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Abstract

We consider the problem of determining whether an Erdős-Rényi
random graph contains a subgraph isomorphic to a fixed pattern, such
as a clique or cycle of constant size. The computational complexity
of this problem is tied to fundamental open questions including P vs.
NP and NC 1 vs. L. We give an overview of unconditional average-
case lower bounds for this problem (and its colored variant) in a few
important restricted classes of Boolean circuits.

1 Background and preliminaries

The subgraph isomorphism problem is the computational task of determining
whether a “host” graph H contains a subgraph isomorphic to a “pattern”
graph G. When both G and H are given as input, this is a classic NP -
complete problem which generalizes both maximum clique and hamilto-
nian cycle [20]. We refer to the G-subgraph isomorphism problem in the
setting where the pattern G is fixed and H alone is given as input. As spe-
cial cases, this includes the k-clique and k-cycle problems when G is a
complete graph or cycle of order k.

For patterns G of order k, the G-subgraph isomorphism problem is solv-
able in time O(nk) by the obvious exhaustive search.1 This upper bound
can be improved to O(nαdk/3e) using any O(nα) time algorithm for fast ma-
trix multiplication [28] (the current record has α < 2.38 [23]). Additional
upper bounds are tied to structural parameters of G, such as an O(nw+1)
time algorithm for patterns G of tree-width w [30]. (See [26] for a survey on
upper bounds.)

1Throughout this article, asymptotic notation (O(·), Ω(·), etc.), whenever bounding a
function of n, hides constants that may depend on G.
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The focus of this article are lower bounds which show that theG-subgraph
isomorphism problem cannot be solved with insufficient computational re-
sources. It is conjectured that k-clique requires time nΩ(k) and that a
colored version of G-subgraph isomorphism (described in §2) requires time
nΩ(w/ logw) for patterns G of tree-width w. Conditionally, these lower bounds
are known to follow from the Exponential Time Hypothesis [9, 25]. Prov-
ing such lower bounds unconditionally would separate P from NP in a very
strong way. Since that goal is a long way off, we shall restrict attention
to complexity measures much weaker than sequential time; specifically, we
focus on restricted classes of Boolean circuits (described in §1.2).

1.1 The average-case setting

The lower bounds for the G-subgraph isomorphism problem described in
this article are obtained in the natural average-case setting where the input
is an Erdős-Rényi graph Gn,p (or G-colored version thereof). This is the
random n-vertex graph in which each potential edge is included indepen-
dently with probability p. For many patterns of interest including cliques
and cycles, Gn,p is conjectured to be a source of hard-on-average instances
at an appropriate threshold p. These conjectures are natural targets for
the combinatorial and probabilistic approach of circuit complexity. Strong
enough lower bounds for the average-case G-subgraph isomorphism prob-
lem would resolve P vs. NP and other fundamental questions, as we explain
next.

In the average-case version of the k-clique problem, we are given an
Erdős-Rényi graph Gn,p at the critical threshold p = Θ(n−2/(k−1)) (where
the existence of a k-clique occurs with probability bounded away from 0
and 1). Our task is to determine, asymptotically almost surely2 correctly,
whether or not the given graph contains a k-clique. One natural approach
is to make several independent runs of the following randomized greedy al-
gorithm: start with a uniform random vertex v1, then select a vertex v2

uniformly at random from among the neighbors of v1, next select a vertex
v3 uniformly at random from among the common neighbors v1 and v2, and
so on until reaching a maximal (though not necessarily maximum) clique in
the given graph. It is easy to show that a single run of the greedy algorithm
on Gn,p, which only requires linear time with very high probability, almost

surely produces a clique of size bk2c or dk2e. To find a clique of size b (1+ε)k
2 c

2Throughout this article, asymptotically almost surely (abbreviated as a.a.s.) means
with probability 1− o(1), that is, with probability that tends to 1 as n→∞.
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where ε < 1, it suffices to repeat the greedy algorithm nε
2k/4 times, while

nk/4+O(1/k) iterations suffice to find a k-clique in Gn,p if any exists. The
average-case k-clique problem is thus solvable in time nk/4+O(1).

It is unknown whether this iterated greedy algorithm is optimal. In
other words, is Ω(nk/4) a lower bound on the complexity of the average-
case k-clique problem? This question may be seen a scaled-down version
of a famous open question of Karp [21] concerning the uniform random
graph Gn,1/2. It is well-known that Gn,1/2 has expected maximum clique
size ≈ 2 log n, while the randomized greedy algorithm almost surely finds a
clique of size ≈ log n. Karp asked whether any polynomial-time algorithm
a.a.s. succeeds in finding a clique of size (1 + ε) log n for any constant ε > 0.
Karp’s question, together with a variant where Gn,1/2 is augmented by a
very large planted clique, have stimulated a great deal of research in theo-
retical computer science. The hardness of detecting planted cliques is used
as a cryptographic assumption [18], while lower bounds have been shown
against specific algorithms such as the metropolis process [17], the sum-of-
squares semidefinite programming hierarchy [4], and a class of statistical
query algorithms [10].

The k-cycle problem is another instance where Gn,p at the critical
threshold p = Θ(1/n) is thought to be a source of hard-on-average instances.
Compared to the k-clique problem, the average-case k-cycle problem has
relatively low complexity: it is solvable in just n2+o(1) time and moreover
in logarithmic space. Nevertheless, Gn,p is believed to be hard-on-average
with respect to formula size (a combinatorial complexity measure which we
shall discuss shortly). The smallest known formulas solving k-cycle have
size nO(log k) and this upper bound is conjectured to be optimal even in the
average-case. Proving such a lower bound unconditionally would separate
complexity classes NC 1 and L.

1.2 Circuit complexity

Circuit complexity is the quest for unconditional lower bounds in combinato-
rial models of computation. Among such models, Boolean circuits (acyclic
networks of ∧, ∨ and ¬ gates) are the most basic and important. Every
polynomial-time algorithm can be implemented by a sequence of polynomial-
size Boolean circuits, one for each input length n. To separate P from NP , it
therefore suffices to prove a super-polynomial lower bound on the minimum
circuit size of any problem in NP , as represented by a sequence of Boolean
functions {0, 1}n → {0, 1}.

Claude Shannon in 1949 showed that almost all Boolean functions re-
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quire circuits of exponential size [39]. Yet after nearly 70 years of efforts, no
one has yet proved a super-linear lower bound on the circuit size of any ex-
plicit Boolean function. In the meantime, the majority of research in circuit
complexity has focused on restricted classes of Boolean circuits and other
combinatorial models with the aim of developing sharper insights and tech-
niques. Below, we describe three natural and important restricted settings:
formulas (tree-like circuits), the AC 0 setting (bounded alternation), and the
monotone setting (the absence of negations).

Definitions. A circuit is a finite directed acyclic graph in which every
node of in-degree 0 (“input”) is labeled by a literal (i.e., a variable xi or its
negation ¬xi), there is a unique node of out-degree 0 (the “output”), and
each non-input (“gate”) has in-degree 2 and is labeled by ∧ or ∨. Every n-
variable circuit computes a Boolean function {0, 1}n → {0, 1} in the obvious
way.

