Lower bounds based on
restrictions

Restrictions

* A (random) restriction is a (random) subset R of {0,1}"

* When R is a subcube of {0,1}", identify with a function
{X1,..,X,} = 10,1,%} (each coordinate fixed to 0 or 1 or free)

* ForO0<p<1,letR;denotes the p-random restriction

=

*x Wit
R,(x)=< 0 wit
1 wit

N prob. p
n prob. (1-p)/2

n prob. (1-p)/2

independently for each variable x;

Lower Bounds from Restrictions

* Arestriction R © {0,1}" can be applied to both
— Boolean functions f : {0,1}" - {0,1}
— Boolean circuits C (by syntactic simplification)

e Recipe for lower bounds:

Show that C ' R becomes “simple”, while f I R remains
“complex” (with high prob. if R is random)

Types of Restrictions R < {0,1}"

(increasing order of generality)

subcube ;=0, x,=1
mon. projection Xi=0, =1, ;=X
projection Xi=0, X, =1, X; =X, X;#X

affine X; 199X =0,

X 19 ®X =1

low-degree variety P(xy,...,x,) = 0 where deg(P) < d

Circuit Complexity

Circuit Complexity

e Studies the complexity of specific problems (e.g.
PARITY, MATRIX MULTIPLICATION, etc.) in
combinatorial models of computation, most
importantly Boolean circuits

* Goal is to prove unconditional lower bounds, which
do not rely on any unproven assumptions

Circuit Complexity

e Studies the complexity of specific problems (e.g.
PARITY, MATRIX MULTIPLICATION, etc9 in
combinatorial models of computatﬁn, most
importantly Boolean circuits

a problem (i.e. decision problem) is
represented by a sequence of

boolean functions f,, : {0,1}" = {0,1}

Boolean Circuits

size = # of AND and OR gates

X; Xy X3 Xz X

Boolean Circuits

* An n-variable Boolean circuit computes an n-variable
Boolean function {0,1}" - {0,1}

A problem is “solved” by a sequence of Boolean
circuits C4, C,, ..., C,, ... if C, computes the
appropriate function {0,1}" - {0,1}

Boolean Circuits

* An n-variable Boolean circuit computes an n-variable
Boolean function {0,1}" - {0,1}

A problem is “solved” by a sequence of Boolean
circuits C, C,, ..., C,, ... if C, comp‘fes the
appropriate function {0,1}" - ‘1}

in contrast to uniform models of
computation (e.g. Turing machines)

where a single algorithm solves the
problem on all instances

Circuit Size

e The circuit size of a function f: {0,1}" - {0,1} is the
minimum # of AND/OR gates in a circuit computing f

e Theorem [Shannon 1949, Lupanov 1958]
Almost all Boolean functions have circuit size ©(2"/n)

 The goal in Circuit Complexity is proving lower bounds
for explicit Boolean functions (e.g. k-CLIQUE)

Circuit Size

e Theorem [Schnorr 1976, Fischer-Pippenger 1979]
Turing mach. time T(n) = circuit size O(T(n)*log T(n))

e Corollary

A super-polynomial lower bound on the circuit size
of any function in NP (i.e. NP € P/poly) implies P # NP

Circuit Size

e Theorem [Schnorr 1976, Fischer-Pippenger 1979]
Turing mach. time T(n) = circuit size O(T(n)*log T(n))

e Corollary

A super-polynomial lower bound on the circuit size
of any function in NP (i.e. NP € P/poly) implies P # NP

Circuit Complexity is widely
believed to be the most

viable approach to P # NP

Circuit Size

 Holy Grail (P # NP)

Prove a super-polynomial lower bound on the
circuit size of any problem in NP

Circuit Size

 Holy Grail (P # NP)

Prove a super-polynomial lower bound on the
circuit size of any problem in NP

e Best known lower bound

3n — O(l) 1976 [Schnorr]
4n - 0O(1) 1991 [Zwick]
4.5n—-o0(n) 2001 [Lachish-Raz]

5n —o(n) 2002 - today [iwama-Morizumi]

3.01n for circuits in the full

binary basis (all fan-in 2 gates)
[Find-Golovnev-Hirsch-Kulikov "16]

circui

e Best known lower bound

3n—-0(1)
4n - 0(1)
4.5n —o(n)

5n —o(n)

1976
1991
2001
2002 - today

[Schnorr]

[Zwick]
[Lachish-Raz]

[lwama-Morizumi]

3.01n for circuits in the full

binary basis (all fan-in 2 gates)
[Find-Golovnev-Hirsch-Kulikov "16]

circui

@

Gate-elimination arguments
(subcube and affine restrictions)

