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Abstract

The computational problem of testing whether a graph contains a complete subgraph of size
k is among the most fundamental problems studied in theoretical computer science. This
thesis is concerned with proving lower bounds for k-Clique, as this problem is known. Our
results show that, in certain models of computation, solving k-Clique in the average case
requires Ω(nk/4) resources (moreover, k/4 is tight). Here the models of computation are
bounded-depth Boolean circuits and unbounded-depth monotone circuits, the complexity
measure is the number of gates, and the input distributions are random graphs with an
appropriate density of edges. Such random graphs (the well-studied Erdős-Rényi graphs)
are widely believed to be a source of computationally hard instances for clique problems, a
hypothesis first articulated by Karp in 1976. This thesis gives the first unconditional lower
bounds supporting this hypothesis.

Significantly, our result for bounded-depth Boolean circuits breaks out of the traditional
“size-depth tradeoff”, which had been a barrier to progress in circuit complexity: whereas
previous (worst-case) lower bounds for k-Clique have the form Ω(nk/poly(d)) for depth-d
Boolean circuits, our Ω(nk/4) lower bound has no noticeable dependence on the circuit depth
d so long as d 6 k−2 log n/ log log n. As a consequence, we obtain a novel Size Hierarchy
Theorem for uniform AC0. A related application answers a longstanding open question in
finite model theory (raised by Immerman in 1982): we show that the hierarchy of bounded-
variable fragments of first-order logic is strict on finite ordered graphs. Additional results
of this thesis characterize the average-case descriptive complexity of k-Clique through the
lens of first-order logic.

Thesis Supervisor: Madhu Sudan
Title: Professor of Electrical Engineering and Computer Science
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Chapter 1

Introduction

The computational problem of testing whether a graph contains a complete subgraph of size
k is among the most fundamental problems studied in theoretical computer science. This
thesis is concerned with proving lower bounds for k-Clique, as this problem is known. That
is, our aim is to show that k-Clique cannot be solved with certain limited computational
resources.

Understanding the complexity of k-Clique is key to unlocking the relationship between
P and NP. In the traditional view where k is part of the input, the problem of detecting
k-cliques is famously NP-complete (one of Karp’s 21 NP-complete problems [45]). In this
thesis, however, we consider the problem for fixed but arbitrary values of k. Here the brute-
force O(nk) algorithm places k-Clique in P. A crucial observation is that to separate P
from NP, it suffices to show that k-Clique requires time Ω(nck) where c1, c2, . . . is any
sequence which grows to infinity.1 Conceptually, it might be easier to prove such a sequence
of increasing polynomial lower bounds, than a single super-polynomial lower bound (for all
k simultaneously), even though the former formally entails the latter. This hope motivates
studying the complexity of k-Clique for fixed values of k.

The results of this thesis are unconditional lower bounds of Ω(nk/4) on the complexity of
k-Clique in two restricted models of computations (bounded-depth circuits and monotone
circuits). Moreover, these lower bounds are achieved in the average-case setting for random
graphs with an appropriate density of edges. The next few sections contain additional
background on lower bounds in computational complexity (§1.1), clique problems on random
graphs (§1.2), and a question arising in descriptive complexity (§1.3). Our results are
formally stated in §1.4, followed by a discussion of applications (§1.5) and techniques (§1.6).

1.1 Lower bounds in computational complexity

Lower bounds for the most natural complexity measures (time, space, . . . ) in the most
general models of computation (Turing machines, Boolean circuits, . . . ) are the holy grail
of complexity theory. The famous “barriers” in complexity theory—relativization, natural
proofs and algebrization—demonstrate that existing techniques are inadequate for even
some modest-sounding goals in complexity theory. Indeed, no one has yet proved a super-
linear lower bound on the size of logarithmic-depth circuits computing an explicit problem

1This hypothesis, known by the conjectured equation FPT 6= W[1], is well-studied in parameterized
complexity theory [24].

6



in NP. Since unconditional lower bounds in the most general settings appear beyond reach,
the two main directions in complexity theory are:

• conditional lower bounds (showing that problem X is at least as hard as problem Y
via a reduction), and

• unconditional lower bounds in restricted models of computation.

The conditional hardness of detecting k-cliques is firmly established: in the view where
k is the part of the input, the problem is NP-complete [45] as well as NP-hard to approx-
imate [34, 75]; in the view of parameterized complexity, k-Clique is W[1]-complete [24]
and it is known that an upper bound of no(k) implies the failure of the exponential time
hypothesis [20]. In contrast to these conditional hardness results, in this thesis we are after
unconditional lower bounds for k-Clique in restricted models of computation. Here much
less is known. (We discuss some previous results in §1.1.1 and §1.1.2, below. Other results
include [13, 29, 72].)

The restricted models of computation that we consider are special classes of Boolean
circuits. Recall that Boolean circuits (formally defined in §2.2) are comprised of AND
and OR gates (with unbounded fan-in) in addition to NOT gates, on top of

(
n
2

)
variables

representing the possible edges in an n-vertex graph. Size refers to the number of gates
and depth refers to the length of the longest path from a variable to the output gate. A
circuit is monotone if it contains no NOT gates. (To illustrate these definitions, note that
k-Clique is computed by a depth-2 monotone circuit (an OR of AND’s) of size

(
n
k

)
+ 1.)

Boolean circuits, like Turing machines, are a fully general model of computation. Since
Boolean circuits are more combinatorial than Turing machines, they have a natural appeal
from the perspective of unconditional lower bounds.

The setting for our results are two restricted classes of Boolean circuits: bounded-
depth circuits and monotone circuits. These two classes of circuits have a storied
history in complexity theory, which we summarize in the next two subsections. In contrast to
Turing machines and unrestricted Boolean circuits, there has been significant progress over
the years toward understanding the limitations of bounded-depth and monotone circuits
(see [17] for an excellent survey from 1990, still largely up-to-date).

1.1.1 Bounded-depth circuits

The first major breakthrough on bounded-depth circuits occurred in the early 1980’s when
Furst, Saxe and Sipser [28] and independently Ajtai [1] proved that Parity (the problem
of determining whether a string of 0’s and 1’s contains an even number of 1’s) is not in the
complexity class AC0 of problems solvable by circuits of polynomial size and constant depth.
This result was sharpened by Yao [74] and then H̊astad [33], who eventually showed that

Parity requires depth-d circuits of size 2Ω(n1/(d−1)) (which is essentially tight). Building
on the method of random restrictions, H̊astad introduced a tool known as the switching
lemma, of which many versions presently exist. Switching lemmas (which convert DNF’s
to much smaller CNF’s, and vice-versa, via a random restriction) have played a key role in
numerous results on bounded-depth circuits (for example, the LMN Theorem [51]).2

Lynch [52] in 1986 gave the first lower bound for k-Clique on bounded-depth circuits,

showing that it requires depth-d circuits of size nΩ(k1/2d−3/2). This was followed by a lower

2Another essential technique on bounded-depth circuits, which must be mentioned alongside the switching
lemma, is the method of approximation by low-degree polynomials [61, 69].
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bound of nΩ(kd−2) proved by Beame [11] in 1990 using a special-purpose switching lemma.
Both of these lower bounds exhibit a “size-depth tradeoff” whereby the strength of the
bound decreases exponentially as depth increases. At first glance, this appears to be an
inescapable limitation of arguments based on a switching lemma.

1.1.2 Monotone circuits

A Boolean function f : {0, 1}m → {0, 1} is monotone if f(x) 6 f(y) for all x 6 y (under
the standard partial order on {0, 1}m). It is easy to show that every monotone circuit
computes a monotone functions, and conversely, every monotone function is computed by
some monotone circuit. It is thus natural to consider the monotone complexity of a monotone
function f , defined as the size of the smallest monotone circuit computing f .

Razborov [60] in 1985 achieved a major breakthrough by showing that k-Clique has
monotone complexity Ω((n/ log2 n)k) (for fixed values of k) and nΩ(logn) (when k is a part
of the input). Alon and Boppana [2] improved these bounds to Ω((n/ log n)k) (for fixed k)
and Ω((n/ log n)1/3) (for variable k). Amano and Maruoka [7] extended these bounds to
non-monotone circuits with a limited number (up to (1/6) log log n) of NOT gates. These
results, while nearly optimal for the worst-case complexity of k-Clique, leave open the
question of the monotone complexity of k-Clique in the average case.

1.2 Average-case lower bounds

It is a well-noted phenomenon that computational problems which may be hard in special
cases, turn out to be easy usually or in practice. In complexity theory, this is modeled by
the notion of average-case analysis (introduced by Levin [49]) whereby the measure of an
algorithm’s complexity is its expected running time when the input is randomly drawn from
a probability distribution representing “typical” instances. Upper bounds for the worst-case
performance of an algorithm are stronger than corresponding average-case upper bounds (for
any input distribution); conversely, average-case lower bounds (for any input distribution)
are stronger than corresponding worst-case lower bounds.

There is another, conceptual argument for pursuing lower bounds in the average-case
setting. With rare exceptions, proving lower bounds for a problem X requires understanding
something about the nature of X. It is a huge advantage if one can identify inputs distribu-
tions where solving X seems to be hard. For any monotone problem (such as k-Clique or
k-Sat), there is a canonical guess one can make. For every non-constant monotone function
f : {0, 1}m → {0, 1}, there is a unique pf ∈ [0, 1] such that for a random input x ∈ {0, 1}m
in which each coordinate equals 1 with probability pf , we have Pr[f(x) = 1] = 1

2 . This
value pf is known as the threshold of f . For k-Sat, it turns out that random inputs at
the threshold indeed seem to be a source of hard instances. (This belief is bolstered by
work in statistical physics on the complex phase transition of k-Sat.) The results of this
thesis support a similar intuition that random graphs at the threshold are a source of hard
instances for k-Clique.

1.2.1 Karp’s question

The idea that random graphs may be a source of hard instances for clique problems goes
back to a question raised by Karp [46] in 1976. The random graphs considered here, denoted
G(n, p), are graphs on n vertices in which each edge is independent present with probability
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p ∈ [0, 1]. Such random graph, known as Erdős-Rényi random graphs, are well-studied
in combinatorics and theoretical computer science (see [4, 15, 41]). Karp considered the
problem of efficiently finding a large clique, the larger the better, in the balanced random
graph G(n, 1

2). One obvious approach is the following greedy algorithm: starting with any
vertex v1, choose any neighbor v2 of v1, then choose any common neighbor v3 of v1 and v2,
and continue in this manner until v1, . . . , vt are found which have no common neighbor. The
output of this algorithm, the set {v1, . . . , vt}, is a clique in the input graph which is maximal,
though not necessarily maximum. Karp observed that with high probability (w.h.p.) the
greedy algorithm, executed in a randomized fashion on G(n, 1

2), outputs a maximal clique of
size ∼ log n; this is roughly half the expected maximum clique size ∼2 log n (these logarithms
have base 2).3 Karp posed the following question:

Question 1.1. Is there a polynomial-time algorithm which w.h.p. finds a clique of size
(1 + ε) log n in the balanced random graph G(n, 1

2) for any constant ε > 0?

Karp’s question remains wide open today despite receiving considerable attention over
the years. Much work has focused on a variant of Question 1.2.2 in which a very large
clique is planted in G(n, 1

2). Kučera [48] showed that a planted clique of size Ω(
√
n log n)

is likely to show up among the vertices of highest degree and is therefore easy to find.
Using spectral techniques, Alon, Krivelevich and Sudakov [3] gave an efficient algorithm
that w.h.p. finds a planted clique of size Ω(

√
n). On the flipside, Jerrum [42] showed that

the Metropolis algorithm, a fixed-temperature variant of simulated annealing (basically a
random walk in a particular Markov chain on the cliques), fails to find a clique in G(n, 1

2)

of size (1 + ε) log n in polynomial time, even if there is a planted clique of size n(1/2)−ε.
Different randomized algorithms were similarly shown to fail by Peinado in [56, 57]. In
addition, various cryptographic schemes have been proposed (e.g. [43, 48]) based on the
presumed hardness of finding planted cliques in G(n, 1

2).

1.2.2 Scaling Karp’s question to G(n, n−α)

Although most of the work around Karp’s question has focused on the balanced random
graph G(n, 1

2), we wish to point out that this question scales nicely to the Erdős-Rényi
random graph G(n, n−α) where α > 0 is a fixed constant.4 For convenience, we restrict at-
tention to the random graph G(n, p) where p(n) = n−2/(k−1) is a threshold for the existence
of k-cliques (that is, Pr[G(n, p) contains a k-clique] is bounded away from 0 and 1). It is
not hard to show that w.h.p. the random greedy algorithm on G(n, p) outputs a maximal
clique of size approximately k

2 (that is, half the size of the maximum clique). Note that the
greedy algorithm has linear running time.

What about the complexity of finding a clique of size (1
2 + ε)k for some ε ∈ (0, 1

2)? This

can be accomplished in time O(n( 1
2

+ε)k) by brute-force search. The question is, can we do

3Here we offer an informal explanation. For any distinct vertices v1, . . . , vt, the probability that v1, . . . , vt
have no common neighbor is (1 − 2−t)n−t. If t 6 (1 − ε) logn, this probability is o(1/t); so we expect to
find common neighbors for all t up to (1 − ε) logn. If t > (1 + ε) logn, this probability is close to 1; so we
no longer expect to find a common neighbor. Indeed, the probability (1− 2−t)n−t is balanced for t ∼ logn,
which explains why the greedy algorithm is likely to find a clique of size ∼ logn.

As for the maximum clique having size ∼ 2 logn, note that the expected number
(
n
s

)
2−(s2) of s-cliques

in G(n, 1
2
) equals 1 for s ∼ 2 logn. This gives roughly the right estimate if we pretend that the different

s-element sets of vertices are independently cliques in G(n, 1
2
). While not truly independent, these events

are independent enough for this intuition to be reasonable.
4We are not aware if similar observations have been made elsewhere.
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better? In fact, it turns out that we can: by running the greedy algorithm nε
2k+O(1) times,

w.h.p. we find a clique of size (1
2 + ε)k. This suggests the following question, which can be

seen as a version of Question for the random graph G(n, p):

Question 1.2. For constants ε ∈ (0, 1
2) and δ > 0, is there an O(n(1−δ)ε2k) time algorithm

which w.h.p. find a clique of size at least (1
2 + ε)k in G(n, p)?

Similarly, by running the greedy algorithm nk/4+O(1) times, we are able to determine
w.h.p. whether G(n, p) contains a k-clique.5 Corresponding to the limit case ε = 1

2 in
Question 1.2, we ask:

Question 1.3. Does any O(n(1−δ)k/4) time algorithm solve k-Clique w.h.p. on G(n, p)?

A negative answer to Question 1.3 for all fixed k would imply P 6= NP (as we noted
earlier). Let us not fail to mention that the best known method for solving k-Clique in
the worst case (due to Nešetřil and Poljak [54]) has running time n(ω/3)k+O(1) where nω+o(1)

is the complexity of multiplying two n × n matrices. With the current best known bound
of ω < 2.376 [21], this gives an upper bound of n.792k+O(1) on the worst-case complexity of
k-Clique. We point out that, even assuming ω = 2 (which is best possible), the method
of solving k-Clique using fast matrix multiplication can only produce an upper bound of
n(2/3)k+O(1). This is safely above the hypothetical lower bound of n(1/4)k−o(k) suggested by
Question 1.3.

1.3 Bounded-variable logics

This thesis also investigates the descriptive complexity of detecting k-cliques from the per-
spective of first-order logic. (Recall that formulas of first-order logic are built up from
expressions of the form x = y and R(x1, . . . , xr), where R comes from a fixed set of re-
lation symbols, via connectives ∧, ∨ and ¬ and quantifiers ∃x and ∀x. Variables x, y, . . .
range over elements of a structure in which a formula is evaluated.) Descriptive complexity
views first-order logic as a model of computation (analogous to Turing machines or Boolean
circuits). Formulas of first-order logic are seen as algorithms, and various parameters of
formulas (such as length, the nesting depth of quantifiers, the number of variables, . . . ) are
seen as complexity measures. It turns out that the complexity measures for first-order for-
mulas are closely related to the complexity measures (size, depth, . . . ) for Boolean circuits
[32, 23, 36, 37]. (Descriptive complexity studies other systems of logic as well. For addi-
tional background, the definitive reference is [38]. Concerning the larger subject of finite
model theory, see [25, 30, 50].)

The complexity measure that interests us here is the number of variables in a first-order
formula. It is important that a single variable may be quantified multiple times in a formula.
To illustrate this concept, consider the following formula (without requantification) in the
first-order language of linearly ordered graphs (with adjacency relation ∼ and linear order
<):

∃x1∃x2∃x3∃x4 (x1 ∼ x2) ∧ (x1 < x2) ∧ (x2 ∼ x3) ∧ (x2 < x3) ∧ (x3 ∼ x4) ∧ (x3 < x4).

5There are well-known deterministic algorithms (e.g. the Bron-Kerbosch algorithm [18]) which enumerate
all maximal cliques of an arbitrary graph G in time nO(1)|{maximal cliques in G}|. This can be highly
inefficient for arbitrary graphs, which can have up to 3n/3 maximal cliques by the Moon-Moser Theorem
[53]. However, w.h.p. G(n, p) has only nk/4+O(1) maximal cliques. Thus, we have another method of solving
k-Clique w.h.p. on G(n, p) in time nk/4+O(1). In Chapter 5, using an idea of Amano [6], we show how to
implement such an algorithm on monotone circuits of depth O(k).
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This formula contains 4 distinct variables and expresses “there exists an increasing path of
length at least 4”. Note that we can embed quantifiers ∃x3 and ∃x4 to get an equivalent
formula:

∃x1∃x2 (x1 ∼ x2) ∧ (x1 < x2) ∧ ∃x3 (x2 ∼ x3) ∧ (x2 < x3) ∧ ∃x4 (x3 ∼ x4) ∧ (x3 < x4).

Now consider the following formula with only 2 variables, x and y:

∃x∃y (x ∼ y) ∧ (x < y) ∧ ∃x (y ∼ x) ∧ (y < x) ∧ ∃y (x ∼ y) ∧ (x < y).

Notice that we have substituted x for both x1 and x3, and y for both x2 and x4. Although
this formula would be considered bad style in expository mathematics, the semantics is
perfectly unambiguous: it too expresses that there exists an increasing path of length 4.
Indeed, for any positive integer `, there is a similar 2-variable formula expressing “there
exists an increasing path of length at least `”. This simple example demonstrates the
expressive power of formulas with only 2 variables on finite ordered graphs.6

The collection of formulas with at most m variables (including both free and bound
variables) is known as the m-variable fragment of first-order logic and denoted Lm. The
chain of m-variable fragments L1 ⊆ L2 ⊆ · · · is known as the variable hierarchy. Bounded-
variable logics are a major subject in finite model theory (see e.g. [31, 55]). One natural
question is the following:

Question 1.4. For which classes of structures is the variable hierarchy strict in terms of
expressive power (i.e., for every m > 1 there is a property defined by a formula of Lm but
not by any formula of Lm−1)?

Question 1.4 has been studied in the context of many different classes of structures. In
some cases, the hierarchy is known to be strict; in other cases, it is known to collapse. For
instance, the hierarchy is strict on the class of [finite] graphs (where ∼ is the only relation);
this is seen by the fact that “there exist > m vertices” can be expressed with m but not
m− 1 variables. However, on the class of finite linear orders (where < is the only relation),
the hierarchy collapses to L2 (i.e., every first-order property can be expressed using only
2 variables); this is because every first-order property is a finite Boolean combination of
properties “there exist > m vertices”, each expressed by a formula with only 2 variables
similar to the example above. By more sophisticated results of Poizat [58], the hierarchy
collapses to L3 on the class of [finite] linear orders with any number of unary relations (in
addition to <). The next natural question along these lines is:

Question 1.5. Is the variable hierarchy strict on finite ordered graphs?

Question 1.5 goes back at least to Immerman [35] in 1982 (who in particular asked
whether the property “there exists a k-clique” can be expressed with < k variables in the
presence of a linear order). Due to the importance of both ordered structures and bounded-
variable logics in finite model theory and descriptive complexity, this question was widely
investigated. Dawar [22] in 2005 summarized progress at the time in an article entitled “How
many first-order variables are needed on finite ordered structures?” Despite some related
results (including strictness of a variable hierarchy for existential formulas), it was then still
unknown whether just 3 variables are sufficient to express every first-order property of finite
ordered graphs (for instance, “there exists a clique of size 1000”).

6The linear order is essential in this example. On graphs without a linear order, “there exists a path of
length at least `” cannot be expressed with fewer than ` variables.

11



1.4 Our results

The main results of this thesis are lower bounds of Ω(nk/4) for the average-case complex-
ity of k-Clique on both bounded-depth Boolean circuits and unbounded-depth mono-
tone circuits. In the following, let k be an arbitrary but fixed integer > 5 and let
p(n) = Θ(n−2/(k−1)) (i.e., p(n) is any threshold function for the existence of k-cliques
in G(n, p)).

• Lower Bound for k-Clique on Bounded-Depth Circuits (Theorem 3.1)

Boolean circuits of size O(nk/4) and depth at most k−2 log n/ log log n cannot solve k-
Clique w.h.p. on G(n, p).

• Lower Bound for k-Clique on Monotone Circuits (Theorem 4.1)

Monotone circuits of size O(nk/4) cannot solve k-Clique w.h.p. on both G(n, p) and
G(n, p+ p1+k−2

).

These lower bounds in fact follow from stronger results, which we describe in §1.6.
Furthermore, we show that the exponent k/4 is tight (up to an additive constant) in

both of these lower bounds simultaneously.

• Matching Upper Bound7 (Theorem 5.1)

There exist monotone circuits of size nk/4+O(1) and depth 3k which solve k-Clique
w.h.p. on G(n, p) for all functions p : N→ [0, 1].

Our results are the first unconditional average-case lower bounds for k-Clique on ran-
dom graphs with an appropriate density of edges.8 In the setting of monotone circuits,
our lower bound of Ω(nk/4) does not improve the best known worst-case lower bound of
Ω((n/ log n)k) [2]. However, the fact that nk/4+O(1) is tight for the average case (by our
upper bound) reveals an interesting and perhaps surprising gap between worst-case and
average-case complexities of this important problem.