The size of a circuit is the number of gates it contains. The complexity
class P/poly consists of sequences of Boolean functions {0, 1}n → {0, 1}
computable by n-variable circuits of polynomial size (i.e., O(nc) for any
constant c). (The more familiar class P is obtained by imposing a uniformity
condition on the sequence of n-variable circuits.)

The depth of a circuit is the maximum number of gates on an input-to-
output path. The class NC 1 consists of Boolean functions computable by
circuits of depth O(log n). Note that size(C) ≤ 2depth(C) for all circuits C,
hence NC 1 ⊆ P/poly . This containment is believed but not known to be
proper.

The alternation-depth of a circuit is the maximum number of alternations
between ∧ and ∨ gates on an input-to-output path. The complexity class
AC 0 consists of Boolean functions computed by circuits of polynomial size
and constant alternation-depth.3 Breakthrough lower bounds of the 1980’s
showed that AC 0 is a proper subclass of NC 1 [1, 11]. Quantitatively, the
strongest of these lower bounds shows that circuits with alternation-depth
d require size 2Ω(n1/(d−1)) to compute the n-variable parity function [14].

Another important restricted class of circuits are formulas: circuits with
the structure of a binary tree (i.e., in which every non-output node has out-
degree 1). In the context of formulas, size and depth are closely related
complexity measures, as every formula of size s is equivalent to a formula of

3AC 0 is usually defined in terms of constant depth circuits with AND and OR gates
of unbounded in-degree. In this article, we adopt the equivalent definition in terms of
alternation-depth, since the simplest version of our lower bounds naturally applies to
binary ∧ and ∨ gates.
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depth O(log s) [40]. As a corollary, NC 1 is equivalent to the class of Boolean
functions computed by polynomial-size formulas.

In contrast to circuits, formulas are memoryless in the sense that the
result of each sub-computation is only used once. However, despite this ob-
vious weakness, the strongest lower bound on the formula size of an explicit
Boolean function is only n3−o(1) [15, 41]. The challenge of proving a super-
polynomial formula-size lower bound (i.e., showing that any explicit Boolean
function is not in NC 1 ) is one of the major frontiers in circuit complexity.

1.3 The monotone setting

Monotonicity is both a property of circuits and a property of Boolean func-
tions. A circuit is monotone if it has no negations (i.e., inputs are labeled
by positive literals only). A Boolean function f : {0, 1}n → {0, 1} is mono-
tone if f(x) ≤ f(y) whenever xi ≤ yi for all coordinates i. Note that the
G-subgraph isomorphism problem is monotone when viewed as a sequence

of functions {0, 1}(
n
2) → {0, 1}.

It is natural to study the monotone complexity of monotone functions
f (i.e., the minimum size of a monotone circuit or formula which computes
f). This has been an extremely fruitful restricted setting in circuit com-
plexity beginning with celebrated results in the 1980’s. In a groundbreak-
ing paper which introduced the sunflower-plucking approximation method,
Razborov [33] showed that the k-clique problem requires monotone circuits
of size Ω(nk/(log n)2k) for any constant k.4 By an entirely different tech-
nique based on communication complexity, Karchmer and Wigderson [19]
proved an nΩ(log k) lower bound on the size of monotone formulas solving
distance-k st-connectivity, a problem which is equivalent to k-cycle
up to a polynomial factor. These results and several others [12, 29, 31, 32]
imply essentially all separations AC 0 ⊂ TC 0 ⊂ NC 1 ⊂ L ⊂ NL ⊂ P ⊂
NP in the monotone world (i.e., for the monotone versions of these classes),
whereas in the non-monotone world it is open whether TC 0 (the class of
constant-depth threshold circuits) is equal to NP .

Unfortunately, it is unclear if any of the lower bound techniques devel-
oped in the monotone setting have the potential to extend to non-monotone
classes. A “barrier” emerges from the observation that essentially all mono-
tone lower bounds in the literature are obtained by pitting a class of sparse
1-inputs (e.g., isolated k-cliques or st-paths) against a class of dense 0-inputs

4Note that this monotone lower bound is quantitatively stronger than the non-
monotone O(n2.73dk/3e) upper bound from fast matrix multiplication. This reveals a gap
between monotone vs. non-monotone complexity (see [42]).
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(complete k − 1-partite graphs or st-cuts). In this circumstance, note that
the sets of relevant 0- and 1-inputs are separable (in the anti-monotone di-
rection) by a mere threshold function. No monotone lower bound with this
property can therefore extend to TC 0 .

This observation motivates the challenge of proving average-case lower
bounds under product distributions in the monotone setting, in particular
for problems like k-clique and k-cycle on Erdős-Rényi graphs. This chal-
lenge may be seen as a step toward non-monotone lower bounds insofar as
product distributions like Gn,p resemble slice distributions like Gn,m (the
random graph with exactly m edges), due to the fact that monotone and
non-monotone complexity measures coincide on slice distributions up to a
polynomial factor [6].

1.4 Outline of the article

In the rest of this article, we give an overview of lower bounds which char-
acterize the circuit size, as well as the formula size, of the average-case
G-subgraph isomorphism problem in both the AC 0 and monotone settings.
The basic technique originated in work of the author [35] where it is shown
that AC 0 circuits solving the average-case k-clique problem require size
Ω(nk/4), matching the upper bound from the greedy algorithm. This result
improved the previous Ω(nk/89d2

) lower bound of Beame [5] for circuits of
alternation-depth d. This is significant for eliminating the dependence on d
in the exponent of n up to O(log n/k2 log logn), at which point the technique
breaks down (though the lower bound is conjectured to hold for unbounded
d).

Amano [3] generalized the technique to the G-subgraph isomorphism
problem for arbitrary patterns G and also gave an extension to hypergraphs.
Subsequent work of Li, Razborov and the author [24] further generalized
the technique to a colored variant of the G-subgraph isomorphism problem,
obtaining an nΩ(w/ logw) lower bound for patterns of tree-width w. This
result is presented in §4.

The challenge of proving stronger lower bounds for formulas was ad-
dressed by the author in [36] where it is shown that AC 0 formulas solving
the average-case k-cycle problem require size nΩ(log k). This result sharply
separates the power of formulas vs. circuits in the AC 0 setting, as k-cycle
is solvable by AC 0 circuits of size nO(1). A lower bound for arbitrary pat-
terns G in terms of tree-depth (a graph invariant akin to tree-width) was
subsequently shown using recent results in graph minor theory [22] (joint
work with Kawarabayashi). These results are described in §5.
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These lower bounds in the AC 0 setting apply more generally to any
Boolean circuit (or formula) all of whose subcircuits (subformulas) have “low
sensitivity with respect to planted subgraphs of G” in a certain sense made
precise in §3. By considering a different notion of “sensitivity”, quantita-
tively similar lower bounds for monotone circuits and formulas are obtained
in [37, 38]. For most patterns G, these lower bounds are merely average-case
with respect to a non-product distribution (a convex combination of Gn,p

and Gn,p+o(p)). However, in the special case of the k-cycle problem, the
technique produces an average-case lower bound under Gn,p. This is sig-
nificant for being the first super-polynomial lower bound against monotone
formulas under any product distribution.