4n —0O(1) 1991 [Zwick]
4.5n — o(n) 2001 [Lachish-Raz]
5n —o(n) 2002 - today [iwama-Morizumi]

(DeMorgan) Formulas

Formulas are circuits with
the structure of a tree

leafsize = # of leaves

(DeMorgan) Formulas

Formulas are circuits with
the structure of a tree

p
Formulas lack “memory”: the result of

each sub-computation is only used once
N

(DeMorgan) Formulas

Formulas are circuits with
the structure of a tree

p
Formulas lack “memory”: the result of

each sub-computation is only used once
N
° A—

Open: Are circuits more
powerful than formulas?

Formulas vs. Circuits

e A Pret-ty Holy Grail (NC! £ P)

Prove that poly-size circuits are strictly more
powerful than poly-size formulas

Formulas vs. Circuits

e A Pret-ty Holy Grail (NC! £ P)

Prove that poly-size circuits are strictly more
powerful than poly-size formulas

e Best known formula size lower bound

n15 - 0(1)
N2
n25 - 0(1)

n3 - 0(1)

1961
1971
1991

[Subbotovskayal]
[Khrapchenko]

[Andreev]

1998 - today [Hastad]

(log-factor improvement [Tal’14])

Formulas vs. Circuits

e A Pret-ty Holy Grail (NC! £ P)

Prove that poly-size circuits are strictly more
powerful than poly-size formulas

Shrinkage of DeMorgan formulas
(simplification under p-random restrictions)

n?2 1971 [Khrapchenko]
n2:5-o(1) 1991 [Andreev]
n3-o(l) 1998 - today [Hastad]

(log-factor improvement [Tal’14])

Restricted Classes
(AC°, monotone, etc.)

Restricted Classes

AC? setting (fast parallel computation)
constant-depth, unbounded fan-in AND/OR gates

monotone setting
negation-free (no NOT gates)

arithmetic (+, x), tropical (min, +), ...

ACP Circuits

ACP Circuits

%

depth is bounded by a constant d
(or slow-growing function d(n) << log n)

a‘a‘a’g’}}a
SRoNoRE

AC® Formulas

X5 —|X8 coe

AC° Lower Bounds

* Exponential lower bounds known since the 1980’s:
the depth-d ACP circuit size PARITY,, is 20(n /™)
[Ajtai, Furst-Saxe-Sipser, Yao, Hastad]

AC° Lower Bounds

* Exponential lower bounds known since the 1980’s:
the depth-d ACP circuit size PARITY,, is 20(n /™)
[Ajtai, Furst-Saxe-Sipser, Yao, Hastad]

Switching Lemma
(simplification under p-random restrictions)

Lower Bound Techniques

counting

— almost all Boolean functions are complex
— circuit size hierarchy theorem

gate-elimination arguments [restriction based]
— best lower bounds for unrestricted circuits and formulas

switching lemmas [restriction based]
— best lower bounds against AC°

polynomial method

— best lower bounds against AC°[®]

Monotone Lower Bounds

MAC® C mNC! C mL € mNL € mNC € mP C mNP C -

* We know essentially all separations among
interesting monotone classes, via a multitude of
techniques

Gate Elimination Arguments
& Shrinkage

Restrictions

 Consider a Boolean function
f:{0,1}" - {0,1}
e Arestriction (on the variables of f) is a function

R : {Xy,...,x,} = {0,1,%}

Restrictions

e Consider a Boolean function
f:{0,1}» > {0,1}
* A restriction (on the variables of f) is a function

R . {Xl,...,Xn} 9 {011;*} @) °
O

equivalently, a partial function

from {x4,...,x,} t0 {0,1}

Restrictions

* Consider a Boolean function
f:{0,1}» = {0,1}
e Arestriction (on the variables of f) is a function
R:{Xy,...,X,} = {0,1,%}
* Applying R to f, we get a Boolean function

f M R:{0,1}trs(R) > {0,1}

Restrictions

* Consider a Boolean function
f:{0,1}» = {0,1}
e Arestriction (on the variables of f) is a function
R:{Xy,...,X,} = {0,1,%}
* Applying R to f, we get a Boolean function

f M R:{0,1}trs(R) > {0,1}

R x1*x]10*x1*x100*x*x0*x0*x*xxQ*0(
frR(O 10 0 O 11 1 101 1)
f(01101001010011010101010)

