.f. objects) over
A and elements of HF(A) \ A (i.e., elements of HF(A) which are sets) are called hereditarily
finite sets (h.f. sets) over A. (Note that if A is finite, then HF(A) is the countable union
A ∪ ℘(A) ∪ ℘(A ∪ ℘(A)) ∪ ℘(A ∪ ℘(A) ∪ ℘(A ∪ ℘(A))) ∪ · · · .)

2. The rank of a h.f. object x is defined as 0 if x ∈ A ∪ {∅} and 1 + maxy∈x rank(y) otherwise.

3. A h.f. set x is transitive if y ⊆ x for all y ∈ x such that y is a set. The transitive closure TC(x)
of a h.f. object x is the (unique) smallest transitive set containing x as an element.

4. The finite von Neumann ordinals κi for i < ω are elements of HF(∅) defined by κ0 = ∅ and
κi+1 = {κ0, . . . , κi}.

Definition 2.2 (Group Actions). For a group G acting on A (a special case being the action of
Aut(A) on the universe of a structure A), we shall consider the extension of this action to HF(A)
defined for g ∈ G and x ∈ HF(A) \A inductively by gx = {gy : y ∈ x}.

Definition 2.3 (Signatures and Structures). A signature σ consists of relation symbols Ri and
function symbols fj (with designated arities) as well as constant symbols ck. A σ-structure A (or
structure with signature σ) consists of a set A (called the universe of A) together with interpreta-
tions for the various symbols in σ, that is, relations RAi ⊆ Aarity(Ri), functions fAj : Aarity(fj) → A

and constants cAk ∈ A (or simply Ri, fj and ck when A is known from context).

3

Definition 2.4 (Hereditarily Finite Expansion). σHF denotes the disjoint union of σ and
{In,EmptySet,Atoms,Union,Pair,TheUnique,Card} where In is a binary relation symbol, EmptySet
and Atoms are constant symbols, Union, TheUnique and Card unary function symbols, and Pair is
a binary function symbol. For a finite σ-structure A, let HF(A) denote the σHF-structure with
universe HF(A) where:

• symbols from σ have the same interpretation in HF(A) as in A, with the convention that
functions from σ take value ∅ whenever any coordinate of the input is not an atom,

• (x, y) ∈ In if and only if x ∈ y,

• EmptySet = ∅, Atoms = A, Pair(x, y) = {x, y},

• Union(x) =
⋃
y∈x y (in particular, Union(x) = ∅ if x ∈ Atoms ∪ {∅}),

• TheUnique(x) =

{
y if x = {y},
∅ if x is not a singleton,

• Card(x) =

{
|x| as a von Neumann ordinal if x is a set,
∅ if x is an atom.

HF(A) is called the hereditarily finite expansion of A. Structures of the form HF(A) are called
hereditarily finite structures.

2.2 BGS Logic and CPT+C

Just like first-order logic, BGS logic (and its weaker cousin BGS− logic) are defined with respect
to a fixed signature σ. Similarly, BGS logic has terms and formulas. However, BGS logic has an
additional syntactic element called programs (which compute a term t(t(t(...t(∅) . . .))) iteratively
using a “step” term t(·) until some “halting” formula is satisfied, whereupon an “output” term is
computed).

Definition 2.5 (BGS Logic). BGS logic over a signature σ consists of terms, formulas and
programs, defined below.

1. Terms and formulas are defined inductively:

◦ (base case) variables are terms;

◦ (base case) constant symbols in σHF are terms;

◦ if f is an r-ary function symbol in σHF and t1, . . . , tr are terms, then f(t1, . . . , tr) is a term;

◦ if R is an r-ary relation symbol in σHF and t1, . . . , tr are terms, then R(t1, . . . , tr) is a
formula;

◦ if t1 and t2 are terms, then t1 = t2 is a formula;

◦ if φ1 and φ2 are formulas, then so are ¬φ1 and φ1 ∧ φ2 and φ1 ∨ φ2;

◦ if s and t are terms, v is a variable (which is not free in t) and φ is a formula, then
{s(v) : v ∈ t : φ(v)} is a term (“the set of s(v) for v ∈ t such that φ(v) is true”).

4

Terms of the form {s(v) : v ∈ t : φ(v)} are called comprehension terms.

2. Each occurrence of a variable in a term or formula is either free or bound, with the compre-
hension construct {s(v) : v ∈ t : φ(v)} binding the free occurrences of v within s and φ. As
a matter of notation, we write t(v1, . . . , v`) or φ(v1, . . . , v`) for a term or formula whose free
variables are contained among v1, . . . , v`. A term or formula with no free variables is said to
be ground.