It is hoped that the framework behind these lower bounds might even-
tually offer an approach to proving super-polynomial lower bounds for un-
restricted Boolean formulas and circuits.

2 Colored G-subgraph isomorphism

The main target problem for our lower bounds is actually a colored version of
the G-subgraph isomorphism problem, which we denote by SUB(G). In this
problem, the input is a G-colored graph X with vertex set V (G)×{1, . . . , n}
and the task to determine whether X contains a copy of the pattern G that
involves one vertex from each color class. Compared with the previously
discussed uncolored G-subgraph isomorphism problem, which we denote by
SUBuncol(G), the colored variant turns out to be better structured and admits
a richer class of threshold distributions. All average-case lower bounds for
SUB(G) in this article extend to the average-case SUBuncol(G) as a special
case (as we explain in Example 2.6).

Definitions. All graphs in this article are finite simple graphs without
isolated vertices. Formally, a graph G consists of a set V (G) of vertices and a
set E(G) ⊆

(
V (G)

2

)
of unordered edges such that V (G) =

⋃
{v,w}∈E(G){v, w}.

A subgraph of G is a graph H such that E(H) ⊆ E(G) (we simply write H ⊆
G). A graph G thus has 2|E(G)| subgraphs, which are naturally identified
with points in the hypercube {0, 1}|E(G)|. An isomorphism between graphs
G and G′ is a bijection π : V (G) → V (G′) such that {v, w} ∈ E(G) ⇔
{π(v), π(w)} ∈ E(G′) for all distinct vertices v, w of G.

The n-blowup of a graph G, denoted G↑n, has vertices v(1), . . . , v(n) for
each v ∈ V (G) and edges {v(a), w(b)} for each {v, w} ∈ E(G) and a, b ∈ [n]
(:= {1, . . . , n}). We view G↑n and its subgraphs as “G-colored graphs” under
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the vertex-coloring v(a) 7→ v.
The colored G-subgraph isomorphism problem, denoted SUB(G) for short,

is the computational task, given a G-colored graph X ⊆ G↑n as input, of de-
termining whether X contains a subgraph that is isomorphic G via the map
v(a) 7→ v. Formally, this problem is represented by a sequence of Boolean
functions {0, 1}kn2 → {0, 1} where k = |E(G)| and kn2 = |E(G↑n)|.

Henceforth, H is always a subgraph of G, while X is a subgraph of G↑n.
For an element α ∈ [n]V (H), let H(α) denote the copy of H in G↑n with
vertices v(αv) for v ∈ V (H) and edges {v(αv), w(αw)} for {v, w} ∈ E(H). We
refer to subgraphs of X of the form H(α) as H-subgraphs of X. Let subH(X)
denote the number of H-subgraphs of X, that is, subH(X) := |{α ∈ [n]V (H) :
H(α) ⊆ X}|.

On the relationship between SUBuncol(G) and SUB(G). For every pat-
tern G, the color-coding method of [2] provides an efficient many-one re-
duction from SUBuncol(G) to SUB(G). The colored version of G-subgraph
isomorphism is therefore the harder problem in general. However, for many
graphs G of interest such as cliques, these two problems are in fact equiv-
alent. Namely, if G is a core (meaning every homomorphism G → G is an
isomorphism), then there is a trivial reduction from SUB(G) to SUBuncol(G),
as the only subgraphs of G↑n that are isomorphic to G are those of the
form G(α).

2.1 Threshold random graphs

For the average-case analysis of the problem SUB(G), it is natural to study
a G-colored version of the Erdős-Rényi random graph. For a vector ~p ∈
[0, 1]E(G) of edge probabilities (one pe ∈ [0, 1] for each e ∈ E(G)), let Gn,~p

denote the random subgraph of G↑n which includes each potential edge
{v(a), w(b)} independently with probability p{v,w}. The class of “threshold
vectors” for the existence of G-subgraphs in Gn,~p has a characterization in
terms of certain edge-weightings on G.

Definition 2.1 (Threshold weighting). Let G be a graph, let θ be a function
E(G)→ [0, 2], and let ∆θ be the function {subgraphs of G} → R≥0 defined
by

∆θ(H) := |V (H)| −
∑

e∈E(H) θ(e).

We say that θ is a threshold weighting on G if ∆θ(G) = 0 and ∆θ(H) ≥ 0
for all H ⊆ G. We say that θ is strict if, moreover, ∆θ(H) > 0 for all proper
subgraphs ∅ ⊂ H ⊂ G.
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The set of threshold weightings onG forms a convex polytope in [0, 2]E(G).
For connected graphs G, the strict threshold weightings form the interior
of this polytope. Note that only connected graphs admit strict threshold
weightings, as it follows from the definition that ∆θ(H) = 0 whenever H is
a union of connected components of G.

Example 2.2. For every graph G, the function θ : E(G) → [0, 2] defined
by θ({v, w}) := 1

deg(v) + 1
deg(w) is a threshold weighting. In particular, if G is

r-regular, then the constant function θ = 2
r is a threshold weighting. (Two

additional constructions of threshold weightings are described at the end of
this section.)

Definition 2.3 (The random graph Xθ). Every threshold weighting θ on
G gives rise to a sequence of random graphs Xn,θ, defined as the G-colored
Erdős-Rényi graph Gn,~p where ~p ∈ [0, 1]E(G) is the vector of edge probabili-
ties pe = n−θ(e). That is, Xn,θ is the random subgraph of G↑n which includes
each potential edge {v(a), w(b)} independently with probability n−θ({v,w}).
To simplify notation, we will generally omit the parameter n and simply
write Xθ.

Observe that the function ∆θ characterizes the expected number of H-
subgraphs in Xθ: for every H ⊆ G, we have E[ subH(Xθ) ] = n∆θ(H) by
linearity of expectation. In particular, subG(Xθ) has expectation 1 (since
∆θ(G) = 0). Moreover, when θ is strict, subG(Xθ) is asymptotically Pois-
son and subH(Xθ) is highly concentrated around its mean for all proper
subgraphs H ⊂ G.

Proposition 2.4. For every graph G and threshold weighting θ, the proba-
bility that Xθ contains a G-subgraph converges to a limit in (0, 1). When θ
is strict, this limit is 1− 1

e .

In light of Proposition 2.4, it makes sense to study the average-case com-
plexity of SUB(G) onXθ, that is, the complexity of functions f : {subgraphs
of G↑n} → {0, 1} such that f(Xθ) = 1 ⇔ subG(Xθ) ≥ 1 holds asymptot-
ically almost surely. We conclude this section with two constructions of
threshold weightings.

Example 2.5 (Threshold weightings from Markov chains). Let G be any
graph and let M : V (G)× V (G)→ [0, 1] be a Markov chain on G satisfying

• M(v, w) > 0⇒ {v, w} ∈ E(G) and

•
∑

wM(v, w) = 1 for every v.
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Then the function E(G) → [0, 2] given by {v, w} 7→ M(v, w) + M(w, v) is
a threshold weighting on G. (This construction generalizes Example 2.2,
which corresponds to the Markov chain where M(v, w) = 1

deg(v) for every

{v, w} ∈ E(G).) The associated function ∆M has the property that ∆M (H)
equals the amount of M -flow leaving the subgraph H (i.e.,

∑
v,wM(v, w)

over pairs v, w with v ∈ V (H) and {v, w} ∈ E(G) \ E(H)). In §4.1 we use
this construction of threshold weightings to bound the AC 0 circuit size of
SUB(G) in terms of the tree-width of G.