In contrast to the situation for monotone circuits, our lower bound of Ω(nk/4) for
bounded-depth circuits significantly improves the previous worst-case lower bounds of

nΩ(k/d2) [11] and nΩ(
√
k/d3) [52] for depth-d circuits. In particular, our lower bound has

no noticeable “size-depth tradeoff” for d 6 k−2 log n/ log logn. (Instead, we obtain a trade-
off of the form Ω(n−(1−δ)k/4) at depth δk−1 log n/ log log n, as we explain in §7.1.1.) This
fact has some interesting consequences in both complexity and logic, which we describe in
the next section.

Additional results of this thesis characterize the number of variables needed to express
the property “there exists a k-clique” in first-order logic in the average case setting (i.e.,
with high probability on G(n, p)), both with a linear order and without a linear order.

• Number of Variables to Express k-Clique in the Average Case (Theorems 6.16
and 6.23)

With a linear order, k/4 variables are necessary. Without a linear order, k/2 variables
are necessary and k/2 +O(1) variables are sufficient.

7A similar upper bound for non-monotone constant-depth circuits was shown by Amano [6].
8The notion of “average case” is slightly different in the two results (see the discussion in §1.4). Both

results, however, clearly convey the message that k-Clique is hard on random graphs at the threshold.

12



The k/4 variable lower bound bound in the presence of a linear order follows from our
bounded-depth circuit lower bound. In the absence of a linear order, the stronger k/2
variable lower bound and k/2 +O(1) variable upper bound rely on subtle results of Shelah
and Spencer [67] on the “almost-sure theory” of G(n, p).

1.5 Applications in complexity and logic

One immediate corollary of our bounded-depth circuit lower bound is the following:

• Size Hierarchy Theorem

The hierarchy of complexity classes uniform AC0(size O(ns)), parameterized by s > 1, is
infinite.

The proof of this result is that k-Clique is computed by uniform depth-2 circuits of size
O(nk), but not by constant-depth circuits of size O(nk/4) (by our lower bound).9 The only
previous result in this direction, due to Chaudhuri and Radhakrishnan [19], showed that not
every function in uniform AC0 has linear-size constant-depth circuits. However, it had been
open whether every function in uniform AC0 has constant-depth circuits of size O(n1+ε) for
some constant ε > 0.10 (For context, we add that an analogous Depth Hierarchy Theorem
is a classic result of Sipser [68].)

Another (closely related) corollary is:

• Variable Hierarchy Theorem (Corollary 6.12)

The hierarchy L1 ⊆ L2 ⊆ · · · of bounded-variable fragments of first-order logic is strict
in terms of expressive power on finite order graphs.

The context and significance of this result was already discussed in §1.3. Let us only mention
that this result follows from a combination of our bounded-depth circuit lower bound, which
implies Lm 6= L4m (i.e., this hierarchy is infinite), and an argument due to Neil Immerman
showing Lm−1 = Lm =⇒ Lm = Lm+1.

1.6 Techniques

The lower bounds stated in §1.4 in fact derive from stronger results, which better illustrate
our techniques. Let f : {n-vertex graphs} → {0, 1} be a Boolean function on n-vertex
graphs (really, a sequence of such functions for n = 1, 2, . . . ).

• Stronger Lower Bound for Bounded-Depth Circuits (Theorem 3.2)

Suppose f is computed by Boolean circuits of size O(nk/4) and depth at most
k−2 log n/ log logn. Let G ∼ G(n, p) and Kk ∼ Plant(n,Kk) (that is, a k-clique planted
uniformly at random among n vertices). Then w.h.p. f(G) = f(G ∪Kk).

9Amano [6] subsequently separated all levels of this hierarchy, by applying our technique to obtain lower
bounds for the AC0 complexity of the k-clique problem on `-uniform hypergraphs (see §7.1.3).

10Uniformity is essential here, as a counting argument shows that for all β > α > 0, there exist functions
computed by depth-2 circuits of size nβ that cannot be computed by circuits of size nα (of any depth). This
observation is attributed in [19] to Eric Allender.
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• Stronger Lower Bound for Monotone Circuits (Theorem 4.3)

Suppose f is computed by monotone circuits of size O(nk/4). Let G− ∼ G(n, p1+k−2
)

and Kk ∼ Plant(n,Kk). If E[f(Kk)] = 1− o(1), then E[f(G−)] = 1− exp(−Ω(nk
−2

)).

It is not very hard to show that these results imply the lower bounds stated in §1.4.
This result on bounded-depth circuits is proved by a novel method. There are two

components:

(1) a new notion of “sensitivity” (the f -sensitive subgraph, Definition 3.10) together with a
result (Proposition 3.13) that broadly generalizes the well-known fact that polynomial-
size bounded-depth circuits have low average-sensitivity, and

(2) a novel inductive argument on circuits (Lemmas 3.17 and 3.25) which shows that, for
a circuit to have “large” sensitivity, some node in the circuit must have “medium”
sensitivity.

Like other results on bounded-depth circuits, part (1) relies on H̊astad’s switching lemma
[33]. However, due to part (2), the structure of our proof is notably different from previous
k-Clique lower bounds [11, 52] where the use of a switching lemma is the main thrust in
the proof.

Our result on monotone circuits follows the general framework of Razborov’s approxi-
mation method [60] (similar to previous lower bounds for k-Clique on monotone circuits
[2, 7, 60]). An essential new ingredient in the proof—and technical contribution of indepen-
dent interest—is a novel variant of sunflowers, called quasi-sunflowers (Definition 4.9), in
which petals may overlap, but appear “disjoint” on average. We prove a “quasi-sunflower
lemma” (Theorem 4.11) along the lines of the Erdős-Rado sunflower lemma [26]. Since
quasi-sunflowers naturally generalize a useful property of sunflowers, we believe there is
broad potential for applications.

Finally, among new techniques in the thesis, we mention two very different methods
(described in §3.4 and §4.7) for converting number-of-wires lower bounds into number-of-
gates lower bounds with only a very small loss.
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Chapter 2

Definitions and Preliminaries

This chapter presents the basic notation and definitions for this thesis. This is mostly
standard, with a few notable exceptions (relating to terminology “graphs” and “patterns”)
which we summarize below:

• (§2.3) As a matter of terminology, we set up a useful distinction between graphs (which
have vertex set {1, . . . , n} by default) and patterns (defined as constant-size graphs,
independent of n, with no isolated vertices).

• (§2.3.1) The threshold exponent of a pattern P , denoted θ(P ), is defined as the minimum
of |VP0 |/|EP0 | over subpatterns P0 of P .

• (§2.4.1) Plant(n, P ) denotes the random planted copy of P on n vertices, viewed as a
random graph with vertex set {1, . . . , n}.

• (§2.5) We define a useful classification of graphs and patterns into small, medium and
large. (For example, “medium graph” has the following technical meaning: a graph
with > k

2 non-isolated vertices which is the union of two graphs with < k
2 non-isolated

vertices.)

2.1 Basic notation

Throughout this thesis, k is an arbitrary but fixed integer > 5. N is the set of nonnegative
integers, n is an arbitrary nonnegative integer, and [n] is the set {1, . . . , n}. Nearly all
asymptotic statements in this thesis refer to growing n. Expressions with high probability
(w.h.p.) and almost surely mean with probability tending to 1 as n→∞. We have attempted
to ensure that the hidden constants in this asymptotic notation (O(·), o(·), Ω(·), etc.) are
universal (and in particular independent of k, though this might not always be the case).

We have the following notation for sets: |X| denotes the cardinality X. ℘(X) denotes
the power set of X. For t ∈ N,

(
X
t

)
denotes the set of t-element subsets of X. X M Y

denotes the symmetric difference of X and Y , that is, the union of set-theoretic differences
X \ Y and Y \X.

log(·) denotes the base-2 logarithm and ln(·) denotes the natural logarithm.
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2.2 Circuits

In this thesis circuits are Boolean circuits with unbounded fan-in. We make the simplifying
assumption that all NOT gates are at input level. (This assumption at most doubles the
size of circuits without increasing depth. Any loss in our bounds is therefore eaten by the
O’s and Ω’s.) Formally, a circuit C on variables x1, . . . , xN is a finite acyclic directed graph
in which:

• each source (node of in-degree 0, also called an input) is labelled by either a variable
xi, its negation ¬xi, the constant 0 or 1,

• each non-input node (also called a gate) is labelled by either AND and OR, and

• a subset of nodes are designated as outputs.

For nodes ν and µ in C, we say that µ is a child of ν if there is a directed edge (also called
a wire) from µ to ν. Children(ν) denotes the set of all children of ν. The height of a node ν
is the length of the longest path from an input to ν.

Each node ν in a circuit C computes a Boolean function {0, 1}N → {0, 1} (defined in
the natural way, that is, inductively according to the label of ν and the functions computed
by its children). As a matter of notation, we identify ν with the function it computes by
for instance writing ν(x) for the value computed by ν on x ∈ {0, 1}N . The circuit C itself
computes a function {0, 1}N → {0, 1}{outputs of C}. When N =

(
n
2

)
, we view C as computing

a function of n-vertex graphs (via the natural bijection between {n-vertex graphs} and

{0, 1}(
n
2)).

A circuit is monotone if no input node is labeled by a negated variable. Every mono-
tone circuit clearly computes a monotone function {0, 1}N → {0, 1} (and conversely, every
monotone function is computed by some monotone circuit).

2.2.1 Circuit parameters

The following circuit parameters are studied in this thesis:

• size = the number of gates,

• wires = the number of wires (=
∑

ν∈C |Children(ν)|),

• depth = the length of the longest path from an input to an output,

• fan-in = the maximum number of children of a node.

Observation 2.1. For every circuit C, we have

size(C) 6 wires(C) 6 size(C)·fanin(C) 6 size(C)·(size(C) + 2(# of variables)− 1).

Thus, for instance, a lower bound of Ω(n20) on wires implies a lower bound of Ω(n10) on
size.

2.2.2 Complexity

For a Boolean function f : {0, 1}n → {0, 1}, the Boolean complexity of f is the size of the
smallest circuit which computes f . If f is monotone, the monotone complexity of f is the
size of the smallest monotone circuit which computes f .1

1The gap between the Boolean and monotone complexities of a monotone function is known to be expo-
nential in some instances [71].
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AC0 denotes the complexity class of (sequences of) Boolean functions computed by
(sequences of) polynomial-size constant-depth circuits. By default, we consider the non-
uniform version of AC0.

2.3 Graphs and patterns

Graphs in this thesis are finite simple graphs. Formally, a graph is a pair G = (VG, EG)
where VG is a finite set and EG ⊆

(
VG
2

)
. G n denotes the set of graphs with vertex set [n].

By default a graph is a member of G n. By distinction, a pattern is a constant-size graph
with no isolated vertices.

The distinction between graphs and patterns will be convenient throughout this thesis.
One important difference is that we care about graphs up to equality, whereas we care about
patterns up to isomorphism. We will often make asymptotic statements involving a fixed
pattern P and a random graph G ∈ G n where n is growing.

On both graphs and patterns, ∪ is the union operation and⊆ is the subgraph/subpattern
relation. For a pattern P , a graph H is a P -subgraph of G if H ⊆ G and the induced pattern
on the non-isolated vertices of H is isomorphic to P . The number of P -subgraphs of G is
denoted sub(P,G).

For ` ∈ N, K` denotes the complete pattern with vertex set {1, . . . , `} and edge set({1,...,`}
2

)
. ∅ denotes both the empty pattern (with no vertices) and the empty graph (with

no edges).

2.3.1 Threshold exponent

The threshold exponent of a nonempty pattern P , denoted θ(P ), is defined by

θ(P ) = min
P0⊆P

|VP0 |
|EP0 |

.

As an important example, note that θ(Kk) = 2/(k − 1). For the empty pattern ∅, we set
θ(∅) = ∞.2 (The threshold exponent θ(P ) is closely related to the threshold probability
p(n) for the event that the random graph G(n, p) contains a P -subgraph. This connection
is made precise by Lemma 2.3.)

2.3.2 Graph functions, monotonicity and minterms

In this thesis, “graph function” refers to any function with domain G n.3 A graph function
with range {0, 1} is said to be Boolean. A monotone graph function is a Boolean graph
function f such that f(G) 6 f(H) for all graphs G ⊆ H.

For a graph function f and a graph G, we denote by fG the graph function defined by
fG(H) = f(G ∪H). (Since this notation is not standard, we will remind the reader before
using it.)

A graph H is a minterm of monotone graph function f if f(H) = 1 and f(H ′) = 0
for every proper subgraph H ′ ⊂ H. For a pattern P , a minterm H is a P -minterm if the
induced pattern on the non-isolated vertices of H is isomorphic to P . The set of minterms
(resp. P -minterms) of f is denoted M(f) (resp. M(f, P )).

2In the random graph literature (for instance [4, 15, 41]), it is more common to find results stated in
terms of maximum average degree defined by m(P ) = 2 maxP0⊆P |EP0 |/|VP0 |. Note that θ(P ) = 2/m(P ).

3According to our usage, graph functions need not be isomorphism-invariant (contrary to a common
definition in the literature).
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2.4 Probability

We consistently represent random objects by boldface symbols (G, W , etc.). For a set X
and p ∈ [0, 1], notation W ⊆p X expresses that W is a random subset of X where each
x ∈ X belongs to W independently with probability p.

2.4.1 Random graphs

A random graph is a random variable G taking values in G n. We also refer to distribution
of G as a “random graph”. An important class are the Erdős-Rényi random graphs. For
p : N → [0, 1], we denote by G ∼ G(n, p) the random graph in which each element of

(
[n]
2

)
is an edge independently with probability p(n) (that is, EG ⊆p

(
[n]
2

)
).

Another important class of random graphs are the random planted patterns. For a
pattern P , we denote H ∼ Plant(n, P ) by the random graph with edge set {{π(v),π(w)} :
{v, w} ∈ EP } where π is a uniform random one-to-one function from VP to [n]. In other
words, H is uniformly distributed among graphs H such that the induced pattern on
the non-isolated vertices of H is isomorphic to P . As an important special case, Kk ∼
Plant(n,Kk) denotes the random planted k-clique.

We will often consider the union G ∪H of an Erdős-Rényi random graph G ∼ G(n, p)
and a random planted pattern H ∼ Plant(n, P ).

2.4.2 Background lemmas

We state two background lemmas, whose proofs can be found in any of the books [4, 15, 41].
First, a simple calculation of the expected number of P -subgraphs of G(n, p).

Lemma 2.2. For every pattern P ,

E[sub(P,G(n, p))] =
|VP |!

|{automorphisms of P}|

(
n

|VP |

)
p|EP |.

In particular, if p = Θ(n−α) for constant α > 0 then

E[sub(P,G(n, p))] = Θ(n|VP |−α|EP |).

The next lemma justifies calling θ(P ) the “threshold exponent” of pattern P .

Lemma 2.3. For every pattern P , the function n−θ(P ) is a threshold function for event
that G(n, p) contains a P -subgraph. That is,

lim
n→∞

Pr
[
G(n, p) contains a P -subgraph

]
=

{
0 if p(n) = o(n−θ(P )),

1 if p(n) = ω(n−θ(P )).

In particular,

p(n) = o(n−2/(k−1)) =⇒ w.h.p. G(n, p) is k-clique-free,

p(n) = ω(n−2/(k−1)) =⇒ w.h.p. G(n, p) has a k-clique.

To state the next background lemma, let Pois(λ) denote the Poisson distribution with
mean λ (recall that Pr[Pois(λ) = t] = λte−λ/t! for t ∈ N) and let dTV(·, ·) denote total
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variation distance (= 1/2 the `1-distance between two distributions/random variables). In
particular, for random graphs G1,G2 ∈ G n,

dTV(G1,G2) =
1

2

∑
H∈G n

∣∣Pr[G1 = H]− Pr[G2 = H]
∣∣.

For random variables X1,X2 supported on N (such as Pois(λ)),

dTV(X1,X2) =
1

2

∑
i∈N

∣∣Pr[X1 = i]− Pr[X2 = i]
∣∣.

The following lemma concerns random graphs G(n, p) where p(n) = Θ(n−2/(k−1)) is a
threshold function for the existence of k-cliques. It includes the fact that the number of
k-cliques in G(n, p) is asymptotically Poisson.

Lemma 2.4. Denote by κ(G) the number of k-cliques in a graph G. Fix c > 0 and

let G ∼ G(n, cn−2/(k−1)) and Kk ∼ Plant(n,Kk) and X ∼ Po(c(
k
2)/k!). For t ∈ N, let

Gt ∼ G(n, cn−2/(k−1)) conditioned on κ(Gt) = t. Then

dTV(κ(G),X) = o(1),

dTV(Gt+1,Gt ∪Kk) = o(1),

lim
n→∞

dTV(κ(G), κ(G ∪Kk)) = dTV(X,X + 1) < 1.

2.4.3 Janson’s inequality

The following probabilistic inequality is due to [39] (see also Ch. 2 of [41] and Ch. 8 of [4]).

Lemma 2.5 (Janson’s Inequality). Let F be a nonempty family of subsets of X. Let W
be a random subset of X such that events x ∈W are mutually independent for x ∈ X (for
example, W ⊆p X). Define µ and ∆ by

µ =
∑
U∈F

Pr
[
U ⊆W

]
,

∆ =
∑

U,V ∈F :
U 6=V, U ∩V 6= ∅

Pr
[
U ∪ V ⊆W

]
.

Then Pr

[ ∧
U∈F

U *W

]
6 exp

(
−min

{
µ

2
,
µ2

2∆

})
.

The following lemma states that in the highly supercritical regime where p(n) =
nΩ(1)−θ(P ), the random graph G(n, p) is extremely likely to have at least half its expected
number of P -subgraphs. This concentration-of-measure result follows from a “lower tail”
version of Janson’s inequality (see Theorem 2.14 of [41]).

Lemma 2.6. Let P be a pattern and let G ∼ G(n, p) where p(n) = nΩ(1)−θ(P ). Then

Pr
[
sub(P,G) 6 1

2 E[sub(P,G)]
]

= exp(−nΩ(1)).
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2.5 Small, medium, large

Let G ∼ G(n,Θ(n−2/(k−1))) be a random graph at a threshold function for containing k-
cliques. It is instructive to calculate the expected number of `-cliques inG for ` ∈ {0, . . . , k}:

E[# of `-cliques in G] = Θ
(
n`−

2
k−1(`2)

)
.

Letting λ = `/k, we have

`− 2

k − 1

(
`

2

)
= λ(1− λ)k +O(1).

Note that λ(1−λ)k is maximal with value k/4 for λ = 1/2. (Indeed, `− 2
k−1

(
`
2

)
is maximal

for ` ∈ {bk/2c, dk/2e}.)
The fact that G has many cliques of “intermediate” size ∼ k/2 and few cliques of size

6 εk or > (1− ε)k for small ε > 0 motivates the following definition. (The large number of
“intermediate” subgraphs plays an important part in our lower bounds.)

Definition 2.7. A pattern P is:

• small if |VP | < k/2,

• medium if |VP | > k/2 and there exist small patterns P1, P2 such that P = P1 ∪ P2,

• large otherwise.

A graph is small, medium or large according to the induced pattern on its non-isolated
vertices. That is, a graph G is:

• small if it has < k/2 non-isolated vertices,

• medium if it has > k/2 non-isolated vertices and is the union of two small graphs,

• large otherwise.

A key fact to keep in mind is that the union of two small patterns/graphs is small or
medium (but never large). Note that the complete pattern K` is small if ` < k/2 and large
otherwise (but never medium). An important example of medium pattern is

P = Kdk/2e − {a single edge}.

Note that P is the union of two overlapping copies of the small pattern Kdk/2e−1. In fact,
this pattern P gives the optimal bound in the following lemma.

Lemma 2.8. For every medium pattern P ,

|VP | −
2

k − 1
|EP | >

k + 1

4
+

2

k − 1
.

Proof. Let P be a medium pattern which minimizes |VP | − 2
k−1 |EP |. By definition of

medium, P is the union of two small patterns P1 and P2. We can assume that P1 and P2

are complete, since we only decrease |VP1∪P2 | − 2
k−1 |EP1∪P2 | by replacing P1 and P2 with
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the (also small) complete patterns with the same vertices. Let a = |VP |, b = |VP1 |, c = |VP2 |
and note that

|VP | −
2

k − 1
|EP | = a− 2

k − 1

((b
2

)
+

(
c

2

)
−
(
b+ c− a

2

))
.

First, suppose k = 2t+ 1 is odd. Integers a, b, c satisfy 1 6 b, c 6 t and t+ 1 6 a 6 b+ c.
Relaxing integrality, let α, β, γ be reals minimizing α − 1

t (
(
β
2

)
+
(
γ
2

)
−
(
β+γ−α

2

)
) subject to

1 6 β, γ 6 t and t+1 6 α 6 β+γ. Note that β = γ since, if not, by replacing β and γ with
their mean (β + γ)/2 we reduce the objective function while still satisfying the constraints.
Thus, our task becomes minimizing the function f(α, β) defined by

f(α, β) = α+
1

t

(
2β − α

2

)
− 2

t

(
β

2

)
subject to 1 6 β 6 t and t + 1 6 α 6 2β. Since d

dαf(α, β) > 0 and d
dβ f(α, β) < 0 for all

α, β satisfying these constraints, it follows that α = t+ 1 and β = t. Therefore,

|VP | −
2

k − 1
|EP | > f(t+ 1, t) =

t+ 1

2
+

1

t
=
k + 1

4
+

2

k − 1
.

In the case where k is even, we get

|VP | −
2

k − 1
|EP | >

k + 1

4
+

9

4(k − 1)
>
k + 1

4
+

2

k − 1

by a similar calculation.
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Chapter 3

Lower Bound for Bounded-Depth
Circuits

In this chapter we prove lower bounds on the average-case complexity of k-Clique for
bounded-depth circuits. For convenience, we state our results in terms of the random graph
G(n, n−2/(k−1)). However, these results hold just the same for the random graph G(n, p)
where p(n) is any function which is Θ(n−2/(k−1)). Our main result is the following lower
bound:

Theorem 3.1. Boolean circuits of size O(nk/4) and depth at most k−2 log n/ log logn cannot
solve k-Clique w.h.p. on G(n, n−2/(k−1)).

Theorem 3.1 follows from the even stronger result that such circuits almost surely fail to
distinguish between a random graph G ∼ G(n, n−2/(k−1)) and the graph G with a random
planted k-clique.

