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Abstract

We present a simple alternative proof of PARITY /∈ AC0 using the DNF Sparsification
Theorem of Gopalan, Meka and Reingold [1].

1 Introduction

PARITY /∈ AC0 is a classic theorem in circuit complexity, which states that the n-variable parity
function is not computable by unbounded fan-in Boolean circuits of poly(n) size and constant depth
[2, 3]. In this note, we present a simple alternative proof of this result using the DNF Sparsification
Theorem from a paper of Gopalan, Meka and Reingold [1]. Recall that a k-DNF is a OR-of-ANDs
formula with bottom fan-in at most k.

Theorem 1 (DNF Sparsification Theorem [1]). Every k-DNF f : {0, 1}n → {0, 1} has an ε-
sandwiching approximation by k-DNFs with at most (k log(1/ε))O(k) terms. That is, there exist
k-DNFs f`, fu with at most (k log(1/ε))O(k) terms such that f` ≤ f ≤ fu and

P
x∈{0,1}n

[ f`(x) 6= fu(x) ] ≤ ε.

The paper [1] includes two applications of Theorem 1: a derandomized switching lemma and
a faster deterministic algorithm for approximately counting the number of satisfying solutions to
a DNF. Our alternative proof of PARITY /∈ AC0 is similar to (but more elementary than) the
derandomized switching lemma of [1]. Precisely, we show that Theorem 1 implies the following
lower bound:

Theorem 2 (Main result of this note). Depth-d circuits computing the n-variable parity function

require exp(Ω( log2 n
d2 log logn

)) gates.

Quantitatively, this is weaker than the best known (asymptotically tight) exp(Ω(n1/(d−1))) lower
bound proved by H̊astad using his Switching Lemma [4]. On the other hand, the proof of Theorem
2 uses random restrictions in a more simplistic way (with the potential advantage of being easier
to extend to non-uniform input distributions).

The basic idea of the proof behind is to work with juntas instead of decision trees. Recall that
an m-junta is a Boolean function that depends on at most m variables. To prove Theorem 2, we do
not require the full power of Theorem 1. Rather, we only need the following Junta Approximation
Theorem, which is an immediate corollary of Theorem 1.
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Theorem 3 (Junta Approximation Theorem, Corollary 1.3 in [1]). Every k-DNF is ε-close to an
m-junta where m = (k log(1/ε))O(k).

To see that Theorem 3 follows from Theorem 1, simply note that the k-DNF f` is both ε-close
to f and an kt-junta where t = (k log(1/ε))O(k) is the number of terms in f`. Indeed, the same
observation applies to fu; thus, every k-DNF has an ε-sandwiching approximation by m-juntas
(however, we do not need this stronger fact).

Our proof of Theorem 2 combines the above Junta Approximation Theorem with the follow-
ing “Junta Switching Lemma” (which is really just a trivial observation). We denote by Rp the
random restriction [n]→ {0, 1, ∗} which maps each coordinate i ∈ [n] to ∗, 0, 1 independently with
probability p, 1−p

2 , 1−p
2 respectively.

Lemma 4 (“Junta Switching Lemma”). Every m-junta f satisfies

P[ f�Rp is not a k-junta ] ≤ (pm)k.

The proof is simply the observation that P[ f�Rp is not a k-junta ] ≤ P[ Bin(m, p) > k ], which
is at most (pm)k. Note the superficial similarity between Lemma 4 and

Theorem 5 (H̊astad’s Switching Lemma [4]). Every m-DNF f satisfies

P[ f�Rp is not a k-CNF ] ≤ (5pm)k.

To prove our lower bound for depth-d circuits computing PARITYn (Theorem 2), we repeatedly
apply Theorem 3 followed by Lemma 4 to each layer of the circuit in a sequence of d − 1 steps
(with p = n−1/2d and an appropriate choice of parameters k,m). This is similar to the depth
reduction argument that yields a tight exp(n1/(d−1)) lower bound via H̊astad’s Switching Lemma.
The fundamental difference between the two lower bounds is that the real work in Theorem 2 is
done by Theorem 1 (the DNF Sparsification Theorem), which is based on a deterministic sunflower-
plucking argument along the lines of Razborov’s lower bounds for monotone circuits computing the
CLIQUEk,n function [5].

2 Proof of Theorem 2

Let c ≥ 1 be the universal constant in Theorem 3 such that every k-DNF is ε-close to a (k log(1/ε))ck-
junta. Suppose C is a depth-d circuit on n variables with s = n` gates where

` ≤ log n

96cd2 log log n
.