Example 2.6 (The uncolored setting). The threshold for the existence of
G-subgraphs in the Erdős-Rényi random graph Gn,p is well-known to be

p = Θ(n−c) where c is the constant minH⊆G
|V (H)|
|E(H)| [7]. For all intents and

purposes, the average-case analysis of SUBuncol(G) on Gn,p is equivalent to
the average-case analysis of SUB(G) on Xθuncol

where θuncol : E(G)→ {0, c}
is the threshold weighting defined by θuncol(e) = c ⇔ there exists H ⊆ G

such that e ∈ E(H) and |V (H)|
|E(H)| = c. All lower and upper bounds described in

this article translate easily between these two average-case settings, modulo
insignificant constant factors as between n|V (G)| and

(
n

|V (G)|
)
.

3 H-subgraph sensitivity

AC 0 functions are known to have low average sensitivity in the following
sense [8]: for any AC 0 function f : {0, 1}n → {0, 1} and independent uni-
form random x ∈ {0, 1}n and i ∈ [n], it holds that

Pr
x,i

[ f(x) 6= f(x with its ith coordinate flipped) ] ≤ n−1+o(1).

Analogously, a key lemma in our lower bounds shows that AC 0 functions
f : {subgraphs of G↑n} → {0, 1} have what might be termed “low average
H-subgraph sensitivity on Xθ”.

Definition 3.1. For any graph F , let B(F ) denote the set of functions
{subgraphs of F} → {0, 1}.

We say that a function f ∈ B(F ) depend on all coordinates if for every
e ∈ E(F ), there exists a subgraph F ′ ⊆ F such that f(F ′) 6= f(F ′−e) where
F ′ − e is the graph with edge set E(F ′) \ {e} (in other words, if f depends
on all coordinates when viewed as a Boolean function {0, 1}|E(F )| → {0, 1}).

For a function f ∈ B(F ) and graphs X,H ⊆ F ,

• let f∪X ∈ B(F ) denote the function f∪X(F ′) := f(X ∪ F ′) and
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• let f�H ∈ B(H) denote the restriction of f to domain {subgraphs of
H}.

Note that the function f∪X�H ∈ B(H) depends on all coordinates if, and
only if, for every e ∈ E(H), there exists a subgraph H ′ ⊆ H such that
f(X ∪H ′) 6= f(X ∪ (H ′ − e)).

Fix any graph G and threshold weighting θ. Consider any subgraph
H ⊆ G and let α be a uniform random element of [n]V (H), independent
of Xθ. For a function f ∈ B(G↑n), we consider the randomly restricted
function f∪Xθ�H(α) ∈ B(H(α)). When f is AC 0 -computable, the following
lemma bounds the probability that f∪Xθ�H(α) depends on all coordinates.

Lemma 3.2 (H-subgraph sensitivity of AC 0 functions [24]). Suppose f ∈
B(G↑n) is an AC 0 -computable sequence of functions. Then for every sub-
graph H ⊆ G,

Pr
Xθ,α∈[n]V (H)

[ f∪Xθ�H(α) depends on all coordinates ] ≤ n−∆θ(H)+o(1).

When ∆θ(H) > 0, the n−∆θ(H)+o(1) bound of Lemma 3.2 is nontrivial
and moreover tight.5 However, note that this lemma says nothing when
∆θ(H) = 0, in particular when H = G. The main tools in the proof are
H̊astad’s Switching Lemma [14], which shows that random restrictions sim-
plify AC 0 circuits, and Janson’s Inequality [16], which implies lower tail
bounds for random variables subH(Xθ). The assumption that f is AC 0 -
computable is necessary, as for instance if f is the parity function (mapping
X ⊆ G↑n to |E(X)| mod 2), then the restricted function f∪Xθ�H(α) depends
on all coordinates with probability 1. (In the case that H is a single-edge
subgraph of G, Lemma 3.2 essentially equivalent to aforementioned bound
on the average sensitivity of AC 0 functions, only with respect to a product
distribution rather than the uniform distribution.)

The next lemma is an analogue of Lemma 3.2 in the monotone setting.
It shows that every monotone function, irrespective of its monotone cir-
cuit complexity, has “low average H-subgraph sensitivity of f on Xθ” in
a different sense. Namely, we consider the event that H(α) is a common
minterm of f and f∪Xθ (i.e., f(H(α)) = 1 and f∪Xθ(H(α)−e) = 0 for every
e ∈ E(H(α))).

5Let f be the function f(X) = 1⇔
∨
α∈A(H(α) ⊆ X) where A is a generic (i.e., almost

any choice of) subset of [n]V (H) of size |A| = n|V (H)|−∆θ(H). Then f is AC 0 -computable
and Pr[ f∪Xθ �H(α) depends on all coordinates ] = Ω(n−∆θ(H)).
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Lemma 3.3 (H-subgraph sensitivity of monotone functions [38]). For every
monotone function f ∈ B(G↑n) and subgraph H ⊆ G,

Pr
Xθ,α∈[n]V (H)

[ H(α) is a common minterm f and f∪Xθ ] ≤ n−∆θ(H)+o(1).

In §5.3 we explain how Lemma 3.3 is used in place of Lemma 3.2 to derive
lower bounds for monotone circuits and formulas using the same framework
as our AC 0 lower bounds.

4 The AC 0 circuit size of SUB(G)

This section presents results of Li, Razborov and the author [24], which
characterize the average-case AC 0 circuit size of SUB(G) on Xθ for any G
and θ in terms of a combinatorial invariant κθ(G). This invariant is defined
by dual min-max and max-min expressions.

Definition 4.1. A union family for a graph G is a set F of subgraphs of
G such that G ∈ F and every F ∈ F with at least two edges is the union
of two proper subgraphs which both belong to F (i.e., there exist proper
subgraphs F1, F2 ⊂ F with F1 ∪ F2 = F and F1, F2 ∈ F). Intuitively, F
is a blueprint for constructing G out of individual edges by taking pairwise
unions of subgraphs.

A hitting family for G is a set H of subgraphs of G such that F ∩H 6= ∅
for every union family F for G.

For any threshold weighting θ on G, the invariant κθ(G) is defined by
the pair of dual expressions

κθ(G) := min
union families F

max
F∈F

∆θ(F ) = max
hitting families H

min
H∈H

∆θ(H).

Example 4.2. We illustrate these definitions by working through an ex-
ample. Let Kk be the k-clique graph (i.e., the complete graph of order
k ≥ 2) and let θ be the constant threshold weighting 2

k−1 . We will show

that κθ(Kk) = k
4 + O( 1

k ) by constructing a union family F and a hitting
family H that witness matching upper and lower bounds for κθ(Kk).