Theorem 3.2. Suppose f : G n → {0, 1} is computed by Boolean circuits of size O(nk/4)
and depth at most k−2 log n/ log log n. Let G ∼ G(n, n−2/(k−1)) and Kk ∼ Plant(n,Kk).
Then w.h.p. f(G) = f(G ∪Kk).

Before giving an overview of the proof of Theorem 3.2, we show how it implies Theo-
rem 3.1.

Proof of Theorem 3.2 =⇒ Theorem 3.1. Suppose that f : G n → {0, 1} agrees with k-
Clique w.h.p. on G ∼ G(n, n−2/(k−1)) (that is, w.h.p. f(G) = 1 if and only if G contains
a k-clique). Then the following hold:

• Pr[f(G) = 1] is within o(1) of Pr[G contains a k-clique], which is bounded away from
1 (since n−2/(k−1) is a threshold function for k-Clique, see Lemma 2.3). Therefore,
Pr[f(G) = 1] is also bounded away from 1.

• Lemma 2.4 implies that Pr[f(G∪Kk) = 1] is within o(1) of Pr[f(G) = 1 | G contains
a k-clique]. Since f agree with k-Clique w.h.p. on G and Pr[G contains a k-clique] is
bounded away from 0, it follows that Pr[f(G) = 1 | G contains a k-clique] = 1− o(1).
Therefore, Pr[f(G ∪Kk) = 1] = 1− o(1).

Assuming Theorem 3.2, it follows that f is not computed by Boolean circuits of size O(nk/4)
and depth at most k−2 log n/ log log n. Therefore, Theorem 3.1 holds.
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The proof of Theorem 3.2 uses a novel argument (which differs significantly from stan-
dard arguments on bounded-depth circuits where a switching lemma is applied repeatedly).
An informal sketch of the proof follows. Let C be a circuit of size O(nk/4) and depth at
most k−2 log n/ log log n. Let G and Kk be as in Theorem 3.2. For each node ν in the
circuit C, we consider a particular subgraph of Kk called the νG-sensitive subgraph (de-
fined formally in §3.2) whose edges represent the variables on which the Boolean function
{subgraphs of Kk} → {0, 1} defined by νG(H) = ν(G ∪ H) depends. Using a technical
lemma on random restrictions (Lemma 3.7 in §3.1), we bound the probability that the
νG-sensitive subgraph has a given pattern.1 One consequence of this bound is that the
νG-sensitive subgraph is medium with probability o(n−k/4).2 By a union bound, it follows
that w.h.p. the νG-sensitive subgraph is not medium for any node ν in the circuit C. By
a novel inductive argument on circuits (Lemma 3.17 in §3.3 and Lemma 3.25 in §3.4), we
conclude that w.h.p. C has the same value on inputs G and G ∪Kk.

In fact, we present two version of this argument. A preliminary version of the argument
(given in §3.3) is easier to state, but only produces a lower bound on the number of wires.
The actual proof of Theorem 3.2 (given in §3.4) is more complicated, but produces the
stated lower bound on size (i.e., the number of gates).

3.1 A lemma on random restrictions

In this section, we prove a technical lemma on the decision-tree depth of Boolean functions
computed by small bounded-depth circuits when subject to random restrictions. The result,
while new, follows the well-establish technique of repeatedly applying the famous switching
lemma of H̊astad [33].

We recall some standard definitions. A decision tree is rooted binary tree in which
leaves are labelled either 0 or 1, interior nodes are labelled by Boolean-valued variables, and
the edges between an interior node and its two children are labelled 0 and 1 respectively.
A decision tree computes a Boolean function in the natural way: given an assignment of
variables to {0, 1}, we follow a branch of the decision tree (starting from the root) according
the value of the variables we encounter (i.e., value i ∈ {0, 1} mean we follow the edge
labelled i) and we output the value of the leaf where we end up. For a Boolean function
f : {0, 1}N → {0, 1}, the decision-tree depth of f , denoted DTdepth(f), is the height of the
shortest tree-decision that computes f .

Observation 3.3. Note that a Boolean function with decision-tree depth D depends on at
most 2D variables.

A restriction on N variables is a function ρ : {1, . . . , N} → {0, 1, ∗} where

• ρ(i) = 0 (resp. ρ(i) = 1) means that variable xi is set to 0 (resp. 1),

• ρ(i) = ∗ means that variable xi is left unassigned.

For a function f : {0, 1}N → X (where X is any set), we can apply ρ to f to get a function
fdρ: {0, 1}ρ

−1(∗) → X (defined in the natural way).

1Here pattern means the isomorphism type of the non-isolated part of a graph (see §2.3).
2Recall that a graph is medium if it has > k/2 non-isolated vertices, but is the union of two graphs with

< k/2 non-isolated vertices (see §2.5).
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Definition 3.4. For q, p ∈ [0, 1], we denote by R(q, p) the random restriction ρ where ρ(i)
are independent such that

Pr[ρ(i) = ∗] = q, Pr[ρ(i) = 1] = (1− q)p, Pr[ρ(i) = 0] = (1− q)(1− p).

The following lemma is a restatement of H̊astad’s original switching lemma [33] in terms
of decision trees (as opposed to DNFs and CNFs).

Lemma 3.5 (Switching Lemma). Suppose Boolean function f is an AND or OR of (arbi-
trary many) depth-r decision trees. Then for all q ∈ [0, 1] and r ∈ N,

Pr
ρ∼R(q,1/2)

[
DTdepth(fdρ) > r

]
6 (5qr)r.

Remark 3.6. The original result of [33] is slightly stronger. Rather than decision-tree depth,
it speaks about r-DNFs and s-CNFs, that is, propositional formulas in disjunctive normal
form (resp. conjunctive normal form) with clauses of width r (resp. width s). The precise
statement is: if f is equivalent to an r-DNF, then for ρ ∼ R(q, 1/2), fdρ is not equivalent
to an s-DNF with probability 6 (5pr)s. Lemma 3.5 is a special case of this statement (with
r = s), since a function with decision-tree depth r is equivalent to both an r-DNF and an
r-CNF.

We now present the technical lemma that we will need (a fairly straightforward corollary
of Lemma 3.5).

Lemma 3.7. Let p ∈ [0, 1
2 ] and q ∈ [0, 1] and c > 5 and t > 1. Suppose Boolean function

f is computed by a circuit of size S and depth at most (− log q)/(tc+ log logS). Then

Pr
ρ∼R(pq,p)

[
DTdepth(fdρ) >

logS

c

]
= S1−t.

Proof. Let d = depth(C) and generate a sequence ρ0, . . . ,ρd of random restrictions as fol-
lows:

• let ρ0 ∼ R(p, λ) applied to variables of C where λ ∈ [0, 1] is a value to be determined,

• for i = 1, . . . , d, let ρi ∼ R(q1/d, 1/2) applied to the variables left unrestricted by
ρ0, . . . ,ρi−1.

For i ∈ {0, . . . , d}, let ρi denote the composition of restrictions ρ0, . . . ,ρi (defined in the
natural way).

We have
Pr
[
ρd = ∗

]
= Pr

[
ρ0 = · · · = ρd = ∗

]
= p(q1/d)d = pq

and

Pr
[
ρd = 1

∣∣ ρd 6= ∗] = Pr
[
ρd = 1

]
/Pr

[
ρd 6= ∗

]
=

1

1− pq

(
Pr
[
ρ0 = 1

]
+

d∑
i=1

Pr
[
ρd = 1 and ρ0 = · · · = ρd−1 = ∗

])

=
1

1− pq

(
(1− p)λ+

d∑
i=1

pq(i−1)/d(1− q1/d)

2

)

=
1

1− pq

(
(1− p)λ+

p(1− q)
2

)
.
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We now set λ = (1− p)−1
(
p(1− pq)− 1

2p(1− q)
)

(and check that indeed λ ∈ [0, 1]), so that
ρd ∼ R(pq, p).

For each node ν of height h in C, let Xν be the event that DTdepth(νdρh) 6 (logS)/c.
If ν is a variable (i.e., if ν has height 0), then Xν holds with probability 1. If ν is a gate at
height h > 1, then

Pr

[
¬Xν

∣∣∣∣∣ ∧
children µ of ν

Xµ

]

= Pr

[
DTdepth(νdρh) >

logS

c

∣∣∣∣∣ ∧
children µ of ν

DTdepth(µdρh−1) 6
logS

c

]

= Pr

[
DTdepth((νdρh−1)dρh) >

logS

c

∣∣∣∣∣ ∧
children µ of ν

DTdepth(µdρh−1) 6
logS

c

]

6

(
5q1/d logS

c

)(logS)/c

(by Lemma 3.5)

=
(
q(logS)/(− log q)

)
(tc+log logS)/c

(
logS

)
(logS)/c

(
5

c

)(logS)/c

= S−(tc+log logS)/cS(log logS)/c

(
5

c

)(logS)/c

6 S−t.

It follows that

Pr

[
DTdepth(fdρ) >

logS

c

]
= Pr

[
¬Xoutput gate

]

6 Pr

[ ∨
gates ν

¬Xν

]

6
∑

gates ν

Pr

[
¬Xν

∣∣∣∣∣ ∧
children µ of ν

Xµ

]

6 S1−t.

Remark 3.8. Lemma 3.7 is the only place in our proof of Theorem 3.2 where the depth of the
circuit matters. That is, the remainder of the proof is “depth-independent”. Interestingly,
Lemma 3.7 itself is “size-independent” in a certain sense: even though our main results
concern circuits of size O(nk/4), when invoking Lemma 3.7, we only need to assume that
the circuits in question have size O(nc) for some constant c > 0 independent of k. This sep-
aration into depth-independent and size-independent portions appears to be a new feature
of our proof. This separation also explains how Theorem 3.2 breaks out of the traditional
“size-depth tradeoff”.
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3.2 The f-sensitive subgraph

In this section, we introduce a key concept in the proof of Theorem 3.2: the f -sensitive
subgraph of graph H. After giving the definition, we list some basic properties of the f -
sensitive subgraph in Lemma 3.12. We then prove a key result (Proposition 3.13) about
fG-sensitive subgraphs where f is computed by polynomial-sze bounded-depth circuits and
G is a random graph (this result uses Lemma 3.7, our technical lemma concerning random
restrictions).

Lemma 3.9. For every graph function f and graph H, there is a unique minimal graph T
such that f(H ′) = f(H ′ ∩ T ) for every H ′ ⊆ H.

Proof. Let T be the class of all T such that f(H ′) = f(H ′ ∩ T ) for every H ′ ⊆ H. To show
that T has a unique minimal element, it suffices to show that it is nonempty and closed
under intersection. It is nonempty since H ∈ T . It is closed under intersection since for all
T1, T2 ∈ T and H ′ ⊆ H, we have f(H ′) = f(H ′ ∩ T1 ∩ T2) as f(H ′) = f(H ′ ∩ T1) (since
T1 ∈ T ) and f(H ′ ∩ T1) = f(H ′ ∩ T1 ∩ T2) (since T2 ∈ T ).

Definition 3.10 (f -sensitive subgraphs and f -cores). For a graph function f and graph H,
we denote by T(f,H) the unique minimal graph T such that f(H ′) = f(H ′ ∩ T ) for every
H ′ ⊆ H. We call T(f,H) the f -sensitive subgraph of H. If T(f,H) = H, then we say that
H is an f -core.3

The following example illustrates these definitions.

Example 3.11. Let f be the k-Clique function. That is, f is the Boolean graph function
defined by f(G) = 1 if and only if G contains a k-clique. Then T(f,G) is the union of all
k-cliques in G, and G is an f -core if and only if every every edge in G belongs to a k-clique.

The next lemma lists some elementary properties of T(f,H). A proof is omitted, since
these properties all follow easily from definitions.

Lemma 3.12 (Properties of T(f,H)).

1. The edges of T(f,H) are precisely e ∈ EH such that there exist H ′, H ′′ ⊆ H satisfying
EH′ M EH′′ = {e} and f(H ′) 6= f(H ′′).

2. T(f,H) is an f -core (that is, T(f,H) = T(f,T(f,H)), or equivalently T(f, ·) is an
idempotent operator on graphs).

3. f(H) = f(T(f,H)).

4. T(f,H ′) ⊆ T(f,H) for all H ′ ⊆ H (that is, T(f, ·) is a monotone operator on graphs).

5. The union of f -cores is an f -core.

6. If f1, . . . , ft are graph functions such that f is completely determined by the values of
f1, . . . , ft (e.g., f1, . . . , ft are Boolean and f = ANDt

i=1 fi), then T(f,H) ⊆ T(f1, H)∪
· · · ∪ T(ft, H).

3It would be more descriptive, but also excessively wordy, to say that H is an “f -sensitive core” or is
“fully f -sensitive”.
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Recall a piece of notation introduced in §2.3.2: for any graph function f and graph G,
we denote by fG the graph function defined by fG(H) = f(G∪H). The next proposition is
our main technical result on f -sensitivity (actually, fG-sensitivity for a random graph G).
The proof uses Lemma 3.7 on random restrictions (from the previous section).

Proposition 3.13. Fix a pattern P and functions p, q : N → [0, 1
2 ] such that p(n)q(n) =

nΩ(1)−θ(P ). Suppose f : G n → {0, 1}no(1)
is computed by circuits of size nO(1) and depth

(− log q)/(ω(1) + log log n) (with no(1) output gates). Then

Pr
G∼G(n,p)

H∼Plant(n,P )

[
H is an fG-core

]
6

no(1)

E
[
sub(P,G(n, pq))

] .
Remark 3.14. Proposition 3.13 can be viewed a generalization of the fact—essentially given
by the special case where P is a single edge—that polynomial-size bounded-depth circuits
have low average sensitivity.4

Proof. Let Q ∼ G(n, pq) be random graph (independent of G and H) and let

E =
{
e ∈ EQ : ∃subgraphs Q′, Q′′ ⊆ Q with EQ′ M EQ′′ = {e} and f(G∪Q′) 6= f(G∪Q′′)

}
.

That is, E is a particular random subset of
(

[n]
2

)
which depends on G and Q (but is inde-

pendent of H).

We first outline the plan of the proof. The first step is defining a coupling H̃ of H which
is independent of G (though it depends on Q). The idea is to select H̃ uniformly from
the P -subgraphs of Q. (We can assume that sub(P,Q) is at least half its expected value,
since this happens with probability 1− exp(−nΩ(1)) by Lemma 2.6 as pq = nΩ(1)−θ(P ).) As

desired, H̃ has distribution Plant(n, P ) (forgetting about Q) and is moreover independent

of G. Our goal now is to bound the probability that H̃ (rather than H) is an fG-core.

We next observe that H̃ can only be an fG-core in the event that E
H̃
⊆ E. (This follows

directly from the definitions of T(fG, ·) and the set E.) Thus, it suffices to show that
|E| = no(1) (i.e., for every constant ε > 0, w.h.p. |E| 6 nε), since it follows that at most( |E|
|EP |
)

= no(1) P -subgraphs of Q are fG-cores. Finally, we show that |E| = no(1) by first

noting that E is precisely the set of variables on which the function fdρ depends, where
ρ is a particular random restriction (determined by G and Q) with distribution R(pq, p).
We then apply Lemma 3.7 to bound the decision-tree depth DTdepth(fidρ) of the coordinate
functions f1, . . . , fm. This leads to a bound on |E|, since each element of E is a variable on
which some fi depends.

We will now make this argument precise. Let ε > 0 be a fixed, but arbitrary, constant.
Let X1 be the event that sub(P,Q) > 1

2 E[sub(P,Q)] and let X2 be the event that |E| 6
nε/|EP |. Generate a random graph H̃ ∼ Plant(n,H) (which will be independent of G and

H, but dependent on Q) as follows: if X1 holds, let H̃ be a uniform random P -subgraph of

Q; otherwise, let H̃ ∼ Plant(n, P ) (independent of everything else). Observe that (G,H)

4The average sensitivity of a Boolean function f : {0, 1}N → {0, 1} is the expectation, over uniform ran-
dom x ∈ {0, 1}N , of the number of coordinates i ∈ [N ] such that f(x) 6= f(x1, . . . ,xi−1, 1−xi,xi+1, . . . ,xN ).
Boolean functions computed by polynomial-size depth-d circuits are known to have average sensitivity
O(logd−1 N) [16].
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and (G, H̃) have exactly the same joint distribution. It follows that

Pr
[
H is an fG-core

]
= Pr

[
H̃ is an fG-core

]
6 Pr

[
H̃ is an fG-core

∣∣ X1, X2

]
+ Pr[¬X1] + Pr[¬X2].

The remainder of the proof consists of two claims:

(i) Pr
[
H̃ is an fG-core

∣∣ X1, X2

]
6

nε

1
2 E[sub(P,Q)]

,

(ii) X1 and X2 fail with negligible probability (i.e., Pr[¬X1 ∨ ¬X2] = n−ω(1)).

Since ε can be chosen arbitrarily small and E[sub(P,G(n, pq))] = nΩ(1), the result follows
from (i) and (ii), which we now prove.

Proof of (i): Conditioned on X1 and X2, note that H̃ is uniformly distributed among the

P -subgraphs of Q. If X1 holds and H̃ is an fG-core, then E
H̃
⊆ E. If X2 holds, then there

are at most
( E
|EP |
)
6
(
nε/|EP |

|EP |
)
6 nε P -subgraphs H of Q such that EH ⊆ E. It follows that

Pr
[
H̃ is an fG-core

∣∣ X1, X2

]
6
|{P -subgraphs H of Q with EH ⊆ E}|

sub(P,Q)
given X1, X2

6
nε

1
2 E[sub(P,Q)]

.

Proof of (ii): By Lemma 2.6, not only is Pr[¬X1] negligible (i.e., n−ω(1)), but in fact
Pr[¬X1] = exp(−nΩ(1)). Thus, we have only to show that Pr[¬X2] negligible.

Let f1, . . . , fm : G n → {0, 1} be the coordinate functions of f : G n → {0, 1}m where
m = no(1). Let S and d be the size and depth of the circuit computing f . We assume that
S = nΘ(1) (since S = nO(1) by assumption and we can pad the circuit by adding extraneous
gates in case S = no(1)).

Define ρ :
(

[n]
2

)
→ {0, 1, ∗} by

ρ(xe) =


∗ if e ∈ EQ,
1 if e ∈ EG \ EQ,
0 otherwise.

Note that ρ is random restriction with distribution R(pq, p). Let

c =
logS

(ε/|EP |) log n− logm
+ 5.

Note that 5 6 c 6 O(1) and

d =
log(1/q)

ω(1) + log log n
6

log(1/q)

ω(1)·c+ log logS
.

We may therefore apply Lemma 3.7: for every i ∈ {1, . . . ,m}, we have

Pr
[
DTdepth(fidρ) >

ε log n

|EP |
− logm

]
6 Pr

[
DTdepth(fidρ) >

logS

c

]
= S−ω(1).
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Moreover, this ω(1) is the same for every i ∈ {1, . . . ,m}. To complete the proof, we show
that Pr[¬X2] is negligible as follows:

Pr[¬X2] = Pr
[
fdρ depends on > nε/|EP | variables from ρ−1(∗)

]
6 Pr

[ ∨
i∈{1,...,m}

fidρ depends on >
nε/|EP |

m
variables

]
6

∑
i∈{1,...,m}

Pr
[
DTdepth(fi) >

ε log n

|EP |
− logm

]
(using Obs. 3.3)

= mS−ω(1)

= n−ω(1) (since S = nΘ(1) and m = no(1)).

The next lemma applies Proposition 3.13 to the case where P is a small or medium
pattern and p(n) is a threshold function for k-Clique.

Lemma 3.15. Let P be a fixed small or medium pattern and let p(n) = Θ(n−2/(k−1)).

Suppose that f : G n → {0, 1}no(1)
is computed by circuits of size nO(1) and depth at most

k−2 log n/ log log n+O(1). Then

Pr
G∼G(n,p)

H∼Plant(n,P )

[
H is an fG-core

]
=

{
O(n−1) if P is nonempty and small,

O(n−
k
4
− 1
k ) if P is medium.

Proof. Let q(n) = n−(k−2+k−3). Note that p(n)q(n) = Θ(n
2

k−1
−(k−2+k−3)) = nΩ(1)−θ(P ) since

θ(P ) > θ(Kk−1) =
2

k − 2
>

2

k − 1
+ k−2 + k−3.

using the fact that Kk−1 contains every small and medium pattern up to isomorphism.5

Also note that
k−2 log n

log log n
+O(1) 6

− log q

ω(1) + log log n
.

The circuit computing f , together with p(n) and q(n), thus satisfy the hypotheses of Propo-
sition 3.13 with respect to the pattern P . We have

Pr
[
H is an fG-core

]
6

no(1)

E
[
sub(P,G(n, pq))

] (by Proposition 3.13)

=
no(1)

n|VP |(pq)|EP |
(by Lemma 2.2)

= n−|VP |+( 2
k−1

+k−2+k−3)|EP |+o(1)

6 n−|VP |+
2

k−1
|EP |+ 1

4
+ 1

4k
+o(1). (since |EP | 6 k2/4).

(The fact that |EP | 6 k2/4 follows from the observation that among small and medium
patterns, the union of two disjoint bk−1

2 c-cliques has the most edges.) To prove the lemma,
it therefore suffices to show

|VP | −
2

k − 1
|EP | −

1

4
− 1

4k
>

{
1 if P is nonempty and small,
k
4 + 1

k if P is medium.

5In fact, θ(P ) > (1 + 1√
2
) 2
k−1

for every small or medium P (see Lemma 5.2 of [64]).
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Among nonempty small patterns P , |VP | − 2
k−1 |EP | −

1
4 −

1
4k is maximal with value 7

4 −
2

k−1−
1
4k > 1 (when P is a single edge). For medium P , we have |VP |− 2

k−1 |EP | >
k+1

4 + 2
k−1

by Lemma 2.8, from which |VP | − 2
k−1 |EP | −

1
4 −

1
4k >

k
4 + 1

k follows.

3.3 Preliminary result: lower bound on wires

In this section, we prove a weaker preliminary version of Theorem 3.2 (using a simpler
argument that will serve a warm-up to the proof of Theorem 3.2 in §3.4). The difference
between Proposition 3.16, below, and Theorem 3.2 is that “number of wires” replaces “size”
(i.e., “number of gates”).