Restrictions

Consider a Boolean function
f:{0,1}» - {0,1}
A restriction (on the variables of f) is a function
R:{Xy,...,X,} = {0,1,%}
Applying R to f, we get a Boolean function
f M R:{0,1}trs(R) > {0,1}

Can also apply R syntactically to circuits (and other
objects)

Restricting a Circuit

e Consider the 1-bit restriction
R={x,»1}

X; X, X3 X5 Xs

Restricting a Circuit

e Consider the 1-bit restriction
R={x,»1}

Restricting a Circuit

e Consider the 1-bit restriction
R={x,»1}

X4 Xz Xq X

Restricting a Circuit

e Consider the 1-bit restriction
R={x,»1}

X4 Xz Xq X

Restricting a Circuit

e Consider the 1-bit restriction
R={x,»1}

Restricting a Circuit

e Consider the 1-bit restriction
R={x,»1}

X4 Xz Xq X

Gate Elimination

* Lemma [Schnorr’76]

If a circuit C (in basis {AND,,OR,,NOT}) computes PARITY,
(n > 2), then there exists a 1-bit restriction R killing at
least 3 AND/OR gates of C (i.e. size(C I' R) < size(C) —
3)

 Corollary

PARITY, has circuit size at least 3n — 3. Moreover,
matching upper bound.

Gate Elimination

 More sophisticated gate elimination arguments give
the best lower bounds:

5n—-o0(n) {AND,,OR,,NQOT} basis

[lIwama-Lachish-Morizumi-Raz ‘02]

=3.01n full binary basis
[Find-Golovnev-Hirsch-Kulikov "16]

Gate Elimination

* More sophisticated gate elimination arguments give
the best lower bounds:
5n—-o0(n) {AND,,OR,,NQOT} basis

[lIwama-Lachish-Morizumi-Raz ‘02]

=3.01n full binary basis

@ [Find-Golovnev-Hirsch-Kulikov ’16]
@)

uses affine restrictions

Gate Elimination

* Theorem [Chaudhuri-Radhakrishnan ’96]

nl+1/exp(d) |ower bound on the depth-d ACO circuit size
of APPROX-MAJORITY via deterministic restrictions
(greedily apply the best 1-bit restriction)

Gate Elimination

* Theorem [Chaudhuri-Radhakrishnan ’96]

nl+1/exp(d) |ower bound on the depth-d ACO circuit size
of APPROX-MAJORITY via deterministic restrictions
(greedily apply the best 1-bit restriction)

e Theorem [Koppary-Srinivasan’12]

Similar lower bound for AC°[®] circuits via
deterministic low-degree-variety restrictions
(method of “certifying polynomials”)

p-Random Restriction R,

* ForO0<p<1,letR, denotes the p-random restriction
" with prob. p
R,(x;)) =4 0 with prob. (1-p)/2

1 with prob. (1-p)/2

independently for each variable index i € [n]

p-Random Restriction R,

* For 0<p <1, let REMeTN=1s1dlo]sF

Random objects written
R (x,) S in boldface

1 with prob.

independently for each variable index i € [n]

Effect of R,

* R, simplifies Boolean functions computed by small:

— DeMorgan formulas
— decision trees
— ACO circuits

* Certain Boolean functions, like PARITY,, maintain
their complexity under R,

* Ergo, lower bounds!

Effect of R, on DeMorgan Formulas

 Subbotovskaya ‘61

If Fis an n-variable DeMorgan formula, then

Ex[leafsize(F M random 1-bit rest.)]
< (1-n)t-leafsize(F)
* As a consequence,
Ex[leafsize(F I R;)] < O(p*~leafsize(F) + 1)

Effect of R, on DeMorgan Formulas

 Subbotovskaya ‘61

If Fis an n-variable DeMorgan formula, then

Ex[leafsize(F M random 1-bit rest.)]
< (1-n)t-leafsize(F)
* As a consequence,
Ex[leafsize(F I R;)] < O(p*~leafsize(F) + 1)

 Hastad ‘98, Tal ‘14
Ex[leafsize(F ' R,)] < O(p?leafsize(F) + 1)

Effect of R, on DeMorgan Formulas

e Subbotovskaya ‘61
If Fis an n-variable DeMorgan formula, then

Ex[leafsize(F ' random 1-bit rest.)]