Let F be the set of subgraphs F ⊆ Kk such that F is either a clique (i.e.,
a complete subgraph KI ⊆ Kk where I ⊆ [k] with |I| ≥ 2) or a clique minus
a single edge. Note that F is a union family for Kk, as Kk ∈ F and every
graph in F with at least two edges is the union of two proper subgraphs
in F (e.g., K{1,...,j} minus the edge {1, j} is the union of K{1,...,j−1} and
K{2,...,j}). A straightforward calculation shows κθ(Kk) ≤ maxF∈F ∆θ(F ) =
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maxF∈F |V (F )| − 2
k−1 |E(F )| = k

4 +O( 1
k ), where this maximum over F ∈ F

is attained by a clique of size dk2e minus a single edge.
To obtain a matching lower bound on κθ(Kk), we consider the hitting

family H consisting of subgraphs H ⊆ Kk such that |V (H)| ≥ k
2 and H =

H1 ∪H2 for some H1, H2 satisfying |V (H1)|, |V (H2)| < k
2 . The minimum of

∆θ(H) over H ∈ H is again attained by a clique of size dk2e minus a single

edge. This shows that the k
4 +O( 1

k ) upper bound coming from F is tight.

Example 4.3. If G is an r-regular expander and θ = 2
r , then we obtain

a lower bound κθ(G) = Ω(|V (G)|) (for a constant depending on the edge-

expansion of G) by considering the hitting family {H ⊆ G : 1
3 ≤

|V (H)|
|V (G)| <

2
3}.

We next state the main theorem of [24] and outline its proof.

Theorem 4.4. For every graph G and threshold weighting θ, the average-
case AC 0 circuit size of SUB(G) on Xθ is at least nκθ(G)−o(1) and at most
n2κθ(G)+O(1).

Theorem 4.4 together with Examples 2.6 and 4.2 imply a lower bound
of Ω(nk/4) on the AC 0 circuit size of the average-case k-clique problem on
Gn,p at the threshold p = Θ(n−2/(k−1)).

The upper bound. We give a high-level description of an algorithm that
solves SUB(G) a.a.s. correctly on Xθ in time n2κθ(G)+O(1), omitting details
of the implementation by AC 0 circuits. We use the fact that, with high
probability, subH(Xθ) is at most n∆θ(H)+o(1) for all H ⊆ G (by Markov’s in-
equality). Fix an optimal union family F such that κθ(G) = maxF∈F ∆θ(F ).
Also fix an enumeration F1, . . . , Fm of graphs in F such that Fm = G and
each Fi is either a single edge or the union of two previous graphs in the
sequence. In order for k = 1, . . . ,m, the algorithm will compile a list of all
Fk-subgraphs in Xθ. When Fk is a single edge, this takes time O(n2). When
Fk = Fi ∪ Fj for i, j < k, this is done by examining each pair of subgraphs

F
(α)
i ⊆ Xθ and F

(β)
j ⊆ Xθ from the previously compiled lists: if αv = βv

for all v ∈ V (Fi) ∩ V (Fj), then F
(α∪β)
k is added to the list of Fk-subgraphs.

Compiling this list therefore takes time O(subFi(Xθ) · subFj (Xθ)), which

with high probability is at most n∆θ(Fi)+∆θ(Fj)+o(1) ≤ n2κθ(G)+o(1). Since
there are only O(1) (at most 2|E(G)|) lists to compute and nonemptiness of
the final list determines whether Xθ contains a G-subgraph, this algorithm
has expected time n2κθ(G)+O(1).
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The lower bound. Let C be a sequence of AC 0 circuits of size nκθ(G)−Ω(1)

which compute functions f ∈ B(G↑n). Our goal is to show that f does not
agree with SUB(G) a.a.s. on Xθ. We consider the randomly restricted func-
tion f∪Xθ�G(α) where α is a uniform random element of [n]V (G) independent
of Xθ. We will show that

Pr[ f∪Xθ�G(α) depends on all coordinates ] = o(1).(4.1)

Inequality (4.1) uses Lemma 3.2 on the “H-subgraph sensitivity” of AC 0

functions. However, (4.1) does not follow by directly applying Lemma 3.2
to f with H = G (as the n−∆θ(H)+o(1) bound of Lemma 3.2 is trivial when
H = G). Rather, we apply Lemma 3.2 to all functions g computed by
subcircuits of C with respect to all subgraphs H ⊆ G which come from
an optimal hitting family for G. We present the argument in detail in a
moment.

On the other hand, we show that every function f ∈ B(G↑n) which agrees
with SUB(G) a.a.s. on Xθ satisfies

Pr[ f∪Xθ�G(α) depends on all coordinates ] = Ω(1).(4.2)

Since (4.1) and (4.2) are contradictory for sufficiently large n, we conclude
that functions f computed by C do not solve SUB(G) on Xθ.

We first justify (4.2), which is the more straightforward inequality. To
illustrate the general idea, we make the stronger assumption that f coincides
with SUB(G) on all inputs and we further assume that θ is strict. In this
case, Proposition 2.4 implies that Xθ has no G-subgraph with probability
1
e − o(1). A straightforward union bound shows that, a.a.s., if Xθ has no G-

subgraph, then neither doesXθ∪H(α) for any proper subgraph H ⊂ G. (By
“H(α)” we mean H(αV (H)), which is a uniform random H-subgraph of G↑n

independent of Xθ.) It follows that, with probability 1
e −o(1), the randomly

restricted function f∪Xθ�G(α) ∈ B(G(α)) outputs 1 on G and 0 on every H ⊂
G (i.e., f∪Xθ�G(α) is the and function over coordinates G(α)). Since this
function depends on all coordinates, inequality 4.2 follows. (When we only
assume that f agrees with SUB(G) a.a.s. on Xθ, this argument additionally
requires showing that the total variation distance between random graphs
Xθ and Xθ ∪H(α) is 1− Ω(1) for every H ⊆ G.)

Onto the more interesting inequality (4.1), showing that a.a.s. fXθ�G(α)

does not depend on all coordinates. Let G ⊆ B(G↑n) be the set of functions
computed by subcircuits of C. For every g ∈ G and H ⊆ G, Lemma 3.2
implies that the randomly restricted function g∪Xθ�H(α) depends on all co-
ordinates with probability at most n−∆θ(H)+o(1). Let us now fix an optimal
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hitting family H ⊆ {subgraphs of G} such that κθ(G) = minH∈H ∆θ(H).
Taking a union bound over g ∈ G and H ∈ H, we have

(4.3) Pr[ (∃g ∈ G)(∃H ∈ H) g∪Xθ�H(α) depends on all coordinates ]

≤ |G| · |H| · n−κθ(G)+o(1) = o(1)

since |G| ≤ size(C) = nκθ(G)−Ω(1) and |H| ≤ 2|E(G)| = O(1). Inequality (4.1)
now follows by combining (4.3) with the following non-probabilistic claim.

Claim 4.5. For any X ⊆ G↑n and α ∈ [n]V (G), if f∪X�G(α) depends on all
coordinates, then there exist g ∈ G and H ∈ H such that g∪X�H(α) depends
on all coordinates.

To prove Claim 4.5, assume f∪X�G(α) depends on all coordinates. Let
F be the family of subgraphs F ⊆ G for which there exists g ∈ G such that
g∪X�F (α) depends on all coordinates. It suffices to show that F is a union
family for G. The claim then follows from the fact that F ∩H is nonempty
(since H is a hitting family for G). To show that F is a union family, we
first note that G ∈ F (by the assumption that f∪X�G(α) depends on all
coordinates).