Proposition 3.16. Suppose f : G n → {0, 1} is computed by circuits with O(nk/4) wires
and depth at most k−2 log n/ log log n. Let G ∼ G(n, n−2/(k−1)) and Kk ∼ Plant(n,Kk).
Then w.h.p. f(G) = f(G ∪Kk).

The proof of Proposition 3.13 uses a simple but seemingly new inductive argument on
circuits.

Lemma 3.17 (First circuit induction). Let C be a circuit with maximum fan-in 2 computing
a Boolean graph function f . Suppose H is a graph such that for every gate ν in C, T(ν,H)
is not medium. Then T(f,H) is small.

(In the next section we give a second, more sophisticated version (Lemma 3.25) of this
inductive argument, which does not require the fan-in 2 restriction.)

Proof. We argue by induction on ν that T(ν,H) is small for every node ν in C (in particular,
for the output node of C whereby T(f,H) is small). Consider first the base case where ν is
an input node (labelled by a constant 0 or 1 or a variable xe or its negation ¬xe for some
edge e ∈

(
[n]
2

)
). Note that T(ν,H) has at most one edge, so it is small, as required.

For the induction step, suppose ν is an AND or OR gate with children µ1 and µ2 and
assume that T(µ1, H) and T(µ2, H) are small. Since the value of ν is completely determined
by the values of µ1 and µ2, we have T(ν,H) ⊆ T(µ1, H) ∪ T(µ2, H) (by Lemma 3.12(6)).
Since T(ν,H) is the union of two small graphs, it is either small or medium (by Definition
2.7 of “small” and “medium”). By assumption, T(ν,H) is not medium. Therefore, T(ν,H)
is small.

We are ready to prove Proposition 3.16. The proof will exploit that fact a circuit C
with W wires is equivalent—via a transformation which does not increase the number of
alternations between AND and OR gates—to a circuit C′ with size 6W and fan-in 2. This
fact lets us apply Lemma 3.17.

Proof of Proposition 3.16. Consider the circuit computing f and replace each AND /OR
gate with a binary tree of AND /OR gates (i.e., for each original gate with fan-in m, we
get m− 1 new gates of the same type with fan-in 2). In this way, we obtain an equivalent
circuit C which also computes f and has size O(nk/4). Although the depth of C is no
longer bounded, note that the function computed at each gate of C is computed by a circuit
of size O(nk/4) and depth k−2 log n/ log logn (we simply collapses C back down to depth
k−2 log n/ log log n by combining adjacent gates of the same kind). We may therefore apply
Lemma 3.15 to the gates of the circuit C.
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Consider an arbitrary gate ν in C. We have

Pr
[
T(νG,Kk) is medium

]
6

∑
medium patterns P
(up to isomorphism)

Pr
[
T(νG,Kk) is a P -subgraph of Kk

]
6

∑
medium P

E
[
# of P -subgraphs of Kk which are νG-cores

]
=

∑
medium P

sub(P,Kk) Pr
H∼Plant(n,P )

[
H is a νG-core

∣∣ H ⊆Kk

]
=

∑
medium P

sub(P,Kk) Pr
H∼Plant(n,P )

[
H is a νG-core

]
.

(The last equality is due to the obvious independence of the event that H is a ν̃G-core and
the event that H ⊆Kk.) Note that∑

medium P

sub(P,Kk) = |{medium subpatterns of Kk}| 6 2k
2
.

By Lemma 3.15, we have

Pr
H∼Plant(n,P )

[
H is a νG-core

]
= O(n−

k
4
− 1
k ).

Putting these inequalities together (along with the fact that 2k
2

= o(n1/k)), we have

(∗) Pr
[
T(νG,Kk) is medium

]
= o(n−k/4).

A similar calculation shows

(∗∗) Pr
[
T(νG,Kk) is nonempty and small

]
= o(1).

Apply a union bound over the gates of C to (∗), it follows that w.h.p. T(νG,Kk) is not
medium for any gate ν in C. Lemma 3.17 therefore implies that w.h.p. T(fG,Kk) is small.
It follows from (∗∗) (applied to the output gate of C) that w.h.p. T(fG,Kk) is not both
nonempty and small. Therefore, w.h.p. T(fG,Kk) is the empty graph ∅. This means that
w.h.p. fG(T(fG,Kk)) = fG(Kk), or equivalently, f(G ∪Kk) = f(G).

Remark 3.18. This ω(nk/4) lower bound on the number of wires implies a corresponding
bound of ω(nk/8) on size (quadratically worse than Theorem 3.2), since a circuit with
ω(nk/4) wires has ω(nk/8) gates (see Obs. 2.1).

3.4 Main result: lower bound on size

In the previous section, we proved Proposition 3.16, which serves as a warm-up for the
proof of our main result, Theorem 3.2, in this section. The argument here is somewhat
more complicated. First, we introduce a variant of the f -sensitive subgraph:

Definition 3.19. For a graph function f and a graph H, we denote by S(f,H) the unique
minimal graph S such that f(H ′) = f(H ′ ∩ S) for every small or medium H ′ ⊆ H.6

6To avoid defining an important concept without a name, we propose calling S(f,H) the f-s.m.-sensitive
subgraph of H where “s.m.” stands for “small or medium”. We will not, however, use this name (notation
S(f,H) being sufficient).
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Remark 3.20. Analogous to Lemma 3.9, to see that S(f,H) is well-defined, consider the set
S of graphs S such that f(H ′) = f(H ′ ∩ S) for every small or medium H ′ ⊆ H. We have
H ∈ S, so it suffices to show that S is closed under intersection. For S1, S2 ∈ S and small
or medium H ⊆ H, we have f(H ′) = f(H ′ ∩ S1) (since S1 ∈ S) and f(H ′ ∩ S1 ∩ S2) (since
S2 ∈ S and H ′ ∩ S1 is also small-or-medium).

Observation 3.21. S(f,H) is the union of f -sensitive subgraphs T(f,H ′) over small-or-
medium subgraphs H ′ of H.

The following example shows that S(f,H) can be a proper subgraph of T(f,H).

Example 3.22. Let f be the k-Clique function, i.e., f(G) = 1 iff sub(Kk, G) > 1. Suppose
H is k-clique. Then S(f,H) is the empty graph, since f(H ′) = 0 for every small or medium
H ′ ⊆ H. At the same time, we have T(f,H) = H (see Example 3.11).

The next lemma gives a crucial property of S(f,H).

Lemma 3.23. If S(f,H) is not small, then some medium subgraph of H is an f -core.

Proof. Suppose S(f,H) is not small. Let H1, . . . ,Ht enumerate the small and medium
subgraphs of H. For i ∈ {0, . . . , t}, let Ti = T(f,H1)∪· · ·∪T(f,Hi). Note that S(f,H) = Tt
(by Obs. 3.21). Let j > 2 be the least index such that Tj is not small. Since Tj =
Tj−1 ∪ T(f,Hj) and both Tj−1 and T(f,Hj) are small, Tj is medium. Moreover, Tj is an
f -core (since the union of f -cores is an f -core by Lemma 3.12(5)).

A second key concept we must introduce for the proof of Theorem 3.2 the value/witness
function associated with a node in a circuit.

Definition 3.24 (Value/witness function of a node). Let C be a circuit whose nodes are
given in some linear order. That is, for each node ν, we can arrange the children of ν from
“left” to “right”. For each node ν, we define a function ν̃ with values in {0, 1}∪Children(ν)
as follows.

• ν̃(x) = ν(x) in the following cases: ν is an input node, or ν is an AND gate and
ν(x) = 1, or ν is an OR gate and ν(x) = 0.

• If ν is an AND gate (resp. OR gate) and ν(x) = 0 (resp. ν(x) = 1), then ν̃(x) is the
minimal (i.e., “leftmost”) child µ ∈ Children(ν) such that µ(x) = 0 (resp. µ(x) = 1).

We call ν̃ the value/witness function of ν, since it not only encodes the value ν(x),
but in the cases of an AND gate with value 0 or an OR gate with value 1, the function ν̃
identifies a particular witness among its children. The following lemma plays a similar role
to Lemma 3.17 in the previous section.

Lemma 3.25 (Second circuit induction). Let C be a circuit computing a Boolean graph
function f . Suppose H is a graph such that S(ν̃, H) is small for every gate ν in C. Then
f(H) = f(S(f,H)).

Remark 3.26. Suppose H is a large graph. Note that the hypothesis of Lemma 3.25 (that
S(ν̃, H) is small for every gate ν) depends only on the value of gates in C on small and
medium subgraphs of H. In particular, this hypothesis never explicitly mentions the value
of any gate on H itself. Yet, remarkably, the conclusion of Lemma 3.25 says something
nontrivial about the value of C on H.
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We mention that the inductive argument in Lemma 3.25 was originally conceived in the
context of Ehrenfeucht-Fr̈ıssé games (see [65] for an explanation).

Proof of Lemma 3.25. To simplify notation in the proof: for nodes ν in C, let Sν = S(ν̃, H).

Claim 1. ν̃(Sν) = ν̃(Sν ∪H ′) and ν(Sν) = ν(Sν ∪H ′) for every node ν and small H ′ ⊆ H.

Since graphs Sν and H ′ are both small, the union Sν ∪ H ′ is either small or medium.
It follows that ν̃(Sν) = ν̃(Sν ∪ H ′) (by Def. 3.19). Further, ν(Sν) = ν(Sν ∪ H ′) (since ν̃
completely determines the value of ν).

Claim 2. ν(Sν) = ν(H) for every node ν.

We argue by induction on ν. In the base case where ν is an input node (labelled by a
constant 0 or 1 or a variable xe or its negation ¬xe for some edge e ∈

(
[n]
2

)
), T(ν,H) is small

(since it has at most one edge). It follows that T(ν,H) = S(ν,H) = Sν (since ν̃ = ν) and
hence ν(Sν) = ν(T(ν,H)) = ν(H).

For the induction step, let ν be a gate and assume that µ(H) = µ(Sµ) for all children
µ of ν. With loss of generality, assume that ν is an AND gate (the argument for OR gates
is the same, but with the roles of 0 and 1 exchanged). We consider two cases, according to
the value of ν(Sν):

• Assume ν(Sν) = 0. Let µ = ν̃(Sν) (i.e., µ is the leftmost child of ν with value 0 on Sν).
By Claim 1, ν̃(Sν ∪ Sµ) = ν̃(Sν) = µ (i.e., µ is the leftmost child of ν with value 0 on
Sν ∪ Sµ). We have

µ(H) = µ(Sµ) (induction hypothesis)

= µ(Sν ∪ Sµ) (by Claim 1)

= 0.

Since ν is an AND gate, it follows that ν(H) = 0.

• Assume ν(Sν) = 1. Let µ be any child of ν. By Claim 1, ν(Sν ∪ Sµ) = ν(Sν) = 1. We
have

µ(H) = µ(Sµ) (induction hypothesis)

= µ(Sν ∪ Sµ) (by Claim 1)

= 1 (since ν is an AND gate and ν(Sν ∪ Sµ) = 1).

Since µ is an arbitrary child of ν, it follows that µ(H) = 1 for all children of ν. Therefore,
ν(H) = 1.

This completes the proof of Claim 2.
To finish the argument, let ν be the output node which computes the function f and

note that

f(H) = f(Sν) (by Claim 2)

= f(Sν ∩ S(f,H)) (by definition of S(f,H), since Sν is a small subgraph of H)

= f(S(f,H)) (since S(f,H) ⊆ Sν , as ν̃ determines the value of f).
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The following lemma applies Lemma 3.25 to the function fG.

Lemma 3.27. Let C be a circuit computing a Boolean graph function f . Suppose G,H are
graphs such that S(ν̃G, H) is small for every gate ν in C. Then f(G∪H) = f(G∪S(fG, H)).

(Nota bene: Consistent with our usual notation, ν̃G denotes the graph function ν̃G(H) =
ν̃(G ∪H).)

Proof. For each edge in G, replace the corresponding variable in C with the constant 1 and
its negations with 0. In this way we obtain a new circuit CG which computes the function
fG. For a node ν in C, let νG denote the corresponding node in CG. Note that ν̃G = ν̃G

(where ν̃G denotes the value/witness function of the node νG in the circuit CG). The result
follows by applying Lemma 3.25 to the circuit CG.

Equipped with Lemma 3.27, we are ready to prove Theorem 3.2. The proof closely
parallels the proof of Proposition 3.13 in §3.3.

Proof of Theorem 3.2. Recall the statement to be proved. Suppose f : G n → {0, 1} is
computed by Boolean circuits of size O(nk/4) and depth at most k−2 log n/ log log n. Let
G ∼ G(n, n−2/(k−1)) andKk ∼ Plant(n,Kk). We must show that w.h.p. f(G) = f(G∪Kk).

Let C be the circuit computing f . For each node ν in C, with children µ1, . . . , µm,
we reinterpret the value/witness function ν̃ : G n → {µ1, . . . , µm} ∪ {0, 1} as a function
G n → {0, 1}dlog(m+1)e as follows:

• if ν̃ is an AND gate with value 0 (resp. an OR gate with value 1), then the value of ν̃
in {0, 1}dlog(m+1)e is the base-2 representation of the least index j ∈ {1, . . . ,m} such
that the µj has value 0 (resp. 1),

• otherwise, the value of ν̃ is the all-zero string in {0, 1}dlog(m+1)e.

This binary encoding of ν̃ contains exactly the same information as the original
value/witness function. The advantage of this encoding is that we can now view ν̃ as
being computed by a circuit. It is easy to see that ν̃ is computed by a circuit of size at most
size(C) + O(m) = O(nk/4) and depth at most depth(C) + 3 6 k−2 log n/ log logn + O(1)
with dlog(m + 1)e = no(1) outputs. This circuit computing ν̃ thus satisfies the hypotheses
of Lemma 3.15.

Consider an arbitrary gate ν in C.

Claim 1: Pr
[
S(ν̃G,Kk) is not small

]
= o(n−k/4)

To prove Claim 1, first note that by Lemma 3.23,

Pr
[
S(ν̃G,Kk) is not small

]
= Pr

[
some medium subgraph of S(ν̃G,Kk) is a ν̃G-core

]
6

∑
medium patterns P
(up to isomorphism)

Pr
[
some P -subgraph of S(ν̃G,Kk) is a ν̃G-core

]
.

For each medium pattern P , we have

Pr
[
some P -subgraph of S(ν̃G,Kk) is a ν̃G-core

]
6 E

[
number of P -subgraphs of S(ν̃G,Kk) which are ν̃G-cores

]
= sub(P,Kk) Pr

H∼Plant(n,P )

[
H is a ν̃G-core

∣∣ H ⊆Kk

]
= sub(P,Kk) Pr

H∼Plant(n,P )

[
H is a ν̃G-core

]
.
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(The last equality is due to the obvious independence of the event that H is a ν̃G-core and
the event that H ⊆Kk.) By Lemma 3.15 (applied to the circuit computing ν̃), we have

Pr
H∼Plant(n,P )

[
H is a ν̃G-core

]
= O(n−

k
4
− 1
k ).

Putting these inequalities together, we have

Pr
[
S(ν̃G,Kk) is not small

]
6

∑
medium patterns P
(up to isomorphism)

sub(P,Kk) ·O(n−
k
4
− 1
k ).

Claim 1 now follows from the fact that there are 6 2k
2

= o(n1/k) medium subpatterns of
Kk.

Taking a union bound over gates in C, Claim 1 implies that w.h.p. S(ν̃G,Kk) is small for
every gate ν in C. By Lemma 3.27, it follows that w.h.p. f(G ∪Kk) = f(G ∪ S(fG,Kk)).
Therefore, to establish that w.h.p. f(G) = f(G ∪Kk), it suffices to prove:

Claim 2: W.h.p. S(fG,Kk) = ∅.

To prove Claim 2, let ν be the output node of C. By Claim 1, w.h.p. S(ν̃,Kk) is small.
Note that S(f,Kk) ⊆ S(ν̃,Kk) (since ν̃ determines the value of f). Thus, w.h.p. S(f,Kk)
is also small. Therefore, it suffices to show that w.h.p. S(f,Kk) is not both nonempty and
small. This is shown by a similar argument to the above. First, we show:

Pr
[
S(f,Kk) is nonempty and small

]
6

∑
nonempty small
P (up to isom.)

sub(P,Kk) Pr
H∼Plant(n,P )

[
H is a ν̃G-core

]
.

By Lemma 3.27, the quantity on the right is 6 2k
2 · O(n−1) = o(1). This proves Claim 2

and concludes the proof of Theorem 3.2.

We end this chapter by mentioning that a few extensions of Theorems 3.1 and 3.2 are
discuss in §7.1. In particular, we show that there is a “size-depth tradeoff” of the form
n(1−λ)k/4 for circuits of depth λk−1 log n/ log log n (see §7.1.1).
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Chapter 4

Lower Bound for Monotone
Circuits

In the previous chapter we proved lower bounds on the average-case complexity of k-Clique
for bounded-depth circuits. In this chapter we prove similar lower bounds for monotone
circuits. The notion of “average case” here is slightly weaker here, as we will explain. (In
short, our results apply to monotone circuits which solve k-Clique w.h.p. on both G(n, p1)
and G(n, p2) where p1(n), p2(n) are two sufficiently separated threshold functions, such as
n−2/(k−1) and 2n−2/(k−1).)

Before formally stating the results of this chapter in §1.4, we first fix some conventions
and notation. In this chapter, circuits are assumed to be monotone, to have a single output
node, and to have gates of fan-in 2. In the final section of this chapter (§4.7), we show
how to achieve the same lower bounds without the fan-in 2 restriction. (This is similar to
situation in the previous chapter where we first proved a lower bound on wires, followed by
a strong lower bound on size.)

We recall the relevant definitions and notation from Chapter 2 concerning monotone
circuits and minterms. Formally, a monotone circuit is an acyclic directed graph C with

(
n
2

)
sources and one sink in which each non-sources node is labeled ∧ or ∨ and has in-degree
2.1 As usual, size refers to the number of gates (which is roughly the number of wires for
fan-in 2 circuits). C computes a monotone graph function G n → {0, 1} in the natural way,
as does each node ν in C. C(G) denotes the value of C on graph G (likewise ν(G)). M(C)
(resp. M(C, P )) denotes the set of minterms (resp. P -minterms) of the function computed
by C (likewise M(ν) and M(ν, P )).

4.1 Results of this chapter

Throughout this chapter, let p = n−2/(k−1) (to fix a particular threshold function2) and
δ = k−2 (it is fine to regard δ as a sufficiently small constant). Let G−, G, G+ be
independent Erdős-Rényi random graphs

G− ∼ G(n, p1+δ), G ∼ G(n, p), G+ ∼ G(n, p1−δ).

(Note that + and − are not backwards here: G− is sparser than G, which is sparser than
G+. Correspondingly p1+δ < p < p1−δ.) By Lemma 2.3, w.h.p. G− is k-clique-free and G+

1In this chapter, labels ∧ and ∨ substitute AND and OR.
2Our results hold for any p(n) = Θ(n−2/(k−1)).
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contains a k-clique. That is, with respect to the property of containing a k-clique, G− and
G+ and subcritical and supercritical. As usual, Kk ∼ Plant(n,Kk) is the random planted
k-clique.

Our main theorem is a lower bound for monotone circuits which solve k-Clique w.h.p.
on both G and G ∪G−.

Theorem 4.1. No monotone circuit of size O(nk/4) solves k-Clique w.h.p. on both G and
G ∪G−.

Note that G ∪G− is an Erdős-Rényi random graph G(n, p̃) where p̃ = p+ (1− p)p1+δ,
which is also a threshold function for k-Clique. Moreover, since p̃ = p+ o(p), the numbers
of k-cliques in G and G ∪G− are asymptotically equivalent Poisson random variables (by
Lemma 2.4).3

Remark 4.2. Theorem 4.1 implies that no monotone circuit of size O(nk/4) solves k-Clique
w.h.p. on both G(n, p) and G(n, 2p). This follows from the observation that if monotone
graph functions f and g agrees w.h.p. on both G(n, p1) and G(n, p2) for p1, p2 : N → [0, 1]
such that p1(n) 6 p2(n), then f and g also agree w.h.p. on G(n, q) for every q : N → [0, 1]
such that p1(n) 6 q(n) 6 p2(n). By the same observation, Theorem 4.1 may be stated
as an average-case hardness result on a single distribution G(n, q) where q equals p with
probability 1/2 and p̃ with probability (or, alternatively, where q is uniformly distributed
in [p, p̃]).

It would be nice to reduce the “gap” of p̃− p ∼ p1+δ between threshold functions p and
p̃ in Theorem 4.1. We even conjecture that the gap can be eliminated entirely (Conjecture
7.6 in §7.2). However, there is reason to believe that this gap may be hard to close, since
a single-threshold version of Theorem 4.1 seems to require techniques that go beyond the
approximation method.4

Preliminary to Theorem 4.1, we prove the following lower bound:

Theorem 4.3. If C is a monotone circuit of size O(nk/4) such that E[C(Kk)] = 1 − o(1),
then E[C(G−)] = 1− exp(−Ω(nδ)).

Theorem 4.3 should be compared with the following fact (a consequence of Janson’s
inequality (Lemma 2.5)), in which subcritical G− is replaced by supercritical G+.

Fact 4.4. If f is a monotone graph function such that E[f(Kk)] = 1−o(1), then E[f(G+)] =
1− exp(−Ω(nδ)) (irrespective of the monotone circuit complexity of f).

In the final section of this chapter (§4.7), we strengthen Theorems 4.1 and 4.3 by re-
moving the fan-in 2 restriction.

Theorem 4.5. Theorems 4.1 and 4.3 hold for monotone circuits with
∧

and
∨

gates of
unbounded fan-in.

We mention that the result of the next chapter show that the exponent k/4 is tight
up to an additive constant in Theorem 4.1 (and simultaneously also in Theorem 3.1 on
bounded-depth circuits). In particular, we construct monotone circuits of size nk/4+O(1)

and depth 3k that solve k-Clique w.h.p. on G(n, p) for all functions p : N→ [0, 1]. In view
of Theorem 4.6, this demonstrates a gap between the worst-case and average-case monotone
complexity of k-Clique.