Known as the shrinkage exponent

of DeMorgan formulas

{ { ‘
 Hastad ‘98, Tal ‘14 e
Ex[leafsize(F ' R,)] < O(p?leafsize(F) + 1)

Effect of R, on DeMorgan Formulas

* Implies lower bounds:
leafsize(PARITY,) = Q(n?)
leafsize(ANDREEV,) = Q~(n3)

current frontier

 Hastad ‘98, Tal ‘14
Ex[leafsize(F ' R,)] < O(p? leafsize(F) + 1)

Effect of R, on Monotone Formulas

 Open Question What is the shrinkage exponent of
monotone formulas (basis {AND,,OR,})?

e Conjecture Equals the shrinkage exponent of
read-once formulas (=3.27) [Hastad-Razborov-Yao ‘97]

The Switching Lemma

depth3 —

Decision Trees

Decision Trees

The decision-tree depth of a Boolean function
f:{0,1}" - {0,1}

is the minimum depth of a decision tree that
computes f.

* DTyepth(PARITY,) = DTyepin(AND,) = n

* DTyepmn(f) =0 & fis constant

Depth-2 Formulas (DNFs and CNFs)

 DNF = disjunctive normal form (OR-AND formula)

* CNF = conjunctive normal form (AND-OR formula)

Depth-2 Formulas (DNFs and CNFs)

 DNF = disjunctive normal form (OR-AND formula)
* CNF = conjunctive normal form (AND-OR formula)
* width = bottom fan-in (max # of variables in a clause)

OO

- AS

IOICICICICICERC
AN

Depth-2 Formulas (DNFs and CNFs)

* k-DNF = width-k DNF
* k-CNF = width-k CNF

Depth-2 Formulas (DNFs and CNFs)

 k-DNF = width-k DNF = OR.. of depth-k DTs
* k-CNF = width-k CNF = AND.. of depth-k DTs

Depth-2 Formulas (DNFs and CNFs)
k-DNF = width-k DNF = OR., of depth-k DTs

k-CNF = width-k CNF = AND_, of depth-k DTs

Every depth-k DT is equivalent to a k-DNF and a k-CNF

Weak converse: If a Boolean function is equivalent to
a k-DNF and an ¢-CNF, then it is equivalent to a DT of
depth k¢

Decision Tree to DNF

(x5 A\ =Xy A =) (%)

V (=x3 /\ Xy /\ %) ; .
V(X3 A\ x5 A\ xq)

e @ G
0 1 0 1
0 1 0 1 0 1 0 1

i1 0 0 1 O0 1 1 O

Decision Tree to DNF

(=x3 /\ =x; /\ =Xy) @

Vo (=x3 A\ x; A %x5) , .
V(X3 A\ x5 A\ xq)

s @ @
0 1 0 1
0 1 0 1 0 1 0 1

i1 0 0 1 O0 1 1 O

Decision Tree to DNF

(x5 A\ =Xy A =) (%)

V (=x3 /\ X; /\ %) , .
V(X3 A\ x5 A\ xq)

i @ G
0 1 0 1
0 1 0 1 0 1 0 1

i1 0 0 1 O0 1 1 O

Decision Tree to DNF

(x5 A\ =Xy A =) (%)

Vo (=x3 A\ x; A %x5) ; :
V (X3 A\ x5 A\ xq)

s @ @
0 1 0 1
0 1 0 1 0 1 0 1

i1 0 0 1 O0 1 1 O

Decision Tree to DNF

(x5 A\ =Xy A =) (%)

Vo (=x3 A\ x; A %x5) ; :
V(X3 A\ x5 A\ xq)

s @ @
0 1 0 1
0 1 0 1 0 1 0 1

i1 0 0 1 O0 1 1 O

k-DNF Switching Lemma

4 Hastad’s Switching Lemma (1986)

If Fis a k-DNF (i.e. OR.. of depth-k decision trees), then
Pr[DTyepn(F I Ry) 2t] < (5pk)!

o

k-DNF Switching Lemma

-

_

Hastad’s Switching Lemma (1986)

If Fis a k-DNF (i.e. OR.. of depth-k decision trees), then
Pr[DTyepn(F I Ry) 2t] < (5pk)!

J

'.

<2'whenp=1/10k

k-DNF Switching Lemma

-

o

Hastad’s Switching Lemma (1986)

If Fis a k-DNF (i.e. OR.. of depth-k decision trees), then
Pr[DTyepn(F I Ry) 2t] < (5pk)!

J

o

Dual CNF version

If Fis a k-CNF (i.e. AND.. of depth-k decision trees), then
Pr[DTyepn(F I Ry) 2t] < (5pk)!

~

J

k-DNF Switching Lemma

-

o

Hastad’s Switching Lemma (1986)

If Fis a k-DNF (i.e. OR.. of depth-k decision trees), then
Pr[DTyeptn(F I Ry) 2t] < (5pk)!

_

o

Corollary (usual statement of the S.L.)