Now consider any F ∈ F with ≥ 2 edges. It remains to show that F is
the union of two proper subgraphs which belong to F . By definition of F
and G, there exists a function g ∈ B(G↑n) computed by a subcircuit of C
such that g∪X�F (α) depends on all coordinates. Fix a choice of g computed
by a subcircuit of minimal depth in C. Since g∪X�F (α) depends on ≥ 2
coordinates (namely all edges of F (α)), it cannot correspond to an input of
C and must therefore come from a gate of C. Let g1 and g2 be the functions
computed by the two subcircuits feeding into this gate. The function g is
thus either g1 ∧ g2 or g1 ∨ g2.

For i = 1, 2, let Fi be the graph consisting of edges {v, w} ∈ E(F ) such
that g∪Xi �F (α) depends on the corresponding edge {v(αv), w(αw)} ∈ E(F (α)).

Observe that the function g∪Xi �F (α)
i
∈ B(F

(α)
i ) depends on all coordinates.

Therefore, Fi ∈ F . Next, note that Fi must be proper subgraph of F by the
minimality in our choice of g. Finally, observe that F = F1 ∪ F2 (since if g
depends on a given coordinate in E(F ), then so must one or both of g1 and
g2, and the same is true after applying the restriction ∪X�F (α) to all three
functions). As we have shown that F is the union of two proper subgraphs
which belong to F , this completes the proof.

By a similar argument, we obtain a similar nκθ(G)−o(1) lower bound on
the monotone circuit size of SUB(G). In this argument, Lemma 3.3 plays
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the role of Lemma 3.2 in bounding the “H-subgraph sensitivity” of each
subcircuit. However, as we explain in §5.3, for most patterns G, the lower
bound we obtain in the monotone setting is only worst-case, or average-case
under a non-product distribution.

4.1 Tree-width

Tree-width, denoted tw(G), is an important invariant that arises frequently
in parameterized complexity and several areas of graph theory. Roughly
speaking, it measures the extent to which a graph is “tree-like”: trees and
forests have tree-width 1, while the complete graph of order k has tree-width
k − 1.

In the introduction, it was mentioned that the G-subgraph isomorphism
problem is solvable in time O(ntw(G)+1) for all patterns G. In fact, SUB(G)
is solvable by monotone AC 0 circuits of size O(ntw(G)+1). If we compare this
upper bound to the lower bound of Theorem 4.4, we see that maxθ κθ(G) ≤
tw(G) + 1. The next proposition shows that this inequality is nearly tight.

Proposition 4.6. Every graph G admits a threshold weighting θ such that
κθ(G) = Ω(tw(G)/log tw(G)).

Proof sketch. We will use a lemma of Grohe and Marx [13] which states
that, for every G with tree-width k, there exists a set W ⊆ V (G) of size
|W | = Ω(k) together with a concurrent flow on G with vertex-capacity 1
which routes Ω( 1

k log k ) units of flow between every pair of vertices in W . This
concurrent flow is easily transformed to a Markov chain M on G (in the sense

of Example 2.5) with the property that ∆M (H) = Ω( |V (H)∩W |·|V (H)\W |
k log k ) for

all H ⊆ G. We now consider the hitting family H consisting of subgraphs
H ⊆ G such that 1

3 ≤
|V (H)∩W |
|W | < 2

3 (similar to Example 4.3). This gives the

bound κM (G) ≥ minH∈H ∆M (H) = Ω( k
log k ) with respect to the threshold

weighting {v, w} 7→M(v, w) +M(w, v) induced by M .

We remark that the upper bound maxθ κθ(G) ≤ tw(G) + 1 has a direct
proof that does not appeal to Theorem 4.4. In fact, the next proposition
shows that maxθ κθ(G) is at most the branch-width of G, an invariant that
is related to tree-width by bw(G) ≤ tw(G) + 1 ≤ 3

2bw(G) [34].

Proposition 4.7. κθ(G) ≤ bw(G) for every threshold weighting θ on G.

Proof. Branch-width admits a simple characterization in terms of union fam-
ilies:

bw(G) = min
complement-closed union families F

max
F∈F

|V (F ) ∩ V (F )|.
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Here complement-closed means F ∈ F ⇒ F ∈ F where F is the graph with
E(F ) = E(G) \ E(F ). It follows from Def. 2.1 threshold weighting that
∆θ(F ) ≤ ∆θ(F ) + ∆θ(F ) = |V (F ) ∩ V (F )| for every threshold weighting
θ and subgraph F ⊆ G. Therefore, κθ(G) = minunion families F maxF∈F
∆θ(F ) ≤ bw(G).

5 The restricted formula size of SUB(G)

In this section we sketch an extension the lower bound technique that yields
quantitatively stronger lower bounds for formulas vis-à-vis circuits in both
the AC 0 and monotone settings. The improvement is significant for patterns
of constant tree-width such as paths and cycles where SUB(G) is computable
by polynomial-size circuits but is conjecture to require super-polynomial size
formulas.

An outline of this section is as follows. In §5.1 we introduce the key
notion of pathsets (relations A ⊆ [n]V (H) that satisfy certain density con-
straints related to the bounds on “H-subgraph sensitivity” given by Lemmas
3.2 and 3.3). We next define pathset formulas, which are a tree-like model
for constructing pathsets. In §5.2 we describe a randomized reduction which
transforms any AC 0 formula that solves average-case SUB(G) on Xθ into a
pathset formula that computes a dense subset of [n]V (G). In §5.3 we outline
a similar transformation for monotone formulas.

In §5.4 we arrive at the combinatorial heart of the technique: an nτθ(G)−o(1)

lower bound on the size of pathset formulas that compute a dense subset of
[n]V (G). Here τθ(G) is an invariant of the threshold-weighted graphs, which
plays an analogous role to κθ(G) in the context of formulas. Although τθ(G)
turns out to be much harder to compute, we are able to bound τθ(G) in a
few special cases of interest, such as when G is a cycle, path, or complete
binary tree. Finally, in §5.5 we discuss a relationship between maxθ τθ(G)
and the tree-depth of G.

5.1 Pathset formulas

In what follows, we fix a graph G and a threshold weighting θ, as well as
n ∈ N and an arbitrary “density parameter” ε ∈ [0, 1]. (In our applications,
we take ε to be n1−o(1) and later n1/2−o(1).)

Definition 5.1. Let A ⊆ [n]V where V is any finite set. (We regard A as
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a “V -ary relation with universe [n]”.) The density of A is defined by

µ(A) := Pr
α∈[n]V

[ α ∈ A ] (= |A|/n|V |).

For S ⊆ V and β ∈ [n]S , the conditional density of A on β is defined by

µ(A |β) := Pr
α∈[n]V

[ α ∈ A | αS = β ].

The join of relations A ⊆ [n]V and B ⊆ [n]W is the relation A ./ B ⊆
[n]V ∪W consisting of γ ∈ [n]V ∪W such that γV ∈ A and γW ∈ B.