The variable rank of a term t (resp. formula ϕ) is the maximum number of free variables in
any subterm/formula of t (resp. ϕ).

3. Terms and formulas have the obvious semantics when evaluated on hereditary finite structures
with free variables assigned to h.f. objects. For a term t(v1, . . . , v`) and elements x1, . . . , x` ∈
HF(A), the value of t when free variables v1, . . . , v` are assigned to x1, . . . , x` is denoted by
[[t(~x)]]A ∈ HF(A) (or simply [[t(~x)]] if A is known from context). For a formula ϕ(v1, . . . , v`),
the value [[ϕ(~x)]]A is an element of {True,False} where (following [3]) we identify True = {∅}
and False = ∅.
We omit a rigorous definition of the semantic operator [[·]]. Let us however explicitly state
the semantics of comprehension terms (since this construct may be less familiar). For a
comprehension term r(~v) = {s(~v, w) : w ∈ t(~v) : ϕ(~v, w)} and parameters ~x from HF(A), the
value [[r(~x)]] is defined (in the obvious way) as the set of [[s(~x, y)]] for y ∈ [[t(~x)]] such that
[[ϕ(~x, y)]] = True.

4. A program Π = (Πstep,Πhalt,Πout) consists of a term Πstep(v), a formula Πhalt(v), and a term
or formula Πout(v) (depending whether Π computes a decision problem or produces an output)
all with a single free variable v. If Πout is a formula, then Π is said to be Boolean.

The variable rank of Π is the maximum of the variable ranks of Πstep, Πhalt and Πout.

5. A program Π is executed on an input structure A as follows. Let x0 = ∅ and xi+1 = [[Πstep(xi)]]
for all i < ω. In the event that [[Πhalt(xi)]] = False for all i, let Π(A) = ⊥ (and the computation
is said to diverge). Otherwise, let Π(A) = [[Πout(xi)]] for the minimal i such that [[Πhalt(xi)]] =
True.

6. BGS− logic consists of all terms, formulas and programs of BGS logic which exclude unary
function symbol Card.

We remark that BGS logic has the ability to carry out bounded existential and universal quan-
tification in HF(A) (and thus subsumes first-order logic over the base structure A). To see this,
note that (∃v ∈ t)φ(v) is equivalent to the formula {∅ : v ∈ t : φ(v)} = {∅} (pedantically, we should
write EmptySet instead of ∅ and Pair(EmptySet,EmptySet) instead of {∅}). Similarly, (∀v ∈ t)φ(v)
is equivalent to the formula {∅ : v ∈ t : ¬φ(v)} = ∅.

We now define the crucial resource by which we measure the complexity of BGS programs.
Informally, a h.f. object x ∈ HF(A) is active for the operation of a program Π on a structure A if
x is the value of any term involved in the computation of Π on A (until a halt state is reached).
By setting a polynomial bound on the number of active objects, as well as requiring programs to
halt on every input, we arrive at classes CPT and CPT+C.

5

Definition 2.6 (Active Objects and Classes CPT and CPT+C). As in the definition of [[·]]A, we
omit the superscript from the active-element operator 〈〈·〉〉A (defined below) when the structure A
is clear from context (as below).

1. For every term t(v1, . . . , v`) and assignment of free variables to values x1, . . . , x` ∈ HF(A), we
define 〈〈t(x1, . . . , x`)〉〉 ∈ HF(A) inductively as follows:

◦ (base case) if term t(v) is precisely the variable v, then 〈〈t(x)〉〉 = {x} for every x ∈ HF(A);

◦ (base case) if c is a constant symbol in σHF, then 〈〈c〉〉 = {cHF(A)};
◦ if R is an r-ary relation symbol in σHF and t1, . . . , tr are terms, then

〈〈R(t1, . . . , tr)〉〉 =
⋃r
i=1〈〈ti〉〉;

◦ if f is an r-ary function symbol in σHF and t1, . . . , tr are terms, then

〈〈f(t1, . . . , tr)〉〉 =
{

[[f(t1, . . . , tr)]]
}
∪
⋃r
i=1〈〈ti〉〉;

◦ for logical connectives,

〈〈¬φ〉〉 = 〈〈φ〉〉, 〈〈φ ∧ ψ〉〉 = 〈〈φ ∨ ψ〉〉 = 〈〈φ〉〉 ∪ 〈〈ψ〉〉, 〈〈t1 = t2〉〉 = 〈〈t1〉〉 ∪ 〈〈t2〉〉;

◦ for comprehension terms,1

〈〈{s(v) : v ∈ t : φ(v)}〉〉 =
{

[[{s(v) : v ∈ t : φ(v)}]]
}
∪ 〈〈t〉〉 ∪

⋃
x∈[[t]]

(
〈〈φ(x)〉〉 ∪ 〈〈s(x)〉〉

)
.