If Fis a k-DNF, then
Pr[F I R, is not equivalent to a t-CNF] < (5pk)*

J

k-DNF Switching Lemma

k-DNF Switching Lemma

Ry/10k -
% N N /N 7R

k-DNF Switching Lemma

Ry/10k -
% N N /N 7R

with prob.

Depth Reduction

Depth Reduction

Depth Reduction

e N

Apply the Switching Lemma to each gate
and take a union bound over failure events

A A A A /\

R1/10k

C T Y YY $

Depth Reduction

e N

Apply the Switching Lemma to each gate
and take a union bound over failure events

[S L
ONONONONONO
IONOING aa
7A(ttttt

Depth Reduction

e N

Succeeds almost surely provided
t = O(log(circuit size))

[> L
D © © &
ololONC

O
t @ td T t@

t t

O
(A
7A(

Depth Reduction

two layers

t

of \V-gates

Depth Reduction

PARITY Lower Bound

-

_

N
Theorem [Hastad ’86]

Depth d+1 circuits for PARITY, have size exp(Q(n'/d)))

Matching Upper Bound
PARITY, has depth d+1 circuits of size exp(O(n'/d))

N
Theorem [Hastad ’86]

Depth d+1 circuits for PARITY, have size exp(Q(n'/d)))

r a
Matching Upper Bound

PARITY, has depth d+1 circuits of size exp(O(n¥/))

_

* depth 2 circuits of size O(2") (brute-force CNF/DNF)

e for d+1 > 3, divide and conquer:

H e T

l)

!
- n1/d
d—
- \ J |\ J \ J
| | |

nl—l/d nl—l/d nl—l/d

(

_

Matching Upper Bound
PARITY, has depth d+1 circuits of size exp(O(n'/d))

* depth 2 circuits of size O(2") (brute-force CNF/DNF)

e for d+1 > 3, divide and conquer:

i /\

d+1 —

PARITY Lower Bound

PARITY Lower Bound

AAAAAAAAAAAAAAAA

depth-1 decision trees

PARITY Lower Bound

[/ | Ryi/10 \“\\’
AAA EEAR &Kwn AAE=AA

depth-1 decision trees

PARITY Lower Bound

depth O(log S) decision trees (w.h.p.)

PARITY Lower Bound

R1/1O*IogS !

depth O(log S) decision trees (w.h.p.)

PARITY Lower Bound

Y S Y R

depth O(log S) decision trees (w.h.p.)

PARITY Lower Bound

\
‘/, = < Rl/lO*IogS -\\
AAAAAAQAAQAAAAA

depth O(log S) decision trees (w.h.p.)

PARITY Lower Bound

T~

depth O(log S) decision trees (w.h.p.)

PARITY Lower Bound
(A)

R1/10 *log S

depth O(log S) decision trees (w.h.p.)

PARITY Lower Bound

A

constant function (w.h.p.)

PARITY Lower Bound

A

constant function (w.h.p.)

decision tree of depth:
* 0 with high prob.

e 1 with prob.<¢
e 2 with prob. < &2

PARITY Lower Bound

 Started with ACO circuit of depth d+1 and size S

* Applied a sequence of restrictions

Rl/lOr Rl/(lO*Iog S)/ Rl/(lO*Iog S)r =ee» Rl/(lO*Iog S)

\ J
1

d times

Combined restriction: Ry/g(og)

e Circuit reduces to a constant (0 or 1) with high prob.

PARITY Lower Bound

* (ACO circuit of depth d+1 and size S) I Ry /g 15g)
is almost surely constant

* On the other hand, PARITY, I R, is almost surely
non-constant for p = w(1/n)

PARITY Lower Bound

* (ACO circuit of depth d+1 and size S) I Ry/g(0g 5
is almost surely constant

* On the other hand, PARITY, I' R, is almost surely
non-constant for p = w(1/n) ‘

PARITY , or 1 — PARITY, on

m = Binomial(n,p) variables

PARITY Lower Bound

* (ACO circuit of depth d+1 and size S) I Ry /g 15g)
is almost surely constant

* On the other hand, PARITY, I R, is almost surely
non-constant for p = w(1/n)

* Therefore, depth d+1 circuits for PARITY, require size
exp(n*/d)

Recall: AC° Formulas

Xg —Xg -+

_

Upper Bound

PARITY has depth d+1 circuits of size exp(O(n?/d))

J

Upper Bound

PARITY has depth d+1 circuits of size exp(O(n?/d))