3Notwithstanding, the total variation distance between random graphs G and G ∪G− is 1− o(1).
4What about the random graph with exactly d

(
n
2

)
pe edges? Note that the monotone complexity of k-

Clique on this distribution is polynomially equivalent to the non-monotone complexity, since we are deal
with a slice function.
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4.2 Razborov’s approximation method

In a seminal paper [60], Razborov proved the first lower bounds on the monotone complexity
of k-Clique.

Theorem 4.6. k-Clique has monotone circuit complexity Ω(nk/ log2k n).5

Razborov in fact shows something stronger. Let H be the uniform random complete
(k − 1)-partite graph with vertex set [n] (that is, EH = {{i, j} ∈

(
[n]
2

)
: π(i) 6= π(j)} for

uniform random function π : [n]→ {1, . . . , k}). The following result is also from [60] (note
the similarity to Theorem 4.3):

Theorem 4.7. If C is a monotone circuit of size O(nk/ log2k n) such that E[C(Kk)] =
1− o(1), then E[C(H)] = 1− o(1).6

The technique introduced in [60] to prove Theorem 4.7 is known as the approximation
method. (Note: The following summary is for background only. Our lower bounds do not
explicitly follow this framework.) The idea of the approximation method is to replace the
lattice (M,∧,∨) of monotone functions {0, 1}m → {0, 1} with a smaller lattice (M,∧,∨)
where M ⊂M such that

• M contains the function x 7→ xi for every i ∈ {1, . . . ,m}, and

• ∧ and ∨ are the g.l.b. and l.u.b. operations in M with respect to the natural partial order
on functions (i.e., f 6 g iff f(x) 6 g(x) for all x ∈ {0, 1}m).

For every monotone circuit C on m variables, there is a corresponding {∧,∨}-circuit C in
which the ∧ and ∨ gates are replaced by ∧ and ∨ gates. Note that C computes a function
in M.

Let ∆0 and ∆1 be two distributions on {0, 1}m (e.g., the random graphs H and Kk from
Theorem 4.7). Suppose our goal is to prove that no monotone circuit C of size S separates
∆0 and ∆1 in the sense that E[C(∆0)] = o(1) and E[C(∆1)] = 1− o(1). Then it suffices to
show that:

1. no function f ∈M satisfies E[f(∆0)] = o(1) and E[f(∆1)] = 1− o(1),

2. for all f, g ∈M,

E[(f ∨ g)(∆0)]− E[(f ∨ g)(∆0)] = o(1/S),

E[(f ∧ g)(∆1)]− E[(f ∧ g)(∆1)] = o(1/S).

By bounding “local errors” in this way, (2) shows that for any C of size S,

E[C(∆0)] 6 E[C(∆0)] + o(1),

E[C(∆1)] > E[C(∆1)]− o(1).

It follows that C cannot satisfy both E[C(∆0)] = o(1) and E[C(∆1)] = 1− o(1).
Of course, being able to show (1) and (2) for given ∆0 and ∆1 depends on a clever

choice of the lattice M. To prove Theorem 4.7, Razborov defines a lattice M where the

5This bound is for constant k. [60] also gives lower bounds for k which depends on n.
6Moreover, if C is a monotone circuit of size nk−Ω(1) such that E[C(Kk)] = 1 − o(1), then E[C(H)] =

1− exp(−nΩ(1)).
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l.u.b. operation ∨ involves “plucking” large sunflowers among the minterms of the function
f ∨ g. (For a full description of M, see [60] or [2].)

Our proof of Theorem 4.3 does not precisely follow this framework. Rather, we work
with a “one-sided version” of the approximation method (via a closure operator cl : M→M
defined in §4.4). The difference is merely a matter of exposition: our proof could easily be
formulated in terms of an approximating lattice M.

4.3 Quasi-sunflowers

In this section we introduce a new relaxation of sunflowers called quasi-sunflowers (param-
eterized by p ∈ [0, 1] and γ > 0). Like sunflowers, quasi-sunflowers are special hypergraphs.
Some definitions: A hypergraph is a family F of subsets of a set X (i.e., F ⊆ ℘(X)). Ele-
ments of F are called hyperedges. For an integer s > 1, F is s-uniform if every hyperedge
has size s (i.e., F ⊆

(
X
s

)
).

A sunflower is a hypergraph F such that the intersection of any two distinct hyperedges
coincides with the intersection

⋂
F (=

⋂
U∈F U) of all hyperedges. The set

⋂
F is called

the core and sets U \
⋂
F where U ∈ F are called petals (note that petals are mutually

disjoint). An essential fact about sunflowers is:

Fact 4.8 (Erdős-Rado Sunflower Lemma [26]). Every s-uniform hypergraph F of size >
s!(N − 1)s contains a sunflower of size N .

Quasi-sunflowers are a relaxation of sunflowers in which petals may overlap slightly on
average. While other variants of sunflowers are studied in extremal combinatorics (see Ch. 7
of [44]), the following definition appears to be new.

Definition 4.9. Let F be a hypergraph on a set X and let Y ⊆
⋂
F . For p ∈ [0, 1] and

γ > 0, we say that F is (p, γ)-quasi-sunflower over Y if for the random set W ⊆p X,

Pr
[
W ∪ Y contains a hyperedge of F

]
> 1− e−γ .

Observation 4.10. Let F ⊆
(
X
s

)
be an s-uniform sunflower of size n. Then F is a (p, nps)-

quasi-sunflower for every p ∈ [0, 1]. To see this, let Y =
⋂
F and note that for W ⊆p X,

the probability that W ∪ Y contains a hyperedge of F is

1− (1− ps−|Y |)n > 1− exp(nps−|Y |) > 1− exp(nps).

For small p, this γ = nps is nearly tight if Y = ∅, but (as we will see) is far from tight if
Y 6= ∅.

We suspect that wherever s-uniform sunflowers are used in monotone circuit lower
bounds (e.g., [2, 7, 60]), one could just as well work with (1/2, N/2s)-quasi-sunflowers
instead. That is, Definition 4.9 captures the essential property of sunflowers for these
applications. Perhaps one even gets stronger bounds (as we do in this paper) by virtue of
the following result.

Theorem 4.11 (“Quasi-sunflower lemma”). For all p ∈ [0, 1] and γ > 1 and s > 1, every
s-uniform hypergraph of size > s!(2.47γ/p)s contains a (p, γ)-quasi-sunflower.

Remark 4.12. It follows from Fact 4.8 and Obs. 4.10 that every s-uniform hypergraph
of size > s!(γ/ps)s contains a (p, γ)-quasi-sunflower (namely, a sunflower of size γ/ps).
Theorem 4.11 is a significant quantitative improvement of this observation.
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The proof of Theorem 4.11 uses Janson’s inequality (Lemma 2.5) within an inductive
argument resembling proofs of the Erdős-Rado Sunflower Lemma.

Proof of “Quasi-sunflower Lemma” (Theorem 4.11). Consider the sequence `1, `2, . . . de-
fined by `1 = 1 and `s = 2

∑s−1
t=1

(
s
t

)
`t for s > 2. We have `s 6 s! ln−s(3/2) (< s!2.47s) by

induction: for s > 2, assuming `t 6 t! ln−t(3/2) for every t ∈ {1, . . . , s− 1}, we have

`s 6 2
s−1∑
t=1

(
s

t

)
t! ln−t(3/2)

= 2

(
s−1∑
t=1

lns−t(3/2)

(s− t)!

)
s! ln−s(3/2)

6 2

(
−1 +

∞∑
j=0

lnj(3/2)

j!

)
s! ln−s(3/2)

= s! ln−s(3/2).

Suppose F is an s-uniform hypergraph of size > `s(γ/p)
s. Arguing by induction on

s, we claim that F contains an (p, γ)-quasi-sunflower (proving the theorem). In the base
case where s = 1, let W ⊆p X and note that events U ⊆ W for U ∈ F are mutually
independent. Therefore,

Pr

[ ∧
U∈F

U *W

]
= (1− p)|F| 6 (1− p)γ/p 6 e−γ ,

so F itself is a (p, γ)-quasi-sunflower over the empty set.
For the induction step, let s > 2 and assume the claim holds for t ∈ {1, . . . , s− 1}. For

every A ⊆ X with 1 6 |A| 6 s− 1, let

FA = {U \A : U ∈ F such that A ⊆ U}.

Note that FA is an (s− |A|)-uniform hypergraph. We now consider two cases.

First Case Suppose there exist t ∈ {1, . . . , s − 1} and A ∈
(
X
t

)
such that |FA| >

`s−t(γ/p)
s−t. By the induction hypothesis, FA contains a (p, γ)-quasi-sunflower F ′ over

some Y ′ ⊆
⋂
F ′. Note that {U ∪A : U ∈ F ′} ⊆ F is a (p, γ)-quasi-sunflower over Y ′ ∪A.

Second Case Suppose |FA| 6 `s−t(γ/p)
s−t for all t ∈ {1, . . . , s − 1} and A ∈

(
X
t

)
. We

will show that F itself is a (p, γ)-quasi-sunflower over the empty set. Let W ⊆p X and
define µ and ∆ exactly as in the statement of Janson’s inequality (Lemma 2.5), which says:

Pr

[ ∧
U∈F

U *W

]
6 exp

(
−min

{
µ

2
,
µ2

2∆

})
.

Thus, it suffices to show that min{µ/2, µ2/2∆} > γ.
Clearly µ = |F|ps since Pr[U ⊆ W ] = ps for every U ∈ F . Since |F| > `s(γ/p)

s and
`s > 2 (as s > 1) and γs > γ (as γ > 1), we have µ/2 > γ.
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It remains to show that µ2/2∆ > γ. For every t ∈ {1, . . . , s−1}, we have
∑

A∈(Xt )
|FA| =(

s
t

)
|F| since each hyperedge in F is counted

(
s
t

)
times in this summation. Therefore,∑

A∈(Xt )

|FA|2 6 |F|
∑

A∈(Xt )

|FA|

6 µ

(
s

t

)
`s−tγ

s−tpt−2s

(using |F| = µp−s and |FA| 6 `s−t(γ/p)
s−t). Noting that Pr

[
U ∪ V ⊆W

]
= p2s−|U∩V | for

all U, V ∈ F , we bound ∆ as follows:

∆ =
∑
A⊆X :

16|A|6s−1

∑
U,V ∈F :
U∩V=A

Pr
[
U ∪ V ⊆W

]

6
s−1∑
t=1

( ∑
A∈(Xt )

|FA|2
)
p2s−t

6 µ

s−1∑
t=1

(
s

t

)
`s−tγ

s−t

6 µγs−1
s−1∑
t=1

(
s

t

)
`t (using γt 6 γs−1)

=
µγs−1`s

2
(by definition of `s).

Completing the proof, we have

µ2

2∆
>

µ

γs−1`s
=
|F|ps

γs−1`s
> γ.

4.4 The approximation via a closure operator

In this section we define a closure operator in the lattice of monotone graph functions.
Closed functions will be combinatorially “nice” in the sense of having few P -minterms for
small and medium patterns P (Lemma 4.22).

Remark 4.13. This is essentially one half of Razborov’s approximation method. Typically,
one also defines a “truncation” operator which cuts out large minterms. Although we find
it more natural to work with a one-sided version of the approximation method, our proof
can be translated into Razborov’s original framework (as described in §4.2).

Recall that we have fixed p = n−2/(k−1) (a threshold function for the existence of k-
cliques) and δ = k−2 (just think of δ as “sufficiently small”). Also recall that G ∼ G(n, p)
(at the k-clique threshold) and G− ∼ G(n, p1+δ) (below the k-clique threshold, i.e., G− is
almost surely k-clique-free).

Definition 4.14. A monotone graph function f : G n → {0, 1} is closed if for every small-
or-medium graph H,

E[f(G− ∪H)] > 1− e−nδ =⇒ f(H) = 1.
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Observation 4.15. If f and g are both closed, then so is f ∧ g.

Definition 4.16. For a monotone graph function f , we denote by cl(f) the unique minimal
closed function such that f 6 cl(f), called the closure of f .

Note that cl(f) is well-defined in view of Obs. 4.15 and the fact that the constant function
1 is closed.

Remark 4.17. Viewed as an operation on the set of monotone graph functions, cl(·) is a
closure operator in the usual sense. That is, it satisfies:

• (increasing) f 6 cl(f),

• (monotone) f 6 g =⇒ cl(f) 6 cl(g),

• (idempotent) cl(cl(f)) = cl(f).

Definition 4.18. We denote by ∨ the operation on monotone graph functions defined by
f ∨ g = cl(f ∨ g). For a monotone circuit C, we denote by C denote the corresponding
circuit with basis {∧,∨} in which the ∨-gates in C are replaced by ∨-gates. For nodes ν in
C, we denote by ν the corresponding node in C.

Note that cl(C) (i.e., cl(f) where f is the function computed by C) is not necessarily
the same function as C, although C is indeed a closed function satisfying C 6 C (i.e.,
C(G) 6 C(G) for all graphs G).

Lemma 4.19. For every monotone graph function f ,

Pr
[
f(G−) 6= (cl(f))(G−)

]
6 2k

2
nke−n

δ
.

Proof. We claim that there exist t ∈ N and small-or-medium graphs H1, . . . ,Ht and mono-
tone functions f0, . . . , ft : G n → {0, 1} such that

• f0 = f ,

• E[fi−1(G− ∪Hi)] ∈ [1− e−nδ , 1),

• fi = fi−1 ∨ IndHi where IndHi : G n → {0, 1} is the function IndHi(G) = 1 iff Hi ⊆ G,

• ft is closed.

To see this, note that we can generate such a sequence (a priori indefinitely) simply by
choosing any suitable Hi+1 so long as fi is not closed. This process eventually terminates,
since each small or medium graph H appears at most once in the sequence H1, H2, . . . . In
particular,

t 6 |{small and medium graphs in G n}| 6 2k
2
nk.

An inductive argument shows that fi 6 cl(f) for i = 1, . . . , t. In particular ft 6 cl(f). Since

42



ft is closed, this means that ft = cl(f). We now have

Pr
[
f(G−) 6= (cl(f))(G−)

]
6

t∑
i=1

Pr
[
fi−1(G−) 6= fi(G

−)
]

=

t∑
i=1

Pr
[
fi−1(G−) = 0 and Hi ⊆ G−

]
6

t∑
i=1

Pr
[
fi−1(G− ∪Hi) = 0

]
6 2k

2
nke−n

δ
.

The next two lemmas follow immediately from Lemma 4.19.

Lemma 4.20. For every monotone graph function f , M(cl(f))\M(f) contains only small
and medium graphs.

Proof. The proof of Lemma 4.19 shows that there exist small-or-medium graphs H1, . . . ,Ht

such that cl(f) = f ∨
∨t
i=1 IndHi . Thus, M(cl(f)) ⊆M(f) ∪ {H1, . . . ,Ht}.

Lemma 4.21. For every monotone circuit C of size exp(o(nδ)), E[C(G−)] − E[C(G−)] =
exp(−Ω(nδ)).

Proof. For any graph H, note that if C(H) 6= C(H) then there exists an ∨-gate ν with
children µ1 and µ2 in C such that ν(H) 6= (µ1 ∨ µ2)(H) (equivalently: f(H) 6= (cl(f))(H)
where f is the function µ1 ∨ µ2). It follows that

E[C(G−)]− E[C(G−)] = Pr
[
C(G−) 6= C(G−)

]
6

∑
∨-gates ν in C with
children µ1 and µ2

Pr
[
ν(G−) 6= (µ1 ∨ µ2)(G−)

]
6 size(C)2k

2
nke−n

δ
(by Lemma 4.19)

= exp(−Ω(nδ)).

The last lemma of this section gives an essential property of closed functions (using
Theorem 4.11 on quasi-sunflowers).

Lemma 4.22. A closed monotone graph function has at most kk
2
(nδ/p1+δ)|EP | P -minterms

for every small or medium pattern P .

Proof. Let f be a closed monotone graph function and let P be a small or medium pattern.
Toward a contradiction, assume that |M(f, P )| > kk

2
(nδ/p1+δ)|EP |. Let X =

(
[n]
2

)
and con-

sider the |EP |-uniform hypergraph F ⊆
(
X
|EP |
)

defined by F = {EF : F ∈ M(f, P )}. Since

|EP | 6 k2/4 (i.e., no medium pattern has more than k2/4 edges), we have |EP |!2.47|EP | 6
kk

2
and hence

|F| = |M(f, P )| > |EP |!2.47|EP |(nδ/p1+δ)|EP |.

By Theorem 4.11, there exists a (p1+δ, nδ)-quasi-sunflower F0 ⊆ F over some Y ⊆
⋂
F .

Let H be the graph with edge set EH = Y . Let W ⊆p1+δ X and note that W has the same
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distribution as EG− . We have

E[f(G− ∪H)] > Pr
[
G− ∪H contains a P -minterm of f

]
> Pr

[
W ∪ Y contains a hyperedge of F0

]
> 1− e−nδ .

Since f is closed and H is small or medium, it follows that f(H) = 1. Note that H has
fewer than |EP | edges, so in particular H is a proper subgraph of some F ∈ M(f, P ) such
that EF ∈ F0. However, this contradicts the fact that F is a minterm of f .

4.5 K vs. G−

In the previous section, we defined a closure operator cl(·) on monotone graph functions
and an operation C 7→ C transforming a monotone circuit C into a {∧,∨}-circuit C. In this
section, we prove Theorem 4.3. We begin by noting a basic fact about minterms.

Observation 4.23. For all monotone graph functions f and g,

M(f ∨ g) ⊆M(f) ∪M(g),

M(f ∧ g) ⊆ {F ∪G : F ∈M(f), G ∈M(g)}.

That is, every minterm of f ∨ g is a minterm of f or a minterm of g and every minterm of
f ∧ g is the union of a minterm of f and a minterm of g.

Lemma 4.24. Let C be a monotone circuit. For every H ∈M(C,Kk), there exist a gate ν
in C and a medium subgraph H ′ of H such that H ′ ∈M(ν).

Proof. Suppose H ∈M(C,Kk) and for notational convenience let

H = {subgraphs of H}, A = {small graphs}, B = {medium graphs}.

Toward a contradiction, assume thatM(ν)∩H∩B = ∅ for every gate ν in C. We will show,
by induction on ν, that M(ν) ∩H ⊆ A for every node ν in C. This yields a contradiction,
since H ∈ (M(νout) ∩H) \ A where νout is the output gate of C.

Consider first the base case where ν is an input node labelled by either 0 or 1 or the
indicator function for some edge e ∈

(
[n]
2

)
. Note thatM(ν) is respectively either the empty

set or {the empty graph} or {the graph with only edge e}. In any case, ν has only small
minterms. Since ν = ν, we have M(ν) ∩H ⊆ A as required.

For the induction step, suppose ν is a gate in C with children µ1 and µ2 and assume
that M(µi) ∩H ⊆ A for i ∈ {1, 2}. If ν is an ∧-gate, then

M(ν) ∩H =M(µ1 ∧ µ2) ∩H
= {F1 ∪ F2 : F1 ∈M(µ1), F2 ∈M(µ2)} ∩ H (Obs. 4.23)

= {F1 ∪ F2 : F1 ∈M(µ1) ∩H, F2 ∈M(µ2) ∩H}
⊆ {F1 ∪ F2 : F1, F2 ∈ A} (since M(µi) ∩H ⊆ A)

⊆ A ∪ B (the union of two small graphs cannot be large)

⊆ A (by assumption M(ν) ∩H ∩ B = ∅).
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Finally, if ν is a ∨-gate, then

M(ν) ∩H =M(µ1 ∨ µ2) ∩H
=M(cl(µ1 ∨ µ2)) ∩H (definition of ∨)

⊆
(
M(µ1 ∨ µ2) ∪ A ∪ B

)
∩H (Lemma 4.20)

⊆
(
M(µ1) ∪M(µ2) ∪ A ∪ B

)
∩H (Obs. 4.23)

⊆ A ∪ B (since M(µi) ∩H ⊆ A for i ∈ {1, 2})
⊆ A (by assumption M(ν) ∩H ∩ B = ∅).

Lemma 4.25. For every monotone circuit C, there exists a medium pattern P such that

size(C) >
|M(C,Kk)|

(2k)k2nk−|VP |(nδ/p1+δ)|EP |
.

Proof. By Lemma 4.24, for each H ∈M(C,Kk), there exists a gate µH in C and a medium
subgraph H ′ of H such that H ′ ∈M(µH). Fix choices of µH and H ′ for all H ∈M(C,Kk).
For every gate ν in C and medium pattern P , let

t(ν, P ) = |{H ∈M(C,Kk) : µH = ν and H ′ ∈M(ν, P )}|.

By a simple counting argument, there exist ν and P such that

|M(C,Kk)|
size(C) · |{medium patterns up to isomorphism}|

6 t(ν, P ).

For each H ′ ∈ M(ν, P ), there are at most nk−|VP | different H ∈ M(C,Kk) of which H ′ is
a subgraph. It follows that

t(ν, P ) 6 nk−|VP ||M(ν, P )|.

Since ν is closed and P is medium, Lemma 4.22 implies

|M(ν, P )| 6 kk
2
(nδ/p1+δ)|EP |.

The result follows by combining these three inequalities, together with the bound 2k
2

on
the number of medium patterns up to isomorphism.

Onto the main result:

Proof of Theorem 4.3. Suppose f : G n → {0, 1} is computed by monotone circuits of size
O(nk/4) and satisfies E[f(Kk)] = 1−o(1). We must show that E[f(G−)] = 1−exp(−Ω(nδ)).

Let C be the circuit computing f . By Lemma 4.21,

E[C(G−)]− E[f(G−)] = Pr[f(G−) 6= C(G−)] = exp(−Ω(nδ)).

Therefore, it suffices to show that E[C(G−)] = 1. We will assume that E[C(G−)] 6= 1 and
derive a contradiction.

We claim that |M(C,Kk)| = (1 − o(1))
(
n
k

)
. To show this, we consider the pattern

Q = Kk − {single edge} and let H ∼ Plant(n,Q). Since E[C(Kk)] > E[f(Kk)] = 1− o(1),
it is enough to show that E[C(H)] = o(1) (i.e., these two inequalities imply that almost
every planted k-clique is a minterm of C). The argument goes as follows: if we assume that
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E[C(H)] = Ω(1), then Pr[C(G−)] = 1− exp(Ω(n1/k)) > 1− exp(nδ) for sufficiently large n
(recall that δ = k−2) by an straightforward application of Janson’s inequality (Lemma 2.5);
but since C is closed, it follows that C(the empty graph) = 1 (contradicting E[C(G−)] 6= 1).