2. The set Active(Π,A) ⊆ HF(A) of active objects of Π on A is defined by

Active(Π,A) =

{⋃
i<ω〈〈Πstep(xi)〉〉 ∪ 〈〈Πhalt(xi)〉〉 if Π(A) = ⊥,
〈〈Πhalt(xt)〉〉 ∪ 〈〈Πout(xt)〉〉 ∪

⋃t−1
i=0

(
〈〈Πstep(xi)〉〉 ∪ 〈〈Πhalt(xi)〉〉

)
otherwise,

where x0 = ∅, xi+1 = [[Πstep(xi)]] and t is the least nonnegative integer such that [[Πhalt(xt)]] =
True.

3. For a function f(n), we denote by BGS(−)(f(n)) the class of BGS(−) programs Π such that
Π(A) 6= ⊥ and |Active(Π,A)| 6 f(|A|) for all finite structures A.

4. Classes CPT and CPT+C are defined by

CPT = BGS−(nO(1)), CPT+C = BGS(nO(1)).

We also denote by CPT(+C) the “complexity class” consisting of classes (“languages”) of
finite structures recognized by a Boolean program Π ∈ CPT(+C). That is, for a class C of
finite structures, we write C ∈ CPT(+C) if and only if C = {A : Π(A) = True} for some
CPT(+C) program Π.

1There is a reasonable alternative:

〈〈{s(v) : v ∈ t : φ(v)}〉〉 =
˘

[[{s(v) : v ∈ t : φ(v)}]]
¯
∪ 〈〈t〉〉 ∪

S
x∈[[t]]〈〈φ(x)〉〉 ∪

S
x∈[[t]] : [[φ(x)]]=True〈〈s(x)〉〉.

For the purposes of this paper, either definition is fine (i.e., all results hold just the same).

6

3 Brief Survey of Results on CPT and CPT+C

For background we give a brief and partial survey of results on CPT and CPT+C. Theorems 3.1,
3.2, 3.3 are from the original paper [3] of Blass, Gurevich and Shelah.

Theorem 3.1. CPT+C ⊆ P.

The idea behind the proof is that a CPT+C program Π can be simulated by a polynomial-time
dynamic programming algorithm. The “subproblems” in the dynamic program correspond to terms
and formulas occurring in the evaluation of Π, together with assignments of free variables to h.f. ob-
jects. The key observation is that, while these terms and formulas like Πstep(Πstep(. . .Πstep(v) . . .))
may grow polynomially long, there can only be polynomial many such terms and formulas and,
moreover, the number of free variables in any subformula is bounded by a constant (the variable
rank of Π).

Theorem 3.2. CPT = CPT+C = P on structures with a built-in linear order.

Theorem 3.2 uses the fact that least-fixed-point logic LFP is a subclass of CPT (this is shown
in [3]) and that LFP = P on structures with a built-in linear order [10, 12].

Theorem 3.3. The class PARITY of finite sets of even cardinality is not definable in CPT.

Theorem 3.3 moreover shows that CPT 6= CPT+C, since PARITY is clearly definable in
CPT+C. In a significantly strengthening of Theorem 3.3, Shelah [11] proved that CPT has a
“zero-one law” (see [1] for an alternative exposition of this result):

Theorem 3.4. For every relational signature σ and every CPT-definable property P of σ-
structures, the probability that a uniform random σ-structure of cardinality n has property P tends
(as a function of n) to 0 or 1.

Although it is open whether CPT+C = P, a number of “choiceless” algorithms have been
devised which solve some particular P problems on unordered structures in new and surprising
ways.

• The paper [4] contains a CPT+C algorithm for Bipartite Matching among other problems.

• In [2] it is explained how “choicelessly” to implement the Csanky algorithm for computing
the determinant of an unordered matrix, that is, a function I × I → F where I is a finite
(unordered) set and F is a finite field.

• The paper [7] presents a CPT algorithm that solves a tractable special case of Graph
Isomorphism due to Cai, Fürer and Immerman [5]. (The Cai-Fürer-Immerman problem
was used to show that LFP+C 6= P, that is, first-order logic with least-fixed-point and
counting operators does not capture P.)

Among polynomial-time problems for which no CPT+C algorithm is known is Perfect Match-
ing (see [4]).

7

4 The Role of Symmetry

This section introduces a tool for showing that certain h.f. objects in certain structures (with rich
automorphism groups) cannot be activated by any CPT+C program.