~

and depth d+1 formulas of size exp(O(dnl/d))/

A7

Upper Bound
PARITY has depth d+1 circuits of size exp(O(n?/d))

~

and depth d+1 formulas of size exp(O(dnl/d))/

-

_

Theorem [Hastad ’86]

~

Depth d+1 circuits for PARITY have size exp(Q(n/9)))

~
Upper Bound

PARITY has depth d+1 circuits of size exp(O(n?/d))
and depth d+1 formulas of size exp(O(dnl/d))j

N
Theorem [Hastad ’86]

Depth d+1 circuits for PARITY have size exp(Q(n/9)))

N
Theorem [R!15]

Depth d+1 formulas for PAR. have size exp(Q(dn/d)))

Proof of the
Switching Lemma

Canonical Decision Tree

* For a DNF formula F and restriction R, we define the
canonical decision tree of FI'R, denoted CanDT(FI'R),
as follows:

1. If FIRis identically O or 1, then CanDT(FR) outputs
0 or 1 without making any queries.

2. Otherwise, let C be the first term (conjunction of
literals) in F such that CI'R is not fixed to O or 1.

Query all free variables of CI'R. Then proceed as
CanDT(FI'R’) where R’ is the extension of R that
includes answers to the queried variables.

e Fixak-DNFFand?=>1

-

Switching Lemma:

Pr[depth(CanDT(F ' R))) 2 £] = O(pk)*

Fixak-DNFFand £ >1

-

Switching Lemma:

Pr[depth(CanDT(F ' R))) 2 £] = O(pk)*

Obs: depth(CanDT(F ' R))) < ¢

Implies DTgepn(F M Ry) < £

* Fixak-DNFFandf=>1
 BAD :={restrictions R | depth(CanDT(F I R)) > ¥}

-
Switching Lemma:

Pr[depth(CanDT(F ' R))) 2 £] = O(pk)*

Fixak-DNFFand £ 2>1
BAD := { restrictions R | depth(CanDT(F ' R)) > ¥}
Goal. Pr[R, & BAD] = O(pk)*

Switching Lemma:
Pr[depth(CanDT(F ' R))) 2 £] = O(pk)*

* Fixak-DNFFandf=>1
 BAD :={restrictions R | depth(CanDT(F I R)) > ¥}
* Goal. Pr[R, & BAD] = O(pk)*

Key idea. We associate each R & BAD with a
restriction R* such that

* Fixak-DNFFandf=>1
 BAD :={restrictions R | depth(CanDT(F I R)) > ¥}
* Goal. Pr[R, & BAD] = O(pk)*

Key idea. We associate each R & BAD with a
restriction R* such that

(D |Stars(R*)| = |Stars(R)| - ¢

R *1*x*%x10*x1*x100*x*0*x0**x*x(Q*(
R* *1x010*x1*x1001*0*x0*x0*x0*0
(£ =3)

* Fixak-DNFFandf=>1
 BAD :={restrictions R | depth(CanDT(F I R)) > ¥}
* Goal. Pr[R, & BAD] = O(pk)*

Key idea. We associate each R & BAD with a
restriction R* such that

(D |Stars(R*)| = |Stars(R)| - ¢
in particular, Pr[R, =R*] /Pr[R, =R | = ((1-p)/2p)*

* Fixak-DNFFandf=>1
 BAD :={restrictions R | depth(CanDT(F I R)) > ¥}
* Goal. Pr[R, & BAD] = O(pk)*

Key idea. We associate each R & BAD with a
restriction R* such that

(D |Stars(R*)| = |Stars(R)| - ¢
in particular, Pr[R, =R*] /Pr[R, =R | = ((1-p)/2p)*

for any restriction p with s stars,

PriR,=p]=p*(1-p)"*

* Fixak-DNFFandf=>1
 BAD :={restrictions R | depth(CanDT(F I R)) > ¥}
* Goal. Pr[R, & BAD] = O(pk)*

Key idea. We associate each R & BAD with a
restriction R* such that

(D |Stars(R*)| = |Stars(R)| - ¢
2 the map R~ R*is (4k)?-to-1

* Fixak-DNFFandf=>1
 BAD :={restrictions R | depth(CanDT(F I R)) > ¥}
* Goal. Pr[R, & BAD] = O(pk)*

Key idea. We associate each R & BAD with a
restriction R* such that

(D |Stars(R*)| = |Stars(R)| - ¢
2 the map R~ R*is (4k)?-to-1

any restriction p equals R* for

at most (4k)? distinct R € BAD

Key idea. We associate each R & BAD with a

restriction R* such that
(D |Stars(R*)| = |Stars(R)| - ¢
2 the map R~ R*is (4k)?-to-1