We now invoke Lemma 4.25, which gives us a medium pattern P such that

size(C) >
|M(C,Kk)|

(2k)k2nk−|VP |(nδ/p1+δ)|EP |
= (1− o(1))

(
n

k

)
n|VP |(p1+δ/nδ)|EP |

nk(2k)k2

= Ω

(
n|VP |−( 2

k−1
(1+δ)+δ)|EP |

kk(2k)k2

)

(using p = n−2/(k−1)). Recall that δ = 1/k2 and note that |EP | < k2/4 (obs: among medium
patterns, the disjoint union of two bk−1

2 c-cliques has the most edges). By Lemma 2.8,

|VP | − 2
k−1 |EP | >

k
4 + 1

4 + 2
k−1 . Thus,

|VP | −
(

2

k − 1
(1 + δ) + δ

)
|EP | > |VP | −

2

k − 1
|EP | −

1

4

(
1 +

2

k − 1

)
>
k

4
+

1

k
.

Therefore,

size(C) = Ω

(
n(k/4)+(1/k)

kk(2k)k2

)
.

But since k is a constant, this contradicts the hypothesis that C has size O(nk/4).

4.6 G ∪K vs. G ∪G−

In this section, we prove Theorem 4.1 using Theorem 4.3 together with the following lemma.

Lemma 4.26. Let f be a graph function (not necessarily monotone) and let G0 ∼ G(n, p)
conditioned on G0 being k-clique-free.

1. If f solves k-Clique w.h.p. on G, then E[f(G0 ∪Kk)] = 1− o(1).

2. If f solves k-Clique w.h.p. on G ∪G−, then E[f(G0 ∪G−)] = o(1).

Proof. Denote by κ(G) the number of k-cliques in a graph G.
For (1): Suppose f solves k-Clique w.h.p. on G. This means, in particular, that

E[f(G) | κ(G) = 1] = 1 − o(1). Let G1 ∼ G(n, p) conditioned on κ(G1) = 1. Note
that E[f(G1)] = 1 − o(1) (using the fact that Pr[κ(G) = 1] = Ω(1)). By Lemma 2.4,
random graphs G0 ∪ Kk and G1 have total variation distance o(1). Therefore, w.h.p.
E[f(G0 ∪Kk)] = 1− o(1).

For (2): Suppose f solves k-Clique w.h.p. on G ∪G−. In particular,

(∗) E[f(G ∪G−) | κ(G ∪G−) = 0] = o(1).

Since G ∼ G(n, p) and G ∪G− ∼ G(n, p + o(p)), random variables κ(G) and κ(G ∪G−)
converge in distribution to the same Poisson distribution by Lemma 2.4. In particular, we
have

(∗∗) Pr[κ(G) = 0] = (1 + o(1)) Pr[κ(G ∪G−) = 0].
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Thus, we have

E[f(G0 ∪G−)] = Pr[f(G ∪G−) = 1 | κ(G) = 0]

=
Pr[f(G ∪G−) = 1 & κ(G) = 0]

Pr[κ(G) = 0]

>
Pr[f(G ∪G−) = 1 & κ(G ∪G−) = 0]

Pr[κ(G) = 0]

(∗∗)
=

Pr[f(G ∪G−) = 1 & κ(G ∪G−) = 0]

(1 + o(1)) Pr[κ(G ∪G−) = 0]

= (1− o(1)) Pr[f(G ∪G−) = 1 | κ(G ∪G−) = 0]

(∗)
= 1− o(1).

(Under the assumption that f is monotone, (2) can also be proved using the Holley inequal-
ity.)

Proof of Theorem 4.1. Let C be a monotone circuit of size O(nk/4). Toward a contradiction,
assume that C solves k-Clique w.h.p. on both G and G ∪G−. For a graph G, let CG be
the circuit obtained from C by substituting 1 for each input corresponding to an edge in G.
Note that CG computes the function CG(H) = C(G ∪H).

Let G0 ∼ G(n, p) conditioned on G0 being k-clique-free. Lemma 4.26 implies that for
every constant ε > 0,

Pr
G0

[
E
G−

[CG0(Kk)] > 1− ε
]

= o(1),

Pr
G0

[
E
Kk

[CG0(G−)] 6 ε
]

= 1− o(1).

It follows that there is a sequence of monotone circuits of size O(nk/4) (namely, CG0 for
almost everyG0) with expected value 1−o(1) onKk and o(1) onG−. However, Theorem 4.3
says this is impossible, giving the desired contradiction.

4.7 Removing the fan-in restriction

We conclude this chapter by showing how to remove the fan-in 2 restriction in our results.
In what follows, let C be a fixed monotone circuit of size O(nk/4) with

∧
-gates and

∨
-gates

of unbounded fan-in. We will show that the size lower bounds of Theorems 4.1 and 4.3 still
hold in this setting.

We first note that there is an obvious generalization of the binary operation ∨ (defined
by f ∨ g = cl(f ∨ g)) to a multi-ary operation

∨
on functions f1, . . . , fm, which we define

by
∨m
i=1fi = cl

(∨m
i=1 fi

)
. Denote by C the {

∧
,
∨
}-circuit obtained by replacing

∨
-gates in

C with
∨

-gates.
There is only one place in the proof of Theorem 4.3 where the fan-in 2 assumption comes

into play: namely in Lemma 4.24. To be precise, this lemma relies on the fact that if f1

and f2 are monotone graph functions with only small minterms, then f1 ∧ f2 has no large
minterms. This is a consequence of facts:

• the union of two small graphs is either small or medium, and

• M(f1 ∧ f2) ⊆ {F1 ∪ F2 : F1 ∈M(f1), F1 ∈M(f2)} (see Obs. 4.23).
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The trouble is that the union of three or more small graphs can be large. So Lemma 4.24
is invalid for the circuit C.

We get around this problem as follows. Denote by [k log n] the set {1, . . . , dk log ne} and
by [n1/2k] the set {1, . . . , dn1/2ke}. For every

∧
-gate ν in C and i ∈ [k log n] and j ∈ [n1/2k],

generate a random set Sν,i,j ⊆2−i Children(ν) (that is, Sν,i,j independently contains each
child of ν with probability 2−i). We replace Lemma 4.24 with the following:

Lemma 4.27. With probability 1 − exp(−Ω(n1/3k)), the following holds: for every H ∈
M(C,Kk), there exist a gate ν in C and a medium subgraph H ′ of H such that either

• ν is an
∨

-gate and H ′ ∈M(ν), or

• ν is an
∧

-gate and H ′ ∈M(
∧
µ∈Sν,i,j µ) for some i ∈ [k log n] and j ∈ [n1/2k].

Proof. Suppose H ∈M(C,Kk) and for notational convenience let

H = {subgraphs of H}, A = {small graphs}, B = {medium graphs}.

An easy argument (along the lines of the proof of Lemma 4.24) shows that there exists a
gate ν in C, with children µ1, . . . , µm, such that

1. M(µ`) ∩H ⊆ A for all ` ∈ [m], and

2.
(
M(ν) ∩H

)
\ A is nonempty.

Fix any H ′ ∈
(
M(ν) ∩H

)
\ A.

In the case where ν is
∨

-gate, we have

M(ν) =M(
∨
`∈[m]µ`)

=M(cl(
∨
`∈[m] µ`)) (definition of

∨
)

⊆M(
∨
`∈[m] µ`) ∪ A ∪ B (Lemma 4.20)

⊆
⋃
`∈[m]M(µ`) ∪ A ∪ B (Obs. 4.23).

Since H ′ /∈ A andM(µ`)∩H ⊆ A for all ` ∈ [m], it follows that H ′ ∈ B (i.e., H ′ is medium,
so we are done).

Now suppose ν is an
∧

-gate. We have

M(ν) =M(
∧
`∈[m] µ`)

⊆ {F1 ∪ · · · ∪ Fm : F1 ∈M(µ1), . . . , Fm ∈M(µm)} (Obs. 4.23).

Hence there exist F1 ∈ M(µ1), . . . , Fm ∈ M(µm) such that H ′ = F1 ∪ · · · ∪ Fm. Fix any
such F1, . . . , Fm.

We next fix an enumeration H1, . . . ,Ht of the set {F1, . . . , Fm} subject to

|{` ∈ [m] : Ht′ = F`}| > |{` ∈ [m] : Ht′+1 = F`}|

for all t′ ∈ {1, . . . , t − 1}. (That is, Ht′ are ranked in decreasing order according to their
frequency among F1, . . . , Fm.) Note that t 6 2k

2
(even though m may be as large as nk/4),

since there are 6 2k
2

distinct subgraphs of H.
Let s be the least index in {2, . . . , t} such that H1∪· · ·∪Hs /∈ A. (Such s is well-defined

since H1 ∪ · · · ∪ Ht = F1 ∪ · · · ∪ Fm = H ′ /∈ A.) Note that H1 ∪ · · · ∪ Hs ∈ B, since
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H1∪· · ·∪Hs−1 ∈ A and Hs ∈ A (using the fact that the union of two small graphs is either
small or medium). Let i be the unique integer in [k log n] such that

2i−1 6 |{` ∈ [m] : Hs = F`}| < 2i.

(Such i exists since m 6 fanin(C) 6 size(C) = O(nk/4).)
We now show that, with extremely high probability, there exists j ∈ [n1/2k] such that

H1 ∪ · · · ∪ Hs ∈ M(
∧
µ∈Sν,i,j µ). Consider a random set S ⊆2−i [m]. For t′ ∈ {1, . . . , t},

denote by Xt′ the event that there exists ` ∈ S such that Ht′ ∈M(µ`). Note the following:

• for t′ ∈ {1, . . . , s},

Pr[Xt′ ] = 1− (1− 2−i)|{`∈[m]:Ht′=F`}| > 1− (1− 2−i)2i−1
> 1− 1√

e
>

1

4
,

• for t′ ∈ {s+ 1, . . . , t},

Pr[¬Xt′ ] > (1− 2−i)|{`∈[m]:Ht′=F`)}| > (1− 2−i)2i >
1

4
.

Note that X1, . . . ,Xt are independent. It follows that

Pr
[
H1 ∪ · · · ∪Hs ∈M(

∧
`∈S µ`)

]
> Pr

[
(X1 ∧ · · · ∧Xs) ∧ (¬Xs+1 ∧ · · · ∧ ¬Xt)

]
=
( ∏
t′∈{1,...,s}

Pr[Xt′ ]
)( ∏

t′∈{s+1,...,t}

Pr[¬Xt′ ]
)

> 4−t

> 4−2k
2

.

By independence (for different j ∈ [n1/2k]) of sets Sν,i,j , we have

Pr
[
∀j ∈ [n1/2k], H1 ∪ · · · ∪Hs /∈M(

∧
µ∈Sν,i,j µ)

]
6

∏
j∈[n1/2k]

Pr
[
H1 ∪ · · · ∪Hs /∈M(σν,i,j)

]
6

(
1− 4−2k

2
)n1/2k

6 exp(−4−2k
2

n1/2k).

Taking a union bound over all 6
(
n
k

)
graphs H ∈ M(C,Kk), we upper bound the total

failure probability by (
n

k

)
exp(−4−2k

2

n1/2k) = exp(−Ω(n1/3k)),

which proves the lemma.

We now get the following modified version of Lemma 4.25.

Lemma 4.28. With probability 1− exp(−Ω(n1/3k)), there exists a medium pattern P such
that

size(C) >
1

(k log n)n1/2k
· |M(C,Kk)|

(2k)k2nk−|VP |(nδ/p1+δ)|EP |
.
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Proof. The proof is a simple counting argument (which uses Lemma 4.27), completely
analogous to the proof of Lemma 4.25 (which uses Lemma 4.24). (Note: we use the fact
that

∧
µ∈Sν,i,j µ are closed functions.)

Compared with Lemma 4.25, the bound of Lemma 4.28 has a loss of 1/(k log n)n1/2k.
This is tolerable if we desire a lower bound of ω(nk/4), since this loss is eaten up by the
slack factor of n1/k/kk(2k)k

2
in the actual lower bound

size(C) = Ω

(
n(k/4)+(1/k)

kk(2k)k2

)
.

given by the proof of Theorem 4.3. The fact that the bottleneck of Lemma 4.28 fails with
probability exp(−Ω(n1/3k)) is also tolerable, since the error E[C(G−)]− E[C(G−)] allowed
by the proof of Theorem 4.3 is exp(−Ω(nδ)) where δ = 1/k2 = o(1/3k). By this argument,
it is seen that the lower bounds proved in this chapter remain valid for monotone circuits
with unbounded fan-in.
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Chapter 5

Matching Upper Bound

In this chapter we prove the following upper bound:

Theorem 5.1. There exist monotone circuits of size nk/4+O(1) and depth 3k which solve
k-Clique w.h.p. on G(n, p) for all functions p : N→ [0, 1].

Theorem 5.1 demonstrates that the exponent k/4 is tight up to an additive constant
simultaneously in both of our lower bounds (Theorems 3.2 and 4.1). The circuits in this
theorem are based on a construction of non-monotone constant-depth circuits due to Amano
[6]. An extra trick (involving perfect families of hash functions) is employed to make these
circuits monotone. (For the intuition behind these circuits, the reader might wish to look
back at the discussion in §1.2.1 and §1.2.2 of the randomized greedy algorithm for finding
a maximal clique in G(n, p).)

5.1 Auxiliary subcircuits

We begin by defining some auxiliary subcircuits. First, a useful definition:

Definition 5.2. For a graph G ∈ G n and sets U1, . . . , U` ⊆ [n] where ` > 1, define
ΓG(U1, . . . , U`) ⊆ U` inductively as follows:

• ΓG(U1) = U1,

• for ` > 2, ΓG(U1, . . . , U`) is the set of u` ∈ U` such that for every i ∈ {1, . . . , ` − 1},
there exists ui ∈ ΓG(U1, . . . , Ui) such that {ui, u`} is an edge in G.

Lemma 5.3. If ΓG(U1, . . . , Ui) is a singleton {ui} for each i ∈ {1, . . . , `}, then u1, . . . , u`
form an `-clique in G.

Proof. Immediate from the definition of ΓG(·).

The next lemma describes our first family of auxiliary circuits.

Lemma 5.4. There exist monotone circuits AU1,...,U` of size 6 `2n2 and depth 3(`−1) with
n output nodes, denoted AvU1,...,U`

for v ∈ [n], such that for every graph G ∈ G n and vertex
v ∈ [n],

AvU1,...,U`
(G) = 1 ⇐⇒ v ∈ ΓG(U1, . . . , U`).
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Proof. The proof is by induction on `. In the base case where ` = 1, the circuit AU1 consists
of n isolated output nodes where AvU1

is labeled by the constant 1 if v ∈ U1 and by the
constant 0 otherwise.

For the induction step, assume ` > 2. Starting with the circuit AU1,...,U`−1
, for each

v ∈ [n] create new gates νv and (µv,i)i∈{1,...,`−1} and (ξv,i,w)i∈{1,...,`−1}, w∈[n]\{v}. The labels
and wires are as follows:

• νv = AND
i∈{1,...,`−1}

µv,i,

• µv,i = OR
w∈[n]\{v}

ξv,i,w,

• ξv,i,w = AND(x{v,w},A
w
U1,...,Ui

) where x{v,w} is the indicator variable for the edge
{v, w}.

The output node AvU1,...,U`−1
is of course νv.

It is easy to see that AU1,...,U` correctly computes the set ΓG(U1, . . . , U`) (assuming that
AU1,...,Ui correctly computes ΓG(U1, . . . , Ui) for every i ∈ {1, . . . , `− 1}). Note that we have
added 3 to the depth and created (`− 1)n2 +n 6 `n2 new gates. Thus, as required we have

• depth(AU1,...,U`) = depth(AU1,...,U`−1
) + 3 = 3(`− 1),

• size(AU1,...,U`) 6 size(AU1,...,U`−1
) + `n2 6 (`− 1)2n2 + `n2 6 `2n2.

Next comes another useful definition, followed by our second family of auxiliary circuits:

Definition 5.5. A sequence (U1, . . . , U`) is c-bounded in graph G if for all i ∈ {1, . . . , `}
and distinct u1 ∈ U1, . . . , ui−1 ∈ Ui−1, there are at most c different ui ∈ Ui such that
{uj , ui} is an edge in G for all j ∈ {1, . . . , i− 1}.

Lemma 5.6. For all c, ` ∈ N, there exist single-output monotone circuits Bc;U1,...,U` of size
O(n2 log n) and depth 3`− 1 such that for every graph G, if (U1, . . . , U`) is c-bounded in G
then

Bc;U1,...,U`(G) = 1 ⇐⇒ U1 × · · · × U` contains an `-clique in G.

(The hidden constant in this O(·) term actually looks like `c`4`c
`
.)

Proof. Let H be a `c`-perfect family of O(4`c
`
log n) hash functions from [n] to [`c`]. That

is, H is a set of functions [n] → [`c`] such that for every X ⊆ [n] such that |X| 6 `c`,
there exists h ∈ H such that |h(X)| = |X|. The existence of an `c-perfect family |H| of size

O(4`c
`
log n) is established by a probabilistic argument: simply choose 4`c

`
log n functions

at random for sufficiently large n (see [5]).
Define Bc;U1,...,U` by

Bc;U1,...,U` = AND
h∈H

OR
z1,...,z`∈[`c`], v∈[n]

AvU1∩h−1(z1),...,U`∩h−1(z`)
.

Finally, note that Bc;U1,...,U` has size O(n2 log n) and depth 3`− 1.
To see that Bc;U1,...,U` computes a suitable function, let G be any graph such that

(U1, . . . , U`) is c-bounded in G. We will now show that Bc;U1,...,U`(G) = 1 ⇐⇒ U1×· · ·×U`
contains an `-clique in G.
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(⇐=) Assume that u1, . . . , u` form an `-clique in G where ui ∈ Ui for every i ∈ {1, . . . , `}.
To show that Bc;U1,...,U`(G) = 1, let h be any function in H (chosen adversarially). Select
any zi = h−1(ui) for each i ∈ {1, . . . , `} and note that Au`

U1∩h−1(z1),...,U`∩h−1(z`)
(G) = 1.

(=⇒) Assume that Bc;U1,...,U`(G) = 1. Let X =
⋃
i∈{1,...,`} ΓU1,...,Ui(G). Since (U1, . . . , U`)

is c-bounded in G, we have |X| 6 c + c2 + · · · + c` 6 `c`. Since H is an `c`-perfect family
of hash functions, there exists h ∈ H such that |h(X)| = |X|. By definition of Bc;U1,...,U` ,
there exist z1, . . . , z` ∈ [`c`] such that

OR
v∈[n]

AvU1∩h−1(z1),...,U`∩h−1(z`)
(G) = 1.

An inductive argument shows that ΓG(U1∩h−1(z1), . . . , Ui∩h−1(zi)) is a singleton for every
i ∈ {1, . . . , `}. By Lemma 5.3, it follows that G contains an `-clique in U1 × · · · × U`.

5.2 Some random sets

Using the circuits Bc;U1,...,U` defined in the last section, we now present a monotone constant-
depth circuit of size nk/4+O(1) which solves k-Clique on G(n, p) for all functions p : N →
[0, 1].

Definition 5.7. For i ∈ {1, . . . , k}, let pi = min{n(i−2) 2
k
−1, 1} and let Ui ⊆pi [n] (that is,

Pr[v ∈ Ui] = pi independently for all v ∈ [n]).

This choice of random sets Ui is motivated by the following lemma:

Lemma 5.8. For all α > 2/k and i ∈ {1, . . . , k} and distinct v1, . . . , vi−1 ∈ [n],

Pr
G∼G(n,n−α)

[
Ui contains > c common neighbors of v1, . . . , vi−1 in G

]
= O(n−

2
k

(c+1)).

Proof. For each w ∈ [n] \ {v1, . . . , vi−1}, the probability that w belongs to Ui and is a

common neighbor of v1, . . . , vi−1 in G is precisely pi(n
−α)i−1. Since pi 6 n(i−2) 2

k
−1 and

n−α 6 n−
2
k , we have pi(n

−α)i−1 6 n−1+ 2
k . By a union bound and independence,

Pr
[
Ui contains > c common neighbors of v1, . . . , vi−1 in G

]
6

∑
distinct w1,...,wc+1∈[n]\{v1,...,vi−1}

Pr

[
w1, . . . , wc+1 ∈ Ui are common

neighbors of v1, . . . , vi−1 in G

]

=

(
n− i+ 1

c+ 1

)(
n−1+ 2

k

)c+1

= O(n
2
k

(c+1)).

We now proceed with three lemmas and a corollary giving further properties of
U1, . . . ,Uk.

Lemma 5.9.
k∏
i=1

pi > n−(k/4)−3.
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Proof. We have
k∏
i=1

pi = n−β where

β =
k∑
i=1

max

{
0, 1 +

2

k
− (i− 1)

2

k

}
=

dk+1
2 e∑
i=1

(
1 +

2

k
− (i− 1)

2

k

)
=

⌈
k + 1

2

⌉(
1 +

2

k

)
− 2

k

(
dk+1

2 e+ 1

2

)
<
k

4
+ 3.

Lemma 5.10. For all α > 2/k and G ∼ G(n, n−α),

Pr
[
(U1, . . . ,Uk) is not k2-bounded in G

]
= O(n−k).

Proof.

Pr
[
(U1, . . . ,Uk) is not k2-bounded in G

]
6

∑
distinct v1,...,vk∈[n]

∑
i∈{1,...,k}

Pr

[
Ui contains > k2 common

neighbors of v1, . . . , vi−1 in G

]

6

(
n

k

)
k ·O(n−

2
k

(k2+1)) (Lemma 5.8)

= O(n−k).

Definition 5.11. Let S = dn(k/4)+4e and let U
(t)
1 , . . . ,U

(t)
k be independent copies of

U1, . . . ,Uk for t ∈ {1, . . . , S}.

We choose S large enough so that the following lemma holds.

Lemma 5.12. W.h.p.,
⋃

t∈{1,...,S}

U
(t)
1 × · · · ×U

(t)
k = [n]k.

Proof.