Definition 4.1. Let G be a group acting faithfully on a finite set A of cardinality n (a special case
is Aut(A) acting on the universe of a structure A). Recall that the action of G extends to HF(A)
via gx = {gy : y ∈ x} for sets x ∈ HF(A) \A.

1. For x ∈ HF(A), the stabilizer of x is the subgroup of G defined by Stab(x) = {g ∈ G : gx = x}.
If x is a set, the pointwise stabilizer of x is the subgroup of G defined by Stab•(x) = {g ∈ G :
gy = y for all y ∈ x}.

2. A set of atoms B ⊆ A is a support for a subgroup H ⊆ G if Stab•(B) ⊆ H. If H has a support
of size 6 k, then H is said to be k-supported.

3. For all k and r, the set of (k, r)-constructible subgroups of G is the minimal family of subgroups
of G such that

• every k-supported subgroup is (k, r)-constructible, and

• if H1, . . . ,Hr are (k, r)-constructible, H1 ∩ · · · ∩ Hr ⊆ H and [G : H] 6 nk, then H is
(k, r)-constructible.2

4. G has the (k, r)-support property if every (k, r)-constructible subgroup is k-supported.

We extend the notion of (k, r)-constructibility from subgroups of G to elements of HF(A).

5. A h.f. object x ∈ HF(A) is (k, r)-constructible if Supp(y) is a (k, r)-constructible subgroup of
G for all y ∈ TC(x).

Note that (k, r)-constructibility is a transitive property: if a h.f. set x is (k, r)-constructible, then
so are all y ∈ x. Whenever we speak about “(k, r)-constructible” elements of HF(A) in the context
of a structure A without mentioning G, let it be understood that G is the automorphism group
Aut(A).

The following lemma gives a condition equivalent to the (k, r)-support property.

Lemma 4.2. G has the (k, r)-support property if, and only if, every kr-supported subgroup with
index 6 nk is k-supported.

Proof. (=⇒) Suppose G has the (k, r)-support property and H is kr-supported and [G : H] 6 nk.
Let B ⊆ A be a support for H of size |B| 6 kr. Fix an arbitrary partition B = B1 ∪ · · · ∪Br into
sets of size |Bi| 6 k. For i ∈ {1, . . . , r}, let Hi = Stab•(Bi) and note that Hi is (k, r)-constructible
(since every k-supported subgroup is (k, r)-constructible). Since H1 ∩ · · · ∩ Hr = Stab•(B) ⊆ H
and [G : H] 6 nk, it follows that H is (k, r)-constructible.

(⇐=) Suppose that every kr-supported subgroup with index 6 nk is k-supported. To show
that every (k, r)-constructible subgroup is k-supported, assume H1, . . . ,Hr are k-supported and
H1 ∩ · · · ∩Hr ⊆ H and [G : H] 6 nk. It suffices to show that H is k-supported. But note that H
is kr-supported (the union of the supports for H1, . . . ,Hr of size 6 k is a support for H). So H is
k-supported by assumption.

2Recall that the index of H in G is defined by [G : H] = |G|/|H|.

8

The following proposition links these concepts to CPT+C.

Proposition 4.3. Suppose Π is a non-Boolean program in BGS(nk) with variable rank 6 r. Then
Π(C) is (k, r)-constructible for every finite structure A.

The proof follows after two lemma. The first lemma states that the semantics of terms and
formulas respects automorphisms of A in the expected way.

Lemma 4.4. Let γ(v1, . . . , v`) be any term or formula of BGS logic. For every structure A,
automorphism α ∈ Aut(A) and elements x1, . . . , x` ∈ HF(A),

[[γ(αx1, . . . , αx`)]] = α[[γ(x1, . . . , x`)]] and 〈〈γ(αx1, . . . , αx`)〉〉 = α〈〈γ(x1, . . . , x`)〉〉.

In particular, Stab([[γ]]) = Stab(〈〈γ〉〉) = Aut(A) for every ground term or formula γ.

The proof (omitted) is a straightforward induction on terms and formulas.

Lemma 4.5. Suppose t(v1, . . . , v`) is a term with variable rank 6 r and x1, . . . , x` are (k, r)-
constructible elements of HF(A) such that |{αy : y ∈ 〈〈t(x1, . . . , x`)〉〉, α ∈ Aut(A)}| 6 nk. Then
[[t(x1, . . . , x`)]] is (k, r)-constructible.