Definition 5.2. Let H be a subgraph of G. An H-pathset (with respect to
G, θ, n, ε) is a relation A ⊆ [n]V (H) satisfying density constraints

µ(A |β) ≤ ε∆θ(H1) for all H1 ]H2 = H and β ∈ [n]V (H2).(5.1)

Here the pair H1, H2 range over vertex-disjoint partitions of H (such that
H1 ∪ H2 = H and V (H1) ∩ V (H2) = ∅). Thus, if H has t connected
components, then (5.1) includes 2t separate inequalities. Note that the
inequality corresponding to H1 = H and H2 = ∅ (the empty graph) is
µ(A) ≤ ε∆θ(H), while the inequality corresponding to H1 = ∅ and H2 = H
is vacuous since ∆θ(∅) = 0. If H is connected, it follows that a relation
A ⊆ [n]V (H) is an H-pathset if and only if µ(A) ≤ ε∆θ(H). Finally, note
that every relation A ⊆ [n]V (G) is a G-pathset since ∆θ(G1) = 0 whenever
G1 is a union of connected components of G.

Definition 5.3. A pathset formula (with respect to G, θ, n, ε) is a rooted bi-
nary tree F together with an indexed family of relations {Af,H ⊆ [n]V (H)}f∈V (F ), H⊆G
subject to three conditions:

(i) Af,H is a H-pathset,

(ii) if f is a leaf and |E(H)| ≥ 2, then Af,H = ∅,

(iii) if f is a non-leaf with children f1 and f2, then

Af,H ⊆
⋃
H1,H2⊆H :H1∪H2=H (Af1,H1 ./ Af2,H2).

We view F as “computing” the family of pathsets {Afout,H}H⊆G (and in
particular the G-pathset Afout,G) where fout is the root of F .
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5.2 Transforming AC 0 formulas to pathset formulas

For any Boolean function f ∈ B(G↑n) and a subgraph H ⊆ G, let AXθ
f,H ⊆

[n]V (H) be the random relation defined by

AXθ
f,H := {α ∈ [n]V (H) : f∪Xθ�H(α) depends on all coordinates}.

When f is AC 0 -computable, Lemma 3.2 is equivalent to the expectation
bound E[ µ(AXθ

f,H) ] ≤ n−∆θ(H)+o(1). This can be extended to show that

µ(AXθ
f,H) > n−(1−δ)∆θ(H) with exponentially small probability for any con-

stant δ > 0 (i.e., with probability exp(−Ω(nc)) where c > 0 depends on δ
and the minimum nonzero value of ∆θ). It is a small additional step to show
that AXθ

f,H fails to be an H-pathset (with respect to G, θ, n and ε = n−1+δ)
with exponentially small probability.

If F is an AC 0 formula, it follows that the family of relations AXθ
f,H ⊆

[n]V (H) (indexed by subformulas f of F and subgraphs H ⊆ G) a.a.s. con-
stitutes a pathset formula. Condition (i) of Def. 5.3 is established by taking
a union bound, over the nO(1) pairs of f and H, of the exponentially small
probability that AXθ

f,H fails to be an H-pathset. Conditions (ii) and (iii) both
hold with probability 1 (by observations which appeared earlier in the proof
of Claim 4.5). Finally, if F solves SUB(G) a.a.s. correctly on Xθ, it follows
that the G-pathset computed by F is .99-dense with constant probability
by an argument similar to inequality (4.2).

5.3 Transforming monotone formulas to pathset formulas

Let F be a monotone formula of polynomial size. As a first attempt to
transform F to a pathset formula, for each subformula f of F and subgraph
H ⊆ G, let MXθ

f,H ⊆ [n]V (H) be the relation consisting of α ∈ [n]V (H) such

that H(α) is a minterm of f∪Xθ . This family of relations satisfies conditions
(ii) and (iii) of Def. 5.3 with probability 1. (Condition (iii) follows from the
elementary fact that every minterm of f1∨f2 is a minterm of f1 or f2, while
every minterm of f1∧f2 is the union of a minterm of f1 and a minterm of f2.)
However, the relation MXθ

f,H can fail to be an H-pathsets with probability
Ω(1/n) (e.g., if f is the monotone threshold function f(X) = 1⇔ |E(X)| ≥∑

e∈E(G) n
2−θ(e)). This failure probability is too large for us to establish

condition (i) by taking a union bound over pairs f and H.
To get around this issue, we consider different relations defined in terms

of an increasing sequence ~Xθ of random graphs X0
θ ⊆ · · · ⊆ Xm

θ where
m = no(1). This sequence is generated as X0

θ := Xθ and Xi
θ := Xi−1

θ ∪ Y i
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where Y i is an independent copy of the G-colored Erdős-Rényi graph Gn,~p

where pe := n−(1−δ)θ(e) for a small constant δ > 0 (i.e., each Y i is a sparse
version of Xθ). If f is a depth-d subformula of F , we say that H(α) is a

persistent minterm of f∪
~Xθ if it is a common minterm of f∪X

i
θ and f∪X

j
θ for

some 0 ≤ i < j ≤ m with j − i =
(d+|E(H)|
|E(H)|

)
. Finally, we consider relations

P ~Xθ
f,H := {α ∈ [n]V (H) : H(α) is a persistent minterm of f∪

~Xθ}.

The definition of persistent minterms ensures that, just likeMXθ
f,H , this fam-

ily of relations satisfies conditions (ii) and (iii) of Def. 5.3 with probability
1. An extension of Lemma 3.3 shows that P ~Xθ

f,H fails to be an H-pathset
(with respect to ε = n−1+2δ) with exponentially small probability. A union
bound now shows that this family of relations a.a.s. satisfies condition (i),
thus transforming F to a pathset formula.

In order for this pathset formula to compute a .99-dense G-pathset with
constant probability, we require two additional assumptions: first, that F
has depth O(log n) so that

(depth(F )+|E(G)|
|E(G)|

)
≤ m = no(1) (this is without loss

of generality by balancing F via Spira’s theorem [40]); and second, that F
solves SUB(G) a.a.s. on both Xθ and Xm

θ (= Xθ ∪Y 1 ∪ · · · ∪Y m). This is
akin to solving SUBuncol(G) a.a.s. correctly on both Gn,p and Gn,p+p1+δ , or
alternatively on a convex combination of these random graphs. The lower
bounds that we obtain in the monotone setting are therefore merely worst-
case, or average-case under a non-product distribution.

However, in the special case of G = Ck and θ = 1 (corresponding to the
average-case k-cycle problem on Gn,p at the threshold p = Θ(1/n)), we
may take each Y i to be the union of n1/2−δ random paths of length k. In
this case we are able to show that relations P ~Xθ

f,H are pathsets with respect
to density parameter ε = n1/2−2δ. Moreover, random graphs Xθ and Xm

θ

have total variation distance o(1). As a result, we obtain an average-case
lower bound for SUB(G) on Xθ alone.