Pr

 ⋃
t∈{1,...,S}

U
(t)
1 × · · · ×U

(t)
k 6= [n]k

 = Pr

 ∨
v1,...,vk∈[n]

∧
t∈{1,...,S}

∨
i∈{1,...,k}

vi /∈ U (t)
i


6
∑

v1,...,vk
Pr
[∧

t

∨
i vi /∈ U

(t)
i

]
(union bound)

=
∑

v1,...,vk

(
Pr
[∨

i vi /∈ Ui
])S

(independence)

=
∑

v1,...,vk

(
1− Pr

[∧
i vi ∈ Ui

])S
=
∑

v1,...,vk

(
1−

∏
i pi
)S

6 nk
(
1− n−(k/4)−3

)n(k/4)+4

(Lemma 5.9)

= o(1).
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Lemma 5.13. There exist sets U
(t)
1 , . . . , U

(t)
k , for t = 1, . . . , S, such that

1.
⋃

t∈{1,...,S}

U
(t)
1 × · · · × U

(t)
k = [n]k, and

2. for all α > 2/k, w.h.p. for G ∼ G(n, n−α),

(U
(t)
1 , . . . , U

(t)
k ) is k2-bounded in G for all t ∈ {1, . . . , S}.

Proof. Follows from Lemma 5.10 (taking a union bound over t) and Lemma 5.12.

5.3 The full construction

In this section we prove Theorem 5.1 by constructing the circuit C. Fix sets U
(t)
1 , . . . , U

(t)
k ,

for t = 1, . . . , S, as in Lemma 5.13. Let E be an arbitrary subset
(

[n]
2

)
of size dn2/(k−(1/2))e.

Define the circuit C by

C =

(
OR

t∈{1,...,S}
B
k2;U

(t)
1 ,...,U

(t)
k

)
OR

(
OR
{v,w}∈E

x{v,w}

)
.

(Here the subcircuit OR{v,w}∈E x{v,w} has value 1 on a graph G if and only if some element
of E is an edge in G.) We first check that the circuit C has the correct size and depth. We
see that C has size O(Sn3 log n) = nk/4+O(1) (as each B subcircuit has size only O(n3 log n)).
Combining the three OR gates at the top of C, we see that C has depth 3k (since B has
depth 3k − 1).

It remains to show that C solves k-Clique w.h.p. on G ∼ G(n, p) for all functions
p : N→ [0, 1]. First, consider the case that p > n−2/k. In this case, w.h.p. G contains both
a k-clique (by Lemma 2.3, since n−2/k = ω(n−2/(k−1))). So it suffices to show that w.h.p.
C(G) = 1. Indeed, this is true since w.h.p. G contains an edge in E .

Next, consider p in the range n−2/(k−(1/4)) < p < n−2/k. Also in this case, w.h.p. G

contains a k-clique. Let X (= X(G)) denote the event that (U
(t)
1 , . . . , U

(t)
k ) is k2-bounded

in G for all t ∈ {1, . . . , S}. Since p 6 n−2/k, note that X holds w.h.p. by Lemma 5.13(2).
Now condition on X holding and G containing a k-clique. It suffices to that C(G) = 1 (i.e.,
with conditional probability 1). Let {v1, . . . , vk} be a k-clique in G. By Lemma 5.13(1),

there exists t ∈ {1, . . . , S} such that (v1, . . . , vk) ∈ U
(t)
1 × · · · ×U

(t)
k . Since (U

(t)
1 , . . . , U

(t)
k ) is

k2-bounded (by X), Lemma 5.6 implies B
k2;U

(t)
1 ,...,U

(t)
k

(G) = 1. It follows that C(G) = 1 as

required.
Finally, consider the case that p 6 n−2/(k−(1/4)). Again X holds w.h.p. Since p =

o(n−2/(k−(1/2))), w.h.p. G contains no edge in E . Now condition on X holding and G not
containing any edge in E. It suffices to show that C(G) = 1 ⇐⇒ G contains a k-clique
(i.e., with conditional probability 1). Note that C(G) = ORt∈{1,...,S} B

k2;U
(t)
1 ,...,U

(t)
k

. If G

contains a k-clique {v1, . . . , vk}, then C(G) = 1 by same reason as before (that is, there

exists t ∈ {1, . . . , S} such that (v1, . . . , vk) ∈ U
(t)
1 ×· · ·×U

(t)
k , etc.) Conversely, if C(G) = 1,

then there exists t ∈ {1, . . . , S} such that (v1, . . . , vk) ∈ U
(t)
1 × · · · ×U

(t)
k , which means that

{v1, . . . , vk} is a k-clique in G by Lemma 5.6.
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Chapter 6

Descriptive Complexity

This chapter takes a look at the k-Clique problem from the perspective of descriptive
complexity. Recall that descriptive complexity views computation through the lens of logic
(see §1.3 for an overview as related to the k-Clique problem). Specifically, we are interested
in determining the number of variables needed to define the property “there exists a k-
clique” in first-order logic. As usual, we consider the average-case setting of G(n, p) for
a fixed threshold function p(n) = Θ(n−2/(k−1)). For a first-order formula ϕ with no free
variables in the language of ordered graphs (with adjacency relation ∼ and linear order <),
we say that ϕ defines k-Clique w.h.p. on G(n, p) if limn→∞ PrG∼G(n,p)[G |= ϕ] = 1.

Recall that the collection of first-order formulas with at most m variables (including both
free and bound variables), denoted Lm, is called the m-variable fragment. The sequence
L1 ⊆ L2 ⊆ . . . is called the variable hierarchy. For some classes of structures, the variable
hierarchy is known to be strict, while on other class it is known to collapse. For the class
of finite ordered graphs, the status of the variable hierarchy had been an open question for
many years (see discussion in §1.3). In this chapter, we answer this question by showing that
our lower bound for k-Clique on bounded-depth circuits implies strictness of the variable
hierarchy on finite order graphs.

This chapter contains the following results:

• (§6.1) No formula with 6 k/4 variables defines k-Clique w.h.p. on G(n, p) in the lan-
guage of ordered graphs.

• (§6.2) The variable hierarchy is strict on finite ordered graphs.

A key step of showing infinite =⇒ strict for the variable hierarchy on finite ordered
graph is due to Neil Immerman.

• (§6.3.1) No formula with 6 k/2 variables defines k-Clique w.h.p. on G(n, p) in the
language of graphs (without a linear order).

• (§6.3.3) There is a formula with k
2 + O(1) variables which defines k-Clique w.h.p. on

G(n, p) in the language of graphs.

A preliminary k
2 + log k + O(1) variable upper bound is first presented in §6.3.2. The

improvement to k
2 +O(1) was achieved jointly with Joel Spencer.

56



6.1 k/4 variable lower bound

There is a well-known correspondence in descriptive complexity between first-order logic
and the complexity class AC0 of polynomial-size constant-depth circuits [36, 37]. Under
this correspondence, the m-variable Lm corresponds to AC0 circuits of size O(nm) (see [38]
for a detailed explanation). In the context of m-variable formulas in the language of ordered
graphs, one direction of this correspondence is as follows:

Lemma 6.1. For every m-variable formula ϕ(x1, . . . , x`) (with ` 6 m free variables
x1, . . . , x`) in the language of ordered graphs, there exists a circuit Cϕ of size O(nm) and
depth O(1) with n` output nodes, denoted C~vϕ for ~v ∈ [n]`, such that for every graph G ∈ G n

and `-tuple of vertices ~v ∈ [n]`, we have C~vϕ(G) = 1 ⇐⇒ G |= ϕ(~v).

The proof is a simple inductive argument on formulas. As an immediate corollary:

Corollary 6.2. No formula with 6 k/4 variables solves k-Clique w.h.p. on G(n, p) in the
language of ordered graphs.

Proof. Assume such a formula exists. Then by Lemma 6.1 there exists a circuit of size
O(nk/4) and depth O(1) which solves k-Clique w.h.p. on G(n, p), contradicting Theorem
3.1.

Corollary 6.3. The variable hierarchy is infinite on finite ordered graphs.

Proof. The k-variable formula ∃x1 . . . ∃xk
∧

16i<j6k(xi ∼ xj) expresses “there exists a k-
clique” on the class of finite ordered graphs (without even mentioning the linear order).
By Corollary 6.2, no formula with 6 k/4 variables can express property on finite ordered
graphs (even making use of the linear order). It follows that Lbk/4c is less expressive than
Lk for every k ∈ N. Therefore, the variable hierarchy is infinite.

Remark 6.4. Corollaries 6.2 and 6.3 are valid not only for the class of finite ordered graphs,
but for classes of finite graphs with arbitrary background relations on the set {1, . . . , n} for
every n ∈ N (for instance, arithmetic operations + and ×). This is due to the fact that our
bounded-depth circuit lower bound apply to non-uniform families of circuits. We state our
results in terms of finite ordered graphs since even in this relatively simple setting, questions
about the variable hierarchy had been wide open and widely studied.

6.2 Strictness of the variable hierarchy

In this section we present an argument due to Neil Immerman (personal communication)
showing that the non-collapse of the variable hierarchy on finite ordered graphs (Corollary
6.3) implies that the hierarchy is strict (i.e., FOm 6= FOm+1 for every m). We are grateful
to Neil for letting us include this unpublished result here.

In order to present the result, we need some basic definitions and folklore lemmas from
model theory (for further background, we again refer the reader to [25, 38, 50]). In partic-
ular, we present a version of the Ehrenfeucht-Fräıssé game for the m-variable logic Lm. In
what follows, let A and B be finite ordered graphs with vertex sets A and B of possibly
different sizes; we will assume A ∩ B = ∅ for convenience. Recall that the quantifier rank
of a formula ϕ is the maximum nesting depth of quantifiers in ϕ. Also recall that formulas
with no free variables are called sentences.
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The r-round m-pebble game (independently defined by Barwise [10], Immerman [35] and
Poizat [58]) gives a necessary and sufficient condition characterizing exactly when A and
B satisfy the same first-order m-variable sentences of quantifier rank 6 r. The game (a
modified version of the more familiar Ehrenfeucht-Fräıssé game) is played as follows. There
are two players, Spoiler and Duplicator. The “game board” is the set A∪B and the “game
pieces” are m matching pairs of pebbles (α1, β1), . . . , (αm, βm). Initially, all pebbles are off
the board (that is, not placed anywhere in A or B). In the course of the game, pebbles αi
will be placed on elements of A and eventually moved from one element of A to another;
pebbles βi are similarly placed in B. In each round of the game:

• first, Spoiler selects any pebble (αi or βi for any i ∈ {1, . . . ,m}) and places it—or
moves it, if has already been placed once—onto any element in the appropriate set (A
or B, resp.);

• second, Duplicator places—or moves—the opposite pebble (βi or αi, resp.) in the
other structure (B or A, resp.).

The game lasts for r rounds. Note that, at any point in time, the pebbles sitting in A and
B describe a set of (up to m) pairs in A × B. (Before round 1, this is the empty set.)
Duplicator wins the game if and only if, at every point in time, the subset of A×B describe
by the placement of pebbles constitutes a partial isomorphism from A to B.1 Duplicator
has a winning strategy if—in the obvious sense—there exists a strategy for Duplicator which
guarantees a win no matter how Spoiler plays.

We introduce some useful notation. Let A ≡mr B stand for the fact that Duplicator has a
winning strategy in the r-round m-pebble game on A and B. For ` ∈ {1, . . . ,m} and `-tuples
~a ∈ A` and ~b ∈ B`, let (A,~a) ≡mr (B,~b) stand for the fact that Duplicator has a winning
strategy in the r-round m-pebble game on A and B from the starting configuration with
pebbles α1, . . . , α`, β1, . . . , β` on a1, . . . , a`, b1, . . . , b` (and all other pebbles off the board).
The following fundamental fact about the r-round m-pebble game is proved in [10, 35, 58].

Lemma 6.5. (A,~a) ≡mr (B,~b) if, and only if, A |= ϕ(~a) ⇐⇒ B |= ϕ(~b) for every m-
variable formula ϕ(~x) of quantifier rank 6 r. (As a special case: A ≡mr B if, and only if, A
and B satisfy exactly the same m-variable sentences of quantifier rank 6 r.)

The next lemma is an easy corollary of Lemma 6.5.

Lemma 6.6. Let P be a subclass of {finite ordered graphs} (that is, a property of finite
ordered graphs). P is not defined by any m-variable sentence if, and only if, for every r
there exist finite ordered graphs A and B such that A ∈P and B /∈P and A ≡mr B.

Note that ≡mr constitutes an equivalence relation on {finite ordered graphs}. A crucial
fact (familiar to anyone acquainted with finite model theory) is:

Lemma 6.7. For every m and r, there are only finitely many ≡mr -equivalence classes of
finite ordered graphs. Moreover, for every ≡mr -equivalence class E , there is a single m-
variable sentence ϕ of quantifier rank 6 r such that A ∈ E ⇐⇒ A |= ϕ.

Lemma 6.7 has nothing to do with finite ordered graphs. Rather, it is a consequence of
the fact that language of finite ordered graphs has finite many relation symbols. We remark

1Since A and B are ordered graphs, this means that if pebbles αi, αj , βi, βj are siting on elements
ai, aj , bi, bj , then ai = aj ⇐⇒ bi = bj and ai <

A aj ⇐⇒ bi <
B bj and ai ∼A aj ⇐⇒ bi ∼B bj .
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that the number f(m, r) of ≡mr -equivalence relations is a non-elementary function of r for
every sufficiently large fixed m.

Let “Lm−1 = Lm” stand for the assertion that Lm−1 and Lm express exactly the same
properties of finite ordered graphs. We will eventually show that Lm−1 = Lm is false for
every m. First, we note the following consequence of Lm−1 = Lm.

Lemma 6.8. Assume Lm−1 = Lm. Then there exists a function γ : N → N such that
A ≡m−1

γ(r) B =⇒ A ≡mr B for every r ∈ N.

Proof. Let r ∈ N. By Lemma 6.7 there are only finitely many ≡mr -equivalence classes
E1, . . . ,Et, as well as m-variable sentences ϕi characterizing each Ei. By the assumption
that Lm−1 = Lm, each ϕi is equivalent on finite ordered graphs to a sentence ψi with
6 m− 1 variables. Let s be the maximum quantifier rank among ψ1, . . . , ψt. We claim that
this s gives a suitable value for the function γ on r. Indeed, suppose A ≡ms B. There is a
unique i ∈ {1, . . . , t} such that A ∈ Ei. Thus, A |= ϕi and so A |= ψi. Since ψi has 6 m− 1
variable and quantifier rank 6 s and A ≡m−1

s B, it follows that B |= ψi. Thus, B |= ϕi and
so B ∈ Ei. It follows that A ≡mr B, since both belong to Ei.

We introduce a small useful item of notation.

Definition 6.9. For a finite ordered graph A and a vertex a ∈ A, let Aa be the finite
ordered graph obtained from A by adding a new vertex — call it a∗ — which is maximal in
the linear order and adjacent only to a. For multiple vertices a1, . . . , a` ∈ A, let Aa1,...,a` be
the finite ordered graph (. . . (Aa1)a2 . . . )a` with vertex set A ∪ {a∗1, . . . , a∗`}.

Lemma 6.10. For all finite ordered graphs A and B and vertices a ∈ A and b ∈ B,

1. (A, a) ≡mr (B, b) =⇒ Aa ≡m−1
r Bb, and

2. Aa ≡mr Bb =⇒ A ≡mr−1 B.

Proof. (1) Duplicator plays the game for Aa ≡m−1
r Bb according his winning strategy in

the game for (A, a) ≡mr (B, b). (As a special case, whenever Spoiler plays the extra vertex
a∗ or b∗, Duplicator replies by playing the extra vertex in the opposite structure.)

(2) Consider Duplicator’s winning strategy for Aa ≡mr Bb. Note that in the first r − 1
rounds, Duplicator never plays the extra vertex a∗ or b∗ unless Spoiler does. Duplicator
thus has a winning strategy for A ≡mr−1 B.

Finally, we present the key part of Immerman’s argument.

Theorem 6.11. Suppose that Lm−1 = Lm where m > 3. Then Lm = Lm+1.

Proof. Toward a contradiction, suppose Lm 6= Lm+1. Then there exists a sentence ϕ in
Lm+1 that is not equivalence to any sentence in Lm. Let r be the quantifier-rank of ϕ.
By Lemma 6.8, there is a function γ : N → N such that A ≡m−1

γ(t) B =⇒ A ≡mt B for all

t ∈ N and finite ordered graphs A and B. Fix any such γ and define sequence t(0), . . . , t(r)
inductively by t(0) = 2r and t(i) = γ(t(i− 1)) + 1 for i = 1, . . . , r.

By Lemma 6.6, there exist finite ordered graphs A and B such that A ≡mt(r) B and

A |= ϕ and B |= ¬ϕ. We will show that A ≡m+1
r B (thereby obtaining a contradiction) by

describing a winning strategy for Duplicator in the r-round (m+ 1)-pebble game on A and
B.
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Round 1: In round 1 of the game, suppose that Spoiler plays an element a1 ∈ A (without
loss of generality). Duplicator consults his winning strategy for the game showing A ≡mt(r)
B and replies with an element b1 ∈ B such that (A, a1) ≡mγ(t(r−1)) (B, b1) (here using

γ(t(r − 1)) = t(r)− 1). By Lemma 6.10(1), we have Aa1 ≡m−1
γ(t(r−1)) B

b1 . By definition of γ,

it follows that Aa1 ≡mt(r−1) B
b1 .

Round 2: In round 2, suppose that Spoiler plays a2 ∈ A (again without loss of gener-
ality, as the symmetric argument works if Spoiler instead plays an element of B). Dupli-
cation consults his winning strategy for Aa1 ≡mt(r−1) B

b1 and finds b2 ∈ B ∪ {b∗1} such that

(Aa1 , a2) ≡mγ(t(r−2)) (Bb1 , b2). Note that we are guaranteed that b2 6= b∗1, since a2 6= a∗1 and it
takes only one quantifier to express that a given element is maximal in a finite linear order.
Duplicator replies by playing b2. Again by Lemma 6.10(1), we have Aa1,a2 ≡m−1

γ(t(r−2)) B
b1,b2 .

Again by definition of γ, we have Aa1,a2 ≡mt(r−2) B
b1,b2 .

Round i: In all subsequent rounds, Duplicator plays in the same manner. After round
i, we have elements a1, . . . , ai ∈ A and b1, . . . , bi ∈ B such that Aa1,...,ai ≡mt(r−i) B

b1,...,bi .

(One small point in generalizing from 2 to larger i: in reply to Spoiler playing ai ∈ A,
Duplicator consults his winning strategy for Aa1,...,ai−1 ≡mt(r−i+1) B

b1,...,bi−1 to obtain bi ∈
B ∪ {b∗1, . . . , b∗i−1} such that (Aa1,...,ai−1 , ai) ≡mγ(t(r−i)) (Bb1,...,bi−1 , bi). Note that we are

guaranteed that bi /∈ {b∗1, . . . , b∗i−1}, since ai /∈ {a∗1, . . . , a∗i−1} and it takes only 2 (6 m)
variables and i− 1 (6 γ(t(r − i))) quantifiers to express that a given element is among the
i− 1 maximal elements in a finite linear order.)

At the end of the game (after r rounds) we have Aa1,...,ar ≡m2r Bb1,...,br . It follows that
A ≡mr B by Lemma 6.10(2). However, this yields a contradiction, since A and B disagree
on the sentence ϕ which has variable complexity m and quantifier rank r.

As an immediate consequence of Corollary 6.3 (the variable hierarchy is infinite on finite
ordered graphs) and Theorem 6.11 (Lm−1 = Lm =⇒ Lm = Lm+1), we have:

Corollary 6.12 (Variable Hierarchy Theorem). The variable hierarchy is strict on finite
ordered graphs.

6.3 Average-case definability of k-Clique without order

This section studies the average-case first-order definability of k-Clique on finite graphs
without a linear order. We first show that k/2 variables are necessary in §6.3.1 (improving
the k/4 variable lower bound which we proved in the ordered case). We then prove two
upper bounds: a warm-up of k/2 + log k + O(1) in §6.3.2, before our final upper bound of
k/2 +O(1) in §6.3.3.

All formulas in this section are assumed to be formulas in the language of graphs (with
adjacency relation ∼ only).

6.3.1 k/2 variables are necessary

The following notion of `-extendibility shows up in the first-order theory of the infinite
random graph, as well as the 0-1 law for first-order logic (see [4, 25, 50, 70]).
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Definition 6.13. A graph G is `-extendible if it has > ` vertices and for all distinct vertices
v1, . . . , v` and every I ⊆ {1, . . . , `}, there exists a vertex w distinct from v1, . . . , v` such that
w is adjacent to vi for all i ∈ I and non-adjacent to vj for all j ∈ {1, . . . , `} \ I.

The next lemma gives a key property of `-extendible graphs.

Lemma 6.14. Every two `-extendible graphs (finite or infinite) satisfy exactly the same
sentences of L`+1.

Lemma 6.14 is easily argued using the `+ 1-pebble game. Duplicator has a particularly
simple winning strategy in the r-round `+1-pebble game (for any r, indeed even r =∞): so
long as the current configuration of pebbles describes a partial isomorphism, the `-extension
property guarantees that, for any move of the Spoiler, there is a suitable reply which extends
the previous configuration to a new partial isomorphism.

The following lemma is standard (see [4, 70]).

Lemma 6.15. If min{p(n), 1− p(n)} = ω(n−1/` log` n), then w.h.p. G(n, p) is `-extendible.

Lemma 6.15 is essentially the fact that Θ(n−1/` log` n) is the threshold for the monotone
graph property that every ` vertices have a common neighbor.

Theorem 6.16. No sentence with 6 k/2 variables solves k-Clique w.h.p. on G(n, p).

Proof. Let G ∼ G(n, p) and let ` = bk/2c−1. We have min{p, 1−p} = p > ω(n−1/` log` n).
Therefore, w.h.p. G is `-extendible by Lemma 6.14. It follows from Lemma 6.15 that
limn→∞ Pr[G |= ϕ] ∈ {0, 1} for every first-order sentence ϕ with ` + 1 variables. But
0 < limn→∞ Pr[G has a k-clique] < 1 since p(n) = Θ(n−2/(k−1)) is a threshold function for
k-Clique (Lemma 2.3). Therefore, `+ 1 = bk/2c variables are insufficient.