Proof. The proof is by induction on terms. The bases cases are when t is a constant symbol or
a variable; both cases are trivial. For the induction step, we consider the various types of term
constructs (see Definition 2.5(1)), namely when t is:

(i) f(t1(~v), . . . , tm(~v)) where f is an m-ary function symbol f in the signature of A,

(ii) Pair(t1(~v), t2(~v)),

(iii) TheUnique(t1(~v)),

(iv) Union(t1(~v)), or

(v) {s(~v, w) : w ∈ t1(~v) : ϕ(~v, w)} (i.e., a comprehension term with subterms t1(~v) and s(~v, w)
and subformula ϕ(~v, w)).

That is, in each case we assume that the lemma holds for subterms t1, t2, . . . (as well as s in
case (v)) and prove that [[t(~x)]] is (k, r)-constructible. For this, it is sufficient to show: first, that
every element of [[t(~x)]] is (k, r)-constructible; and second, that Stab([[t(~x)]]) is a (k, r)-constructible
subgroup of Aut(A) (using Lemma 4.4).

As for the first claim that every element of [[t(~x)]] is (k, r)-constructible, we consider cases (i)–
(v) separately. Note that every subterm ti of t has variable rank 6 r and satisfies |{αy : y ∈
〈〈ti(~x)〉〉, α ∈ Aut(A)}| 6 nk since 〈〈ti(~x)〉〉 ⊆ 〈〈t(~x)〉〉; therefore, [[ti(~x)]] is (k, r)-constructible by the
induction hypothesis.

◦ Case (i): [[f(t1(~x), . . . , tm(~x))]] is either an atom (if [[t1(~x)]], . . . , [[tm(~x)]] are all atoms) or ∅
(otherwise). In either case, [[f(t1(~x), . . . , tm(~x))]] is (k, r)-constructible.

◦ Case (ii): By the induction hypothesis, [[t1(~x)]] and [[t2(~x)]] are both (k, r)-constructible.

◦ Case (iii): If [[t1(~x)]] is not a singleton, then [[TheUnique(t1(~x))]] = ∅ and hence is (k, r)-
constructible. So assume [[t1(~x)]] is a singleton {y}. By the induction hypothesis, [[t1(~x)]] is
(k, r)-constructible. By transitivity of (k, r)-constructibility, y is (k, r)-constructible.

9

◦ Case (iv): By the induction hypothesis, [[t1(~x)]] is (k, r)-constructible. By transitivity of (k, r)-
constructibility, all elements of

⋃
[[t1(~x)]] are (k, r)-constructible.

◦ Case (v): Suppose t(~v) is a comprehension term {t2(~v, w) : w ∈ t1(~v) : ϕ(~v, w)}. Recall that

[[t(~x)]] = {[[s(~x, y)]] : y ∈ [[t1(~x)]] such that [[ϕ(~x, y)]] = True}.

By the induction hypothesis, [[t1(~x)]] is (k, r)-constructible. Therefore, every y ∈ [[s(~x)]] is
(k, r)-constructible (by transitivity of (k, r)-constructibility); it follows that [[s(~x, y)]] is (k, r)-
constructible (by the induction hypothesis on s, noting that s has variable rank 6 r and
〈〈s(~x, y)〉〉 ⊆ 〈〈t(~x)〉〉 so |{αz : z ∈ 〈〈s(~x, y)〉〉, α ∈ Aut(A)}| 6 nk).

To finish the proof, we prove that Stab([[t(x1, . . . , x`)]]) is a (k, r)-constructible subgroup of
Aut(A) (in all cases (i)–(v)). Because t has variable rank 6 r, at most r of the variables v1, . . . , v`
occur free in t (this is obvious if ` 6 r, but we allow ` > r). Let j1, . . . , jr ∈ {1, ..., `} be such
that vj1 , . . . , vjr are the only variables which occur free in t. Let Hi = Stab(xji) for i = 1, . . . , r.
Lemma 4.4 implies that

H1 ∩ · · · ∩Hr ⊆ Stab([[t(~x)]]),

that is, every automorphism of Aut(A) which fixes each of xj1 , . . . , xjr also fixes [[t(~x)]]. Since
H1, . . . ,Hr are (k, r)-constructible subgroups of Aut(A) (by the assumption that xj1 , . . . , xjr are
(k, r)-constructible elements of HF(A)) and their intersection is contained in Stab([[t(~x)]]), it suffices
to show that [Aut(A) : Stab([[t(~x)]])] 6 nk. This follows from our assumption that |{αy : y ∈
〈〈t(~x)〉〉, α ∈ Aut(A)}| 6 nk, as we have

[Aut(A) : Stab([[t(~x)]])] = |{α[[t(~x)]] : α ∈ Aut(A)}|
6 |{αy : y ∈ 〈〈t(~x)〉〉, α ∈ Aut(A)}| (since [[t(~x)]] ∈ 〈〈t(~x)〉〉)
6 nk (by assumption).