5.4 Pathset complexity

At this point, we are left with the task of proving lower bounds on the size
of pathset formulas computing dense G-pathsets. This is by far the hardest
part of the overall technique. Here we present only a brief outline. We
introduce a family of complexity measures, each associated with different
union family. However, rather than viewing a union family as a set of
subgraphs of G, we explicitly consider the underlying tree structure.
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Definition 5.4. A union tree A is a rooted binary tree whose leaves are
labeled by edges of G. We denote by GA the subgraph of G formed by the
edges that label the leafs in A. We say that A is an H-union tree if GA = H.
For union trees A and B, let 〈A,B〉 denote the union tree consisting of a
root attached to A and B (with G〈A,B〉 = GA ∪ GB). Notation A � B
denotes that A is a subtree of B formed by a node of B together with all of
its descendants.

Definition 5.5. Pathset complexity (with respect to G, θ, n, ε) is the unique
pointwise maximal family of functions χA : {GA-pathsets} → N, one for each
union tree A, subject to the following inequalities:

• χA(A) ≤ 1 whenever A is a union tree of size 1,

• χA(A) ≤
∑

i χA(Ai) whenever A ⊆
⋃
iAi,

• χA(A) ≤ max{χB(B), χC(C)} whenever A = 〈B,C〉 and A ⊆ B ./ C.

Pathset complexity gives lower bounds on pathset formula size (and by
extension lower bounds on AC 0 formula size and monotone formula size).
We describe the relationship between pathset formula size and pathset com-
plexity in terms of a parameter τθ(G), which plays an analogous role to
κθ(G) in our formula lower bounds.

Definition 5.6. For each union tree A, let ΦA be the maximum constant
(depending on G and θ alone) such that the inequality χA(A) ≥ (1/ε)ΦA ·
µ(A) holds for every GA-pathset A and every setting of parameters n and
ε. The invariant τθ(G) is defined as the minimum value of ΦA over G-union
trees A.

For comparison, note that the invariant κθ(G) equals the minimum value
of maxA′�A ∆A′ over G-union trees A, writing ∆A′ to abbreviate ∆θ(GA′).
The constant ΦA thus plays a similar role in our formula lower bounds as
maxA′�A ∆A′ in our circuit lower bounds.

It follows from the above definitions, though not entirely straightfor-
wardly, that any pathset formula F computing a .99-dense G-pathset (i.e.,
such that µ(Afout,G) ≥ .99) must have size Ω((1/ε)τθ(G)). (This Ω(·) hides

a factor of (1/2)2|E(G)|
, which arises from partitioning Afout,G according to

a union tree that accounts for the construction of each of its elements in
F .) Combined with the reduction outlined in §5.2, this implies the following
lower bound, which is a version of Theorem 4.4 for AC 0 formulas.
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Theorem 5.7 ([36]). The average-case AC 0 formula size of SUB(G) on
Xθ is at least nτθ(G)−o(1).

Using the reduction outlined in §5.3, we get the following lower bounds
in the monotone setting.

Theorem 5.8 ([38]). For all G and θ, the worst-case monotone formula
(resp. circuit) size SUB(G) is at least nτθ(G)−o(1) (resp. nκθ(G)−o(1)). In
the case of G = Ck and θ = 1, the average-case monotone formula size of
SUB(G) on Xθ is at least n

1
2
τθ(G)−o(1).

It remains to prove lower bounds on τθ(G), especially in cases of interest
like G = Ck and θ = 1. This requires us to prove lower bounds on constants
ΦA for every possible G-union tree A. In principle, this is a problem in the
realm of graph theory, since ΦA depends on G and θ alone. Unfortunately,
we do not have any nice expression for ΦA, nor even an efficient method of
computing these constants. Nevertheless, we are able to deduce some useful
inequalities. For starters, it is simple to show that ΦA ≥ ∆A and moreover
ΦA ≥ ∆A′ for every A′ � A. However, this merely amounts to the inequality
τθ(G) ≥ κθ(G), which is the unsurprising fact that our formula lower bounds
are not weaker than our circuit lower bounds.

To derive stronger lower bounds on ΦA, we make use of structural prop-
erties of pathset complexity:

• (projection lemma) χA′(projA′(A)) ≤ χA(A) for all union trees
A′ � A and every GA-pathset A, where projA′(A) ⊆ [n]V (GA′ ) is the
projection of A to coordinates in V (GA′),

• (restriction lemma) χA�H1(A |β) ≤ χA(A) for every vertex-disjoint
partition GA = H1 ] H2 and β ∈ [n]V (H2), where A�H1 is the union
tree obtained from A by deleting every leaf that is labeled by an edge
of H2.

These lemmas allow us to derive two useful inequalities on constants ΦA:
for all union trees A = 〈B,C〉 and B′ � B and C ′ � C,

ΦA ≥ ΦB′ + ∆C + ∆A	C ,(5.2)

ΦA ≥ 1
2(ΦB′ + ΦC′	B′ + ∆A + ∆A	〈B′,C′〉).(5.3)

Here 	 is the following operation on union trees: A	B is the union tree ob-
tained from A by deleting every leaf that is labeled an edge whose connected
component in GA contains any vertex of GB.
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In the case of G = Ck and θ = 1, inequalities (5.2) and (5.3) can be
used to show that κθ(G) ≥ 1

6 log2(k). This yields the following corollary of
Theorems 5.7 and 5.8.

Corollary 5.9. AC 0 formulas, as well as monotone formulas, which solve
the average-case k-cycle problem on Gn,p at the threshold p = Θ(1/n)
require size nΩ(log k).

In unpublished work in progress, we explore an additional inequality on
constant ΦA. Consider any root-to-leaf branch in a union tree A, and let
A1, . . . , Am enumerate the union trees hanging off this branch in any order.
For example, we might have A = 〈A3, 〈〈A1, 〈A5, A2〉〉, A4〉〉. For all such A
and A1, . . . , Am, there is an inequality

ΦA ≥ ∆A1 + ∆A2	A1 + ∆A3	(A1∪A2) + · · ·+ ∆Am	(A1∪···∪Am−1).(5.4)

Again in the case G = Ck and θ = 1, using (5.4) we can show that if A is
a G-union tree with left-depth d (i.e., no root-to-leaf branch in A descends
to the left more than d times), then ΦA ≥ Ω(dk1/d) − O(d). This in turn
leads to nearly tight tradeoffs between the size and alternation-depth of
AC 0 formulas solving the average-case k-cycle problem. Inequality (5.4)
is also useful in bounding τθ(G) for additional patterns of interest, such as
complete binary trees.

5.5 Tree-depth

The tree-depth of a graph G, denoted td(G), is the minimum height of a for-
est F with the property that every edge of G connects a pair of vertices that
have an ancestor-descendant relationship to each other in F (see [27]). Anal-
ogous to the relationship between tree-width and the circuit size, it turns
out that SUB(G) is solvable by monotone AC 0 formulas of size O(ntd(G)).
Comparing this upper bound to the lower bound of Theorem 5.7, it follows
that maxθ τθ(G) ≤ td(G).

Using a recent result in graph minor theory of Kawarabayashi and the
author [22], we are able to show that maxθ τθ(G) > td(G)c for all patterns
G where c > 0 is an absolute constant. The result of [22] reduces this
inequality to three special cases when the pattern G is a grid, a path, or
a complete binary tree. By bounding maxθ τθ(G) in these three cases, we
obtain an Ω(ntd(G)c) lower bound on both the AC 0 and monotone formula
size of SUB(G) for arbitrary patterns G.
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