Key idea. We associate each R & BAD with a
restriction R* such that

(D |Stars(R*)| = |Stars(R)| - ¢
2 the map R~ R*is (4k)?-to-1

PriR, € BAD]

Key idea. We associate each R & BAD with a
restriction R* such that

(1D |Stars(R*)| = |Stars(R)| - ¢
2 the map R~ R*is (4k)?-to-1

Pr[R, & BAD]
= resap PR, =R]
= Srepap (2p/(1-p))¢ Pr] R, = R*]

Pr[R,=R1=(2p/(1-p))*Pr[R, = R*]

Key idea. We associate each R & BAD with a
restriction R* such that

(D |Stars(R*)| = |Stars(R)| - ¢
2 the map R~ R*is (4k)?-to-1

Pr[R, & BAD]
= 2repap Pri R, =R]
= Srepap (2p/(1-p))¢ Pr] R, =R*]
< (4p)* Yrepnp Prl R, =R*]

w.l.o.g. p<1/2

Key idea. We associate each R & BAD with a
restriction R* such that

(D |Stars(R*)| = |Stars(R)| - ¢
2 the map R» R*is (4k)?-to-1

Pr[R, & BAD]
= Jrepap Prl R, =R]
= Srepap (2p/(1-p))¢ Pr] R, = R*]
< (4p)? Yrepnp Prl R, =R*]
< (4p)? (4k)? Pr| R, € {R* | R & BAD}]

Key idea. We associate each R & BAD with a
restriction R* such that

(D |Stars(R*)| = |Stars(R)| - ¢
2 the map R~ R*is (4k)?-to-1

Pr[R, & BAD]
= 2repap Prl R, =R]
= Srepap (2p/(1-p))¢ Pr] R, =R*]
< (4p)? Yrepnp Prl R, =R*]
< (4p)¢ (4k)*Pr[R, & {R* | R & BAD}]

Key idea. We associate each R & BAD with a
restriction R* such that

(D |Stars(R*)| = |Stars(R)| - ¢
2 the map R~ R*is (4k)?-to-1

Pr[R, & BAD]
= Jrepap Prl R, =R]
= Srepap (2p/(1-p))¢ Pr] R, = R*]
< (4p)? Yrepnp Prl R, =R*]
< (4p)? (4k)* Pr] R, € {R* [R € BAD}]

< k)?
< {16pk) Q.E.D.

-

Switching Lemma:

Pr[depth(CanDT(F ' R))) 2 £] = O(pk)*

Pr[R, & BAD]
= Yresap Prl R, =R]
= Srepap (2p/(1-p))¢ Pr] R, = R*]
< (4p)? Yrepnp Prl R, =R*]
< (4p)? (4k)* Pr] R, € {R* [R € BAD}]

< k)?
< {16pk) Q.E.D.

-

Switching Lemma:

Pr[depth(CanDT(F M R))) 2 £] = O(pk)*

Pr| R, € BAD]
= 2 repap Prl R, =R]

more careful analysis gives (5pk)?*

Key idea. We associate each R & BAD with a

restriction R* such that
(D |Stars(R*)| = |Stars(R)| - ¢
2 the map R~ R*is (4k)?-to-1

Key idea. We associate each R & BAD with a

pair (R*,Code(R)) such that
(D |Stars(R*)| = |Stars(R)| - ¢
2 the map R~ R*is (4k)?-to-1
©)
@

Key idea. We associate each R & BAD with a

pair (R*,Code(R)) such that
(D |Stars(R*)| = |Stars(R)| - ¢
2 the map R~ R*is (4k)?-to-1
@ Code(R) € ({0,11? X [K])?
@

Key idea. We associate each R & BAD with a

pair (R*,Code(R)) such that
(D |Stars(R*)| = |Stars(R)| - ¢
2 the map R~ R*is (4k)?-to-1
@ Code(R) € ({0,112 X [K])?

in particular, Code(R) has

(4k)* possible values

Key idea. We associate each R & BAD with a

pair (R*,Code(R)) such that
(D |Stars(R*)| = |Stars(R)| - ¢
2 the map R~ R*is (4k)?-to-1
@ Code(R) € ({0,11? X [K])?
@ the map R~ (R* Code(R)) is 1-to-1

Key idea. We associate each R & BAD with a

pair (R*,Code(R)) such that
(D |Stars(R*)| = |Stars(R)| - ¢
2 the map R~ R*is (4k)?-to-1
@ Code(R) € ({0,1F X [k])*
@ the map R~ (R* Code(R)) is 1-to-1