Finally, we prove Proposition 4.3 using Lemma 4.5.

Proof of Proposition 4.3. Let Π be a non-Boolean program BGS(nk) with variable rank 6 r. For
any finite structure A, note that

Π(A) = [[Πout(Πstep(. . .Πstep(∅) . . .)︸ ︷︷ ︸
m times

)]]

for some finite m. Let t denote this term Πout(Πstep(. . .Πstep(∅) . . .)). Whatever m happens to be,
t is a ground term with variable rank 6 r. By Lemma 4.4, 〈〈t〉〉 is fixed by all automorphisms of A
(i.e., Stab(〈〈t〉〉) = Aut(A)). Thus,

{αy : y ∈ 〈〈t〉〉, α ∈ Aut(A)} = {y : y ∈ 〈〈t〉〉} ⊆ Active(Π,A).

Since |Active(Π,A)| 6 nk (by definition of BGS(nk)), we have |{αy : y ∈ 〈〈t〉〉, α ∈ Aut(A)}| 6 nk.
Therefore, Π(A) is (k, r)-constructible by Lemma 4.5.

In the next two sections, we will use Proposition 4.3 to prove that CPT+C programs cannot
activate certain h.f. objects over “naked” sets and vector spaces.

10

5 PARITY /∈ CPT

We denote by [n] the “naked” set {1, . . . , n} viewed as structure in the empty signature. Let
PARITY denote the class of naked sets with even cardinality (i.e., the “language” of empty sets).
Earlier we stated the result of Blass et al. from [3] that PARITY /∈ CPT (Theorem 3.3). A key step
in the proof is the following so-called Support Theorem (Theorem 24 of [3]).

Theorem 5.1. For every Π ∈ CPT, there is a constant c such that for all sufficiently large n,
every object in Active(Π, [n]) has a support of cardinality 6 c.

The original proof of Theorem 5.1 in [3] involves a fairly intricate combinatorial argument. We
give an alternative and simpler proof using the support property defined in the previous section.
Theorem 5.1 follows directly from Proposition 4.3 and the following proposition.

Proposition 5.2. For n > 2kr, the symmetric group Sn has the (k, r)-support property.

We remark that Skr+1 fails to have the (k, r)-support property, as the alternating subgroup is
(k, r)-constructible but not k-supported (its smallest support has size kr). The following lemma
and corollary from [3] are also used in the original proof of Theorem 5.1. We include proofs for
completeness.

Lemma 5.3. Let H ⊆ Sn and suppose U, V ⊂ [n] such that Stab•(U), Stab•(V) ⊆ H and U ∪V 6=
[n]. Then Stab•(U ∩ V) ⊆ H.

Proof. Stab•(U ∩ V) is generated by transpositions (i j) where i, j ∈ [n] \ (U ∩ V). Therefore, it
suffices to show that (i j) ∈ H for all i, j ∈ [n]\(U∩V). By assumption, there exists k ∈ [n]\(U∪V).
Since (i j) = (i k)(j k)(i k), it suffices to show that (i k) ∈ H for all i ∈ [n] \ (U ∩ V). We consider
two cases depending whether i /∈ U or i /∈ V : if i /∈ U , then (i k) ∈ Stab•(U) and hence (i k) ∈ H
as Stab•(U) 6 H; if i /∈ V , then (i k) ∈ Stab•(V) and hence (i k) ∈ H as Stab•(V) 6 H.

Corollary 5.4. If H ⊆ Sn has a support of size < n/2, then H has a unique minimal support of
size < n/2.

We now give our proof of Proposition 5.2 (which bypasses the lengthy combinatorial argument
in [3]).

Proof of Proposition 5.2. Suppose H1, . . . ,Hr are k-supported subgroups of Sn. Let H be another
subgroup of Sn such that H1 ∩ · · · ∩Hr ⊆ H and [Sn : H] 6 nk. By Lemma 4.2, it suffices to show
that H is also k-supported. For each i ∈ [r], fix Ui ⊂ [n] such that |Ui| 6 k and Stab•(Ui) ⊆ Hi.
Let U = U1∪· · ·∪Ur. Note that U is a support for H, as Stab•(U) = Stab•(U1)∩· · ·∩Stab•(Ur) ⊆
H1 ∩ · · · ∩Hr ⊆ H. Also note that |U | 6 rk < n/2. So by Corollary 5.4, H has a unique minimal
support V of size < n/2.