We will show that C does not compute PARITYn, thereby proving Theorem 2.
Set parameters k and m as follows:

k := 8d`, m := (2k` log n)ck.

With this choice of parameters, Theorem 3 implies

Lemma 6. Every OR or AND of (arbitrarily many) k-juntas is 1/s2-close to an m-junta.
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Proof. Note that k-DNFs (resp. k-CNFs) are the same things as ORs (resp. ANDs) of k-juntas.
The statement for “ORs” is precisely Theorem 3 with the given parameters. The statement for
“ANDs” follows by duality (taking negations).

Recall that a restriction is a function % : {1, . . . , n} → {0, 1, ∗} which maps each variable (i.e.
coordinate of {0, 1}n) to 0, 1 or ∗ (meaning “unrestricted”). For f : {0, 1}n → {0, 1}, we write f�%
for the restricted function {0, 1}|%−1(∗)| → {0, 1}. For p ∈ [0, 1], let Rp be the random restriction
that maps each variable independently to ∗ with probability p and to 0 and 1 each with probability
1−p

2 .

Lemma 7. Every m-junta f satisfies P[ f�Rn−1/2d is not a k-junta ] ≤ 1/s2.

Proof. By Lemma 4, this probability is at most (n−1/2dm)k. Plugging in parameters, we have(
m

n1/2d

)k

≤ (2k` log n)ck
2

nk/2d
=

(
(16d`2 log n)16cd2`

n

)4`

≤
(

((log n)3)logn/6 log logn

n

)4`

=
1

s2
.

The next lemma applies Lemmas 6 and 7 iteratively to the gates of C.

Lemma 8. For all ε > 0, P
[
C�R1/

√
n is not ε-close to a k-junta

]
≤ 2

εs
.

Before giving the proof of Lemma 8, we show how to obtain Theorem 2 as a consequence. Since
k < log n, we have (assuming s = ωn→∞(1), which is clearly acceptable)

P
[
C�R1/

√
n is 1/4-close to a log n-junta

]
≥ 1− on→∞(1).

On the other hand,

P
[

PARITYn�R1/
√
n is 1/4-close to a log n-junta

]
= P

[
Bin(n, 1/

√
n) ≤ log n

]
≤ exp(n−Ω(1)).

These two inequalities imply that C does not compute PARITYn (for sufficiently large n), since
otherwise we get a contradiction 1− on→∞(1) ≤ exp(n−Ω(1)). It remains to prove Lemma 8 using
Lemmas 6 and 7.

Proof of Lemma 8. For i ∈ {0, . . . , d}, let Gi be the set of depth-i subcircuits in C. Thus, G0 is the
set of inputs; Gd = {C}; and for i ∈ {1, . . . , d − 1}, Gi corresponds to the set of gates at depth i.
Note that s = n` = |G1 ∪ · · · ∪Gd|.

We define a joint distribution (%1, . . . , %d, x), where %1, . . . , %d are restrictions and x is an element
of {0, 1}n, as follows:

• Sample %1 : [n]→ {0, 1, ∗} with ∗-probability n−1/2d.

• For i ∈ {2, . . . , d}, given %1, . . . , %i−1, sample %i : %−1
i−1(∗)→ {0, 1, ∗} with ∗-probability n−1/2d.

Note that the composed restriction %1 · · · %d : [n]→ {0, 1, ∗} has distribution R1/
√
n.

• Let x be a uniform random element of {0, 1}n conditioned on being consistent with %1 · · · %d.
(That is, generate x as %1 · · · %dσ for uniform random σ : %−1

d (∗)→ {0, 1}.)
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By induction on i ∈ {0, . . . , d}, we associated with each g ∈ Gi a random k-junta denoted g̃,
which is determined by the first i random restrictions %1, . . . , %i. In the base case i = 0, for each
input g ∈ G0, let g̃ := g and note that this is a k-junta (since k ≥ 1). For i ∈ {1, . . . , d} and
g ∈ Gi, we define g̃ as follows (via intermediate functions ĝ and ĝ and an indicator random variable
Bad(g)). Suppose g = OR/AND(f1, . . . , ft) where f1, . . . , ft ∈ G0 ∪ · · · ∪Gi−1.

• Let ĝ := OR/AND(f̃1, . . . , f̃t). Note that ĝ is a k-DNF/CNF, since each f̃i is a k-junta.
Moreover, ĝ is determined by the first i − 1 restrictions %1, . . . , %i−1 and only depends on
variables in %−1

i−1(∗), since the same is true of each f̃i.