@

Key idea. We associate each R & BAD with a
pair (R*,Code(R)) such that

(D |Stars(R*)| = |Stars(R)| - ¢

2 the map R~ R*is (4k)?-to-1

(@ Code(R) € ({0,1)* X [Kk])*

4 the map R~ (R*,Code(R)) is 1-to-1

intuitively, Code(R) is a “recipe”

for inverting R~ (R*,Code(R))
given knowledge of R*

R~ (R*,Code(R))

k=3, ¢=4| R~ (R* Code(R))

F =Xy X3 =X3 V =Xy X3 X5 V Xz =Xg X5 V' X3 Xg =Xg V X1 =Xz =Xz

k=3, ¢=4| R~ (R* Code(R))

F =Xy X3 =X3 V =Xy X3 X5 V Xz =Xg X5 V' X3 Xg =Xg V X1 =Xz =Xz

R={x;”1,%x,»0}

k=3, ¢=4| R~ (R* Code(R))

F N R XZ _‘X3 \/ X3 X5 \/ XZ X5 \/ X3 _‘XG \/ _'X7

R={x;”1,%x,»0}

k=3, ¢=4| R~ (R* Code(R))

1

1 0 1 0 1
FIMR % X =X3 V \/xZ x5\/\/ ~Xy

R={x;”1,%x,»0}

k=3, ¢=4| R~ (R* Code(R))

L

R={x;”1,%x,»0}

—|X7

CanDT(F M R) =

k=3, £=4| R~ (R* Code(R))

FI\R X1X2_"\/‘@VXZ“X4X5\/®\/X1_'X4_‘X7

R={x» 1,0}

R & BAD, since

CanDT(FIMR) > ¢

FIR XX~ V @ % % V %

R={x;”1,%x,»0}

R~={X1I_)1,X4I_>O,
X, > 1, X3P 1,
X5 0,Xx;7 1}

k=3, ¢=4| R~ (R* Code(R))

Sk

—|X7

FIR XX~ V @ % % V %

R={x;”1,%x,»0}

R~={X1I_)1,X4I_>O,
X, > 1, X3P 1,
Xs?0,Xx;7 1}

R*:{X1»1,X4»O,
X, 1, X370,
Xs 1, x>0}

k=3, ¢=4| R~ (R* Code(R))

Sk

—|X7

k=3, £=4

R={x;”1,x,»0}

RY={x;”1,x,”0,

X3P X3P
Xg P Xy}
R*={x;P1,x,P0,
X, P X3P
Xg» X;P }

R~ (R*,Code(R))

FIR % Xy =X3 V \/x2

—|X7

FIMR %y Xy =X3 V \/XZ

R={x;”1,%x,»0}

R~={X1I_)1,X4I_>O,

~~——_—’

k=3, ¢=4| R~ (R* Code(R))

Sk

—|X7

k=3, ¢=4| R~ (R* Code(R))

FIR xz‘/ﬁx_,,\/ \/x2 x5\/\/ —X7

R={x;”1,x,»0}

RY={x;”1,x,”0,

k=3, ¢=4| R~ (R* Code(R))

FIR xz‘/ﬁx_,,\/ \/x2 x5\/\/ —X7

R={x;”1,x,»0}

R~ = {)51_»—1;-)('4 i Q)

k=3, £=4

FIMR

R~ (R*,Code(R))

Xy =Xz V/ \/x2

—|X7

R={x;”1,x,»0}

Code(R) says:

R = {x;2>1, %420,

e find the first satisfied term

of F ' R*

* the “long path” begins with

X1, X371

(i.e. var, of term® 1 and

var; of term » 1)

k=3, £=4

R={x;”1,x,»0}

R (R*,Code(R))

10 1

FI\R Xlz%V®Vﬂ“X4X5\/)®\/X1_‘X4_‘X7
= 0
Q

Fix variables
according to the

beginning of the
long path

D D

R={x;”1,%x,»0}

X, > 1, X3P 1,
XSH X7I-> }

X, 1, X370,
X5|_> X7I-> }

k=3, ¢=4| R~ (R* Code(R))

Sk

—|X7

k=3, £=4

R={x;”1,x,»0}

RY={x;”1,x,”0,
X, > 1, X3P 1,

R~ (R*,Code(R))

—|X7

D @

R={x;”1,%x,»0}

X, > 1, X3P 1,
XSH X7I-> }

1(2_.»_14)(3»0'
/ g g
SIEI AN

=

k=3, ¢=4| R~ (R* Code(R))

Sk