We claim that H ⊆ Stab(V). For contradiction, assume otherwise. Then there exists h ∈
H such that hV 6= V . Note that hV is a support for hHh−1 = H. Since V ∪ hV 6= [n] (as
|V ∪hV | 6 2|V | < n), the intersection V ∩hV is a support for H by Lemma 5.3. But V ∩hV ⊂ V ,
which contradicts the minimality of V . Therefore, H ⊆ Stab(V) as claimed. It follows that
[Sn : H] > [Sn : Stab(V)] =

(
n
|V |
)
. Since [Sn : H] 6 nk, we conclude that |V | 6 k. Therefore, H is

k-supported.

11

6 CPT+C Cannot Construct the Dual of a Finite Vector Space

Let V be a finite vector space over a fixed finite field F . We view V as a structure with binary
operation + and unary operations for scalar multiplication by each element of F . Let H(V) denote
the set of hyperplanes in V . Note that H(V) is an element of HF(V) (in particular, H(V) is a set
of subsets of V).

The task of computing H(V) given V is a polynomial-time function problem (as opposed to
decision problem) in the usual sense of complexity theory (H(V) has a polynomial-size description
as a hereditary finite object, i.e., |TC(H(V))| = O(poly(|V |)). Moreover, H(V) is an invariant of
V (i.e., not depending on any extrinsic linear order on V). It is thus reasonable to ask whether any
CPT+C program computes the operation V 7−→ H(V).

We remark the results of this section hold just the same for the operation V 7−→ V ∗ of computing
from V the dual space V ∗ of linear functions V −→ F (suitably represented as an element of
HF(V ∪ F)).

Theorem 6.1. No program in CPT+C program computes the operation V 7−→ H(V) over finite
vector spaces over a fixed finite field F .

Noting that a hyperplane in an n-dimensional vector space has smallest support size n − 1,
Theorem 6.1 follows from the following vector-space analogue of Proposition 5.2.

Proposition 6.2. If V is a finite vector space of dimension > r2k2, then the group GL(V) of linear
automorphisms of V has the (k, r)-support property.

To prove Theorem 6.1 from Proposition 6.2, note that if Π ∈ CPT+C, then Π ∈ BGS(nk) for
some k. Let r be the variable rank Π. Consider a finite vector space V on dimension > r2k2. By
Proposition 4.3, Π(V) (the output of Π on V) is (k, r)-constructible. By Proposition 6.2, GL(V)
(= Aut(V)) has the (k, r)-support property. Therefore, Π(V) is k-supported. Since H(V) is not
k-supported for any k < dim(V), we conclude that Π(V) 6= H(V).

The proof of Proposition 6.2 proceeds along similar lines as the proof of Proposition 5.2. We
have the following vector-space analogues of Lemma 5.3 and Corollary 5.4.

Lemma 6.3. If subspaces W,W ′ ⊆ V both support a subgroup H ⊆ GL(V) and if W + W ′ 6= V ,
then the intersection W ∩W ′ supports H.

Proof. Let P , P ′ and Q denote the pointwise stabilizers of W , W ′ and W ∩W ′, respectively. It
suffices to show that Q is the subgroup of GL(V) generated by P ∪P ′. This is a simple exercise in
linear algebra. Choose a basis v1, ..., vn for V such that for some 1 6 i 6 j 6 j′ < n = dim(V),

• v1, ..., vj span W ,

• vi, ..., vj′ span W ′,

• vi, ..., vj span W ∩W ′.

We now identify particular sets of generators for P , P ′ and Q. For all r, s ∈ {1, . . . , n} and

12

λ ∈ F×, define n× n matrix σr,s,λ by

σr,s,λ =

Ir−1

1 λ

Is−r−1

0 1
In−s

 if r < s,

 Ir−1

λ

In−r

 if r = s,

Is−1

1 0
Ir−s−1

λ 1
In−r

 if r > s.

For all r, s ∈ {1, . . . , n} with r < s, define n× n matrix τr,s by

τr,s =

Ir−1

0 1
Is−r−1

1 0
In−s

 .

Linear transformations σr,s,λ and τr,s are the familiar “row reduction” generators of GL(V) with
respect to the basis v1, ..., vn. Note that P (respectively: P ′, Q) is generated by the set of all σr,s,λ
such that r /∈ {1, ..., j} (respectively: r /∈ {i, ..., j′}, r /∈ {i, ..., j}), together with all τr,s such that
r, s /∈ {1, . . . , j} (respectively: r, s /∈ {i, ..., j′}, r, s /∈ {i, ..., j}) .

The only generators of Q which are not also generators of P or P ′ are those of the form τr,s
where r ∈ {1, ..., i−1} and s ∈ {j+1, ..., j′}. Note that τr,s = τr,nτs,nτr,n and τr,n ∈ P ′ and τs,n ∈ P .
Therefore, τr,s is in the subgroup of GL(V) generated by P ∪ P ′. We conclude that Q is the
subgroup of GL(V) generated by P ∪ P ′.