6.3.2 k/2 + log k + O(1) variables suffice

The following lemma shows that `-extendibility allows counting up to ` using only dlog `e
extra variables.

Lemma 6.17. For every formula ϕ(~x, y) and ` ∈ N, there is a formula ψ(~x) such that

• ψ(~x) is logically equivalent to ∃>`y ϕ(~x, y) on the class of `-extendible graphs, and

• ψ(~x) contains dlog `e more variables than ϕ(~x, y).

Proof. Let

ψ(~x) ≡ ∃z1∃z2 . . . ∃zdlog `e
∧

i∈{0,...,`−1}

∃y ϕ(~x, y) ∧ θi(y, ~z)

where

θi(y, ~z) ≡
∧

j∈{1,...,dlog `e}

{
¬(y ∼ zj) if the jth binary digit of i is 0,

y ∼ zj if the jth binary digit of i is 1.

It is easy to see that ψ has the correct semantics, using the fact that `-extendibility implies
that for all distinct a1, . . . , a` there exist b1, . . . , bdlog `e such that

∧
i∈{0,...,`−1} θi(ai,

~b).

Proposition 6.18. k/2+log k+O(1) variable suffice to define k-Clique w.h.p. on G(n, p).
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Proof. Let ` = bk2c − 1. Define formula ψ(x1, . . . , xk−`, y) by

ψ(~x, y) ≡
∧

i∈{1,...,k−`}

xi ∼ y.

ψ(~x, y) expresses that y is a common neighbor of x1, . . . , xk−`. By Lemma 6.17, there exists
a sentence χ(~x) such that

• on `-extendible graphs, χ(x1, . . . , xk−`) is logically equivalent to “x1, . . . , xk−` has > `
common neighbors”, and

• χ(x1, . . . , xk−`) has k − `+ 1 + dlog `e = k
2 + log k +O(1) variables.

Define the sentence ϕ by

ϕ ≡ ∃x1∃x2 . . . ∃xk−` ∧
∧

16i<j6k−`
xi ∼ xj

∧ ∀y∀z
(
(y 6= z) ∧ ψ(~x, y) ∧ ψ(~x, z)

)
→ (y ∼ z)

∧ χ(~x).

In plain language, ϕ says that there exist vertices x1, . . . , xk−` such that

• x1, . . . , xk−` form a clique,

• there is an edge between every two distinct common neighbors of x1, . . . , xk−`, and

• χ(~x) holds.

We will show that ϕ defines k-Clique w.h.p. on G ∼ G(n, p). We first claim that
w.h.p., G is `-extendible and contains no P -subgraph for a particular pattern P .

• Note that p(n) = min{p(n), 1 − p(n)} = ω(n−1/` log` n). Therefore, w.h.p. G is `-
extendible by Lemma 6.15.

• Let P be the pattern with VP = {1, . . . , k + 1} and

EP =

(
{1, . . . , k}

2

)
∪
{
{i, k + 1} : i ∈ {1, . . . , k − `}

}
(that is, P is a complete pattern on k vertices plus one additional vertex of degree
k − `). We have

θ(P ) 6
|VP |
|EP |

=
k + 1(

k
2

)
+ k − `

<
2

k − 1
.

Therefore, n−2/(k−1) = o(n−θ(P )). By Lemma 2.3, it follows that w.h.p. G has no
P -subgraph.

Let G be an arbitrary `-extendible graph with no P -subgraph. It suffices to show that
G |= ϕ iff G has a k-clique.

For one direction, assume that G |= ϕ. Fix witnesses x1, . . . , xk−` for the existential
quantifiers in ϕ. Since G |= χ(~x) and G is `-extendible, x1, . . . , xk−` have at least ` common
neighbors (by definition of the formula χ(~x)). Since x1, . . . , xk−` form a clique and every
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two distinct common neighbors of x1, . . . , xk−` are adjacent (by definition of ϕ), it follows
that G contains a k-clique.

For the other direction, assume that G contains a k-clique. Let x1, . . . , xk−` be any
vertices in G which belong to a k-clique. Since G is `-extendible and x1, . . . , xk−` have at
least ` common neighbors, we have G |= χ(~x). To show that G |= ϕ, it suffices to show that
every two common neighbors of x1, . . . , xk−` are adjacent. This holds thanks to the fact
that G has no P -subgraph: fix any y1, . . . , y` which extend x1, . . . , xk−` to a k-clique and
note that if x1, . . . , xk−` have any other common neighbor z /∈ {y1, . . . , y`}, then G contains
a P -subgraph on vertices ~x, ~y and z.

6.3.3 k/2 + O(1) variables suffice

In this section we shave log k off the previous k/2 + log k +O(1) upper bound.

Definition 6.19. For an integer ` > 0, let A` denote the following graph property: for all
distinct vertices x1, . . . , x`−2, y1, . . . , y`, there exists a vertex z such that

x1, . . . , x`−2, yi, yj , z have a common neighbor ⇐⇒ |i− j| 6 1

for all i, j ∈ {1, . . . , `}.

We wish to establish that A` holds w.h.p. on G(n, p) for a certain range of p(n). First,
we need a result of Shelah and Spencer [67] (from their work on a 0-1 law for random graphs
G(n, n−α) for irrational α > 0). First, a definition:

Definition 6.20. A rooted graph is a pair (R,H) where H = (VH , EH) is a graph and R
is a subset of VH . Let |VR,H | = |VH \ R| and |ER,H | = |EH \

(
R
2

)
| For α ∈ (0, 1), we say

that (R,H) is:

• α-dense if |VR,H | − α|ER,H | < 0,

• α-sparse if |VR,H | − α|ER,H | > 0,

• α-rigid if for all S with R ⊆ S ⊂ VH , (S,H) is α-dense,

• α-safe if for all S with R ⊆ S ⊆ VH , (R,H|S) is α-sparse.

Now the required lemma of Spencer of Shelah (see Ch. 5 of [70] and Ch. 10 of [4] for a
discussion of this result).

Lemma 6.21 (Generic Extension Theorem [67]). Fix α > 0 and integers r, s, t > 0. W.h.p.,
G ∼ G(n, n−α) has the property that for all vertices x1, . . . , xr and every α-safe rooted
graph (R,H) with VH = {X1, . . . , Xr, Y1, . . . , Ys} and R = {X1, . . . , Xr}, there exist vertices
y1, . . . , ys such that

• xi, yj (resp. yi, yj) are adjacent in G iff Xi, Yj (resp. Yi, Yj) are adjacent in H (note:
we don’t care if adjacencies match up between x’s and between X’s), and

• for all vertices z1, . . . , zt such that ({x1, . . . , xr, y1, . . . , ys},G|{x1,...,xr,y1,...,ys,z1,...,zt}) is
α-rigid, there are no adjacencies between any pair yi, zj.

Using Lemma 6.21, we now show the following:
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Lemma 6.22. If n−1/` 6 p(n) 6 n−1/(`+(1/2)), then w.h.p. G(n, p) has property A`.

Proof. Fix α in the range 1/(`+ 1
2) 6 α 6 1/` and let G ∼ G(n, n−α). W.h.p., G satisfies

the conclusion of Lemma 6.21 for r = 2`− 2, s = ` and t = 1. We will assume that this is
the case and show that G has property A`.

Let x1, . . . , x`−2, y1, . . . , y` be any distinct vertices of G. Consider the rooted graph
(R,H) where R = {X1, . . . , X`−2, Y1, . . . , Y`} and H = (VH , EH) is given by

VH = {X1, . . . , X`−2, Y1, . . . , Y`, Z,W1, . . . ,W`−1},

EH =
⋃

i∈{1,...,`−1}

{{X1,Wi}, . . . , {X`−2,Wi}, {Yi,Wi}, {Yi+1,Wi}, {Z,Wi}}.

Note that |VR,H | = ` and |ER,H | = `2 − 1 and hence

|VR,H | − α|ER,H | = `− `2 − 1

`
=

1

`
> 0.

Thus (R,H) is α-sparse, and indeed is α-safe. By the generic extension property of
Lemma 6.21, there exist vertices w1, . . . , w`−1, z in G such that

(i) not counting edges among x1, . . . , x`−2, y1, . . . , y`, the graph

G|{x1,...,x`−2,y1,...,y`,w1,...,w`−1,z}

(i.e., the induced subgraph of G on vertices x1, . . . , x`−2, y1, . . . , y`, w1, . . . , w`−1, z)
is isomorphic to H via the obvious bijection (xi goes to Xi, etc.), and

(ii) for every neighbor v of z, the rooted graph

({x1, . . . , x`−2, y1, . . . , y`, w1, . . . , w`−1, z},G|{x1,...,x`−2,y1,...,y`,w1,...,w`−1,z,v})

is not α-rigid.

By (i), vertices x1, . . . , x`−2, yi, yi+1, z have a common neighbor (namely, wi) for every i ∈
{1, . . . , ` − 1}. To show that G has property A`, we must show that x1, . . . , x`−2, yi, yj , z
do not have a common neighbor whenever |i − j| > 2. This follows from (ii). Toward
a contradiction, assume that for some i, j with |i − j| > 2, x1, . . . , x`−2, yi, yj , z have a
common neighbor v. Writing (R′, H ′) for the rooted graph in (ii), note that |VR′,H′ | = 1
and |ER′,H′ | > `+ 1 and hence

|VR′,H′ | − α|ER′,H′ | < 1− `+ 1

`− 1
2

< 0.

But this means that (R′, H ′) is α-dense and hence α-rigid, which contradicts (ii).

Theorem 6.23. k/2 +O(1) variable suffice to define k-Clique w.h.p. on G(n, p).

Proof. Let ` = bk−1
2 c and note that n−1/(`+(1/2)) 6 p(n) 6 n−1/` for sufficiently large n

(since p(n) = Θ(n−2/(k−1)) and ` 6 k−1
2 6 `+ 1

2). Consider a sentence ϕ with the following
semantics on a graph G: there exist vertices x1, . . . , xk−` and z such that

1. x1, . . . , xk−` form a (k − `)-clique in G,
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2. the set N = {common neighbors of x1, . . . , xk−` in G} is a clique in G (i.e., every
distinct y, y′ ∈ N are adjacent), and

3. the graph H where VH = N and

EH =
{
{y, y′} ∈

(
N
2

)
: x1, . . . , x`−2, y, y

′, z have a common neighbor in G
}

is isomorphic to a path of size ` (i.e., with ` vertices, so in particular |N | = `).

We will first show that ϕ defines k-Clique w.h.p. on G(n, p). We will then establish that
ϕ can be defined using k/2 +O(1) variables.

Every graph which satisfies ϕ clearly contains a k-clique, (since x1, . . . , xk−` form a
(k − `)-clique and have at least |N | 6 ` common neighbors). To show that ϕ defines k-
Clique w.h.p. on G(n, p), it therefore suffices to show that w.h.p. if G ∼ G(n, p) contains
a k-clique, then G satisfies ϕ. This follows from the facts that

• w.h.p. G has property A` (by Lemma 6.22),

• w.h.p. G has no P -subgraph where P is the pattern with VP = {1, . . . , k + 1} and

EP =
({1,...,k}

2

)
∪
{
{i, k + 1} : i ∈ {1, . . . , k − `}

}
(as in the proof of Proposition 6.18)2.

Indeed, if G is any graph with property A` such that G has a k-clique, but no P -subgraph,
then G must satisfy ϕ. To see this, let v1, . . . , vk be any k-clique in G. We will witness vari-
ables x1, . . . , xk−` by v1, . . . , vk−`. Since G has no P -subgraph, it follows that vk−`+1, . . . , vk
are the only common neighbors of v1, . . . , vk−`. That is, N = {vk−`+1, . . . , vk}. So parts (1)
and (2) of ϕ are satisfied. Part (3) is satisfied for some z by virtue of property A`.

It remains to show that ϕ can be expressed using only k/2 + O(1) variables. This is
obvious for parts (1) and (2) of ϕ. To see that part (3) only requires k/2 +O(1) variables,
first note that the graph property of being isomorphic to a path of size ` is definable by
a sentence with only 4 variables (hint: maximum degree 2, no isolated vertex, exactly two
“endpoints” of degree 1, distance > ` − 1 between the endpoints, and diameter 6 ` − 1).
Let ψ be any such 4-variable sentence and suppose q1, q2, q3, q4 are the variables involved
in ψ. To express “the graph H is isomorphic to a path of size `” as a formula on G with
free variables x1, . . . , xk−` and z (since H is defined in terms of these variables), we make
the following substitutions in the sentence ψ (for i, j ∈ {1, 2, 3, 4}):

• replace “∃qi . . .” with “∃qi
∧k−`
t=1 (qi ∼ xt) ∧ . . .”

• replace “∀qi . . .” with “∀qi
∧k−`
t=1 (qi ∼ xt)→ . . .”

• replace “qi ∼ qj” with “(qi 6= qj)∧∃w
∧`−2
t=1(w ∼ xt)∧ (w ∼ qi)∧ (w ∼ qj)∧ (w ∼ z)”.

Denote this new formula ψ∗(x1, . . . , xk−`, z). Note that ψ∗(x1, . . . , xk−`, z) contains k −
` + 6 = k/2 + O(1) total variables (namely, q1, q2, q3, q4, w in addition to free variables
x1, . . . , xk−`, z). Finally, note that G satisfies ψ∗(x1, . . . , xk−`, z) if and only if H satisfies
ψ. This shows that part (3) of ϕ also only requires k/2 +O(1) variables. Therefore, ϕ itself
only requires k/2 +O(1) variables.

2In the proof of Proposition 6.18, we had ` = b k
2
c − 1. Now we have b k−1

2
c. Still, θ(P ) < 2

k−1
, so G is

subcritical with respect to the existence of P -subgraphs.
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Chapter 7

Extensions and Open Problems

In this final chapter we describe some extensions of our results and discuss some further
questions raised by our work.

7.1 Extensions of our results

In this section we mention some extensions of our results and techniques:

• (§7.1.1) We identify the size-depth and size-gaps tradeoffs at the boundaries of our lower
bounds.

• (§7.1.2) We give a version of our lower bounds with larger planted cliques.

• (§7.1.3) We mention a lower bound of Amano [6], using our techniques, for the subgraph
isomorphism problem.

7.1.1 Size-depth and size-gap tradeoffs

Our lower bound of Ω(nk) for bounded-depth circuits (Theorem 3.1) exhibits no size-depth
tradeoff up to depth k−2 log n/ log logn. Above depth k−2 log n/ log logn, however, our
bound begins to exhibit a tradeoff. We state this tradeoff below, followed by a brief expla-
nation of the changes to the proof required for this different range of parameters. As usual,
p(n) = Θ(n−2/(k−1)).

Theorem 7.1. For all λ ∈ (0, 1), Boolean circuits of size O(n(1−λ)k/4) and depth
λk−1 log n/ log logn cannot solve k-Clique w.h.p. on G(n, p).

For example, we get a lower bound of Ω(nk/8) for circuits of depth 1
2k
−1 log n/ log log n.

To prove Theorem 7.1, we need only to modify single lemma (Lemma 3.15) in the proof of
Theorem 3.1. The modified lemma is as follows:

Lemma 7.2. Let P be a fixed small or medium pattern and let p(n) = n−2/(k−1). Suppose f :

G n → {0, 1}no(1)
is computed by circuits of size nO(1) and depth λk−1 log n/ log log n+O(1).

Then

Pr
G∼G(n,p)

H∼Plant(n,P )

[
H is an fG-core

]
=

{
o(n−1) if P is nonempty,

o(n−(1−λ) k
4
− 1

4 ) if P is medium.
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The proof of Lemma 7.2 is the same as the proof of Lemma 3.15, except that we set
q(n) to n−(λk−1+k−3) instead of n−(k−2+k−3).

We get a similar “size-gap tradeoff” for our monotone circuit lower bound:

Theorem 7.3. For all λ ∈ (0, 1), monotone circuits of size O(n(1−λ)k/4) cannot solve
k-Clique w.h.p. on both G(n, p) and G(n, p+ p1+λk−1

).

Compared with Theorem 4.1, the “gap” between the two thresholds is reduced from
p1+k−2

to p1+λk−1
. The proof of this theorem modifies the argument of Theorem 4.1 simply

by setting δ equal to λk−1 instead of k−2.

7.1.2 Planting a larger clique

Our two primary lower bounds (Theorems 3.2 and 4.3) can be strengthened in the direction
of planting a larger clique.

Theorem 7.4. Let f be a Boolean graph function and let G ∼ G(n, p) and G− ∼
G(n, p1+k−2

) and Kκ(n) ∼ Plant(n,Kκ(n)) where κ(n) = dnk−2e.

1. If f is computed by Boolean circuits of size O(nk/4) and depth k−2 log n/ log log n,
then w.h.p. f(G) = f(G ∪Kκ(n)).

2. If f is computed by monotone circuits of size O(nk/4) and E[f(Kκ(n))] = 1 − o(1),

then E[f(G−)] = 1− exp(−Ω(nk
−2

)).

Here k is still fixed, but we are considering the random planted κ(n)-cliqueKκ(n) instead
of the random planted k-clique Kk (as in Theorems 3.2 and 4.3). To prove Theorem 7.4
we observe that the only relevant fact in the proofs of Theorems 3.2 and 4.1 is that Kk

has o(n1/k) medium subgraphs (indeed, Kk has only 2(k2) subgraphs). These proofs remain

valid for Theorem 7.4 since Kκ(n) has at most 2(k−1
2 )(κ(n)

k−1

)
= o(n1/k) medium subgraphs

(note that medium graphs have at most k − 1 non-isolated vertices).

7.1.3 Subgraph isomorphism problem

For a fixed graph H, the H-subgraph isomorphism problem is the problem of determining
whether a graph contains a subgraph isomorphic to H. Using our technique on bounded-
depth circuits (as presented in the paper [64]), Amano [6] proved a lower bound of Ω(nc(H))
for the average-case complexity on AC0 circuits of the H-subgraph isomorphism problem for
every fixed H. Here c(H) is a constant depending on H (for instance, c(Kk) = k/4). The
generalization is achieved essentially by picking an appropriate class of “small” patterns
P relative to the graph H (for instance, as in the case H = Kk, one could define “small”
to mean “has < |VH | non-isolated vertices”). Additionally, Amano proved a lower bound
of Ω(nk(1−(ln `+2)/(`−1))) for the average-case complexity on AC0 circuits of the k-clique
problem on `-uniform hypergraphs for all k > ` > 2. This lower bound leads to a stronger
Size Hierarchy Theorem for uniform AC0: whereas our result implies that

uniform AC0(size O(nk/4)) 6= uniform AC0(size O(nk))

for all k ∈ N (hence the size hierarchy is infinite), Amano obtains the sharper result that

uniform AC0(size O(nα)) 6= uniform AC0(size O(nβ))

for all β > α > 0 (hence the size hierarchy is strict).
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7.2 Open problems

We conclude by mentioning a few questions raised by this work:

• (§7.2.1) What is the complexity of finding a clique of size (1
2 + ε)k in the random graph

G(n, n−2/(k−1))?

• (§7.2.2) Does our lower bound for monotone circuits hold at a single threshold?

We pose some additional questions in §7.2.3.

7.2.1 Karp’s question at the k-clique threshold

We recall a question stated earlier in §1.2.2:

Question 7.5. Is there an O(n(1−δ)ε2k) algorithm which w.h.p. finds a clique of size (1
2 +ε)k

in G(n, n−2/(k−1)), for any constants δ > 0 and ε ∈ (0, 1
2)?

This question is a “scaling” to G(n, n−2/(k−1)) of Karp’s question [46] about finding
cliques of size (1 + ε) log n in G(n, 1

2) in polynomial time (see §1.2.1). One direction of
future research is to show, using the techniques of this thesis, that the answer to Question
7.5 is “no” for bounded-depth circuits.

7.2.2 Monotone lower bound at a single threshold

We showed that monotone circuits of size O(nk/4) cannot solve k-Clique w.h.p. on both
G(n, p1) and G(n, p2) for two sufficiently separated threshold functions (Theorem 4.1). It is
open whether this lower bound can be extended to monotone circuits which solve k-Clique
at a single threshold (as in our bounded-depth circuit result). We conjecture that it can.

Conjecture 7.6. Monotone circuits of size O(nk/4) cannot solve k-Clique w.h.p. on
G(n, n−2/(k−1)).

We feel that Conjecture 7.6 may be a hard problem. In particular, it seems to call for
an approach outside the framework of Razborov’s approximation method, which seems to
break down when the distributions on positive and negative inputs are brought too close
together.

7.2.3 Additional questions

We briefly mention a few additional questions and directions for future work.

1. What is the worst-case complexity of k-Clique on constant-depth circuits? Similarly,
how many variables are needed to express “there exists a k-clique” on finite ordered graphs,
in the usual (non-average-case) sense? Despite our results for the average case, upper
bounds of nk−Ω(1) or < k variables would be surprising.
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2. We showed that k/4 first-order variables are necessary to define k-Clique in the average
case on finite linearly ordered graphs. Are k/4 +O(1) variables sufficient? We suspect that
the answer is “yes”. This can perhaps be shown using ideas along the lines of our k/2+O(1)
variable upper bound for unordered graphs (but we have not worked out the details). We
remark that k/4+O(1) variables are sufficient on graphs with built-in arithmetic operations
+ and ×. (This follows from the observation that the circuits in our upper bound, Theorem
5.1, can be made uniform, together with a descriptive complexity characterization of uniform
AC0 [37].)

3. What is the minimum quantifier rank required to define k-Clique in the average case
on graphs (with or with a linear order)? Joel Spencer (personal communication) observed
that, for all k in the range of a certain “busy beaver” function BB : N → N, quantifier
rank k/2 + BB−1(k) + O(1) is sufficient. It would be interesting to see a lower bound of
k/2 + ωk(1).

4. Finally, in §4.3 we introduced a new notion of “quasi-sunflowers” (Definition 4.9) and
gave a “quasi-sunflower lemma” (Theorem 4.11) along the lines of the Erdős-Rado sunflower
lemma [26], which played a key role in our monotone circuit lower bound. Since quasi-
sunflowers seem to be a natural relaxation of sunflowers, it would be interesting to see other
applications.
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[26] Paul Erdős and Richard Rado. Intersection theorems for systems of sets. J. London
Math. Soc., 35:85–90, 1960.

[27] Paul Erdős and Alfred Rényi. On the evolution of random graphs. Mat. Kutató Int.
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