• By Lemma 6, ĝ is 1/s2-close to an m-junta. Let ĝ be a canonical m-junta that is 1/s2-close
to ĝ (say, the lexicographically minimal one). Thus, ĝ satisfies P%1,...,%i−1 [ Px[ ĝ(x) = ĝ(x) ] ≤
1/s2 ] = 1, hence

(1) P[ ĝ(x) = ĝ(x) ] ≤ 1/s2.

(Here we have used the fact that the joint distribution (%1, . . . , %i−1, x) is equivalent to the
joint distribution (%1, . . . , %i−1, y) where y is uniform random in {0, 1}n condition on being
consistent with %1 · · · %i−1.)

• Let Bad(g) ∈ {0, 1} be the indicator variable for the event {ĝ�%1 · · · %i is not a k-junta}. By
Lemma 7, we have P%1,...,%i−1 [ P%i [ Bad(g) ] ≤ 1/s2 ] = 1, hence

(2) P[ Bad(g) ] ≤ 1/s2.

• Finally, let

g̃ :=

{
0 (i.e. the identically zero function) if Bad(g),

ĝ�%1 · · · %i otherwise.

Note that g̃ is a k-junta on variables %−1
i (∗) (with probability 1).
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Having defined random k-juntas g̃ for all gates g, we complete the proof of Lemma 8 as follows:

P
[
C�R1/

√
n is not ε-close to a k-junta

]
≤ P

[
C�%1 · · · %d is not ε-close to C̃

]
= P

%1,...,%d

[
P
x

[
C(x) 6= C̃(x)

]
> ε

]
(recall x is uniform consistent with %1 · · · %d)

(Markov’s ineq.) ≤
1

ε
P
[

C(x) 6= C̃(x)︸ ︷︷ ︸
⇒∃ minimal gate g with g(x) 6= g̃(x)

]
=

1

ε
P

[ ∨
g∈G1∪···∪Gd

( (
g̃(x) 6= g(x)

)
︸ ︷︷ ︸

⇒ Bad(g)∨ (ĝ(x) 6= g(x))

∧
∧

children f of g

(
f̃(x) = f(x)

)
︸ ︷︷ ︸

⇒ ĝ(x) = g(x)

) ]

≤ 1

ε
P

[ ∨
g∈G1∪···∪Gd

Bad(g) ∨
(
ĝ(x) 6= ĝ(x)

)]
≤ 1

ε

∑
g∈G1∪···∪Gd

P
[

Bad(g)
]

+ P
[
ĝ(x) 6= ĝ(x)

]
(by (1) and (2)) ≤

1

ε

∑
g∈G1∪···∪Gd

2

s2

=
2

εs
.

3 Final Remarks

A different junta approximation theorem (incomparable to Theorem 3) follows from known results
in Boolean analysis.

Theorem 9 (Corollary 9.30 of [6]). Every k-DNF is ε-close to an (1/ε)O(k)-junta.

(Note: This is better than the 2−O(k/ε) bound that follows from Friedgut’s Junta Theorem [7]
for Boolean functions with average sensitivity k.) It is an open question, highlighted in [1], whether
every k-DNF is ε-close to an (log(1/ε))O(k)-junta.

Finally, it would be interesting to find an application of the lower bound proof presented in
this note. Perhaps the lower bound technique via DNF sparsification can be applied to input
distributions other than the uniform distribution, where analogues of H̊astad’s Switching Lemma
may be hard to prove.

References

[1] Miklós Ajtai. σ1
1 formulae on finite structures. Annals of Pure and Applied Logic, 24:1–48, 1983.

[2] Ehud Friedgut. Boolean functions with low average sensitivity depend on few coordinates.
Combinatorica, 18(1):27–35, 1998.

5



[3] Merrick L. Furst, James B. Saxe, and Michael Sipser. Parity, circuits, and the polynomial-time
hierarchy. Mathematical Systems Theory, 17:13–27, 1984.

[4] Parikshit Gopalan, Raghu Meka, and Omer Reingold. DNF sparsification and a faster deter-
ministic counting algorithm. Computational Complexity, 22(2):275–310, 2013.

[5] Johan H̊astad. Almost optimal lower bounds for small depth circuits. In 18th Annual ACM
Symposium on Theory of Computing, pages 6–20, 1986.

[6] Ryan O’Donnell. Analysis of boolean functions. Cambridge University Press, 2014.

[7] Alexander A Razborov. Lower bounds on the monotone complexity of some boolean functions.
In Dokl. Akad. Nauk SSSR, volume 281, pages 798–801, 1985.

6