Corollary 6.4. If a subgroup H ⊆ GL(V) is supported by a subspace of dimension < n/2, then H
is supported by a unique minimal subspace of dimension < n/2.

With this corollary, we are ready to prove Proposition 6.2.

Proof of Proposition 6.2. Let H1, . . . ,Hr be k-supported subgroups of GL(V). Let H be another
subgroup of GL(V) such that H ⊇ H1 ∩ · · · ∩ Hr and [GL(V) : H] 6 |V |k = qnk where q is the
size of the field F . By Lemma 4.2, it suffices show that H is also k-supported. For each i ∈ [r], fix
Ui ⊂ [n] such that |Ui| 6 k and Stab•(Ui) ⊆ Hi. Let U = U1∪· · ·∪Ur. Note that U is a support for
H, as Stab•(U) = Stab•(U1)∩· · ·∩Stab•(Ur) ⊆ H1∩· · ·∩Hr ⊆ H. Also note that |U | 6 rk < n/2.
So by Corollary 5.4, H is supported by a unique minimal subspace W of dimension 6 rk.

13

We claim that H ⊆ Stab(W). For contradiction, assume otherwise. Then there exists h ∈ H
such that hW 6= W . Note that hW is a support for hHh−1 = H. Since W + hW 6= V (as
dim(W + hW) 6 2 dim(W) < n), the intersection W ∩ hW is a support for H by Lemma 5.3. But
W ∩ hW ⊂ W , which contradicts the minimality of W . Therefore, H ⊆ Stab(W) as claimed. It
follows that [GL(V) : H] > [GL(V) : Stab(W)] = #{dim(W)-dimensional subspaces of V }. For all
d 6 rk (=

√
n), we have

#{d-dimensional subspaces of V }

=
d−1∏
i=0

qn−i − 1
qi+1 − 1

>
d−1∏
i=0

qn−2i−2 = qdn−2(d−1
2)−2 > qdn−(

√
n−1)(

√
n−2)−2 = q(d−1)n+3

√
n−4 > |V |d−1.

Since [GL(V) : H] 6 |V |k, it follows that dim(W) 6 k. Because every basis for W is a support for
H, it follows that H is k-supported.

Acknowledgements. My thanks to Swastik Kopparty and an anonymous referee for their helpful
comments.

References

[1] A. Blass and Y. Gurevich. Strong extension axioms and Shelah’s zero-one law for choiceless
polynomial time. Journal of Symbolic Logic, 68(1):65–131, 2003.

[2] A. Blass and Y. Gurevich. A quick update on the open problems in Blass-Gurevich-
Shelah’s article “On polynomial time computations over unordered structures”. Available at
http://research.microsoft.com/en-us/um/people/gurevich/Opera/150a.pdf, December 2005.

[3] A. Blass, Y. Gurevich, and S. Shelah. Choiceless polynomial time. Annals of Pure and Applied
Logic, 100(1–3):141–187, 1999.

[4] A. Blass, Y. Gurevich, and S. Shelah. On polynomial time computation over unordered struc-
tures. Journal of Symbolic Logic, 67(3):1093–1125, 2002.

[5] J.-Y. Cai, M. Fürer, and N. Immerman. An optimal lower bound on the number of variables
for graph identification. Combinatorica, 12(4):389–410, 1992.

[6] A. Chandra and D. Harel. Structure and complexity of relational queries. Journal of Computer
and System Sciences, 25:99–128, 1982.

[7] A. Dawar, D. Richerby, and B. Rossman. Choiceless polynomial time, counting and the Cai-
Fürer-Immerman graphs. Annals of Pure and Applied Logic, 152:31–50, 2008.

[8] R. Fagin. Generalized first-order spectra and polynomial-time recognizable sets. In R. M.
Karp, editor, Complexity of Computation, volume 7 of SIAM-AMS Proceedings, pages 43–73,
1974.

[9] Y. Gurevich. Toward logic tailored for computational complexity. In M. M. Richter et al.,
editor, Computation and Proof Theory, pages 175–216. Springer Lecture Notes in Mathematics,
1984.

14

[10] N. Immerman. Relational queries computable in polynomial time. Information and Control,
68(1–3):86–104, 1986.

[11] S. Shelah. Choiceless polynominal time logic: Inability to express. In CSL, pages 72–125,
2000.

[12] M. Y. Vardi. The complexity of relational query languages. In Proc. 14th ACM Symp. on
Theory of Computing, pages 137–146, 1982.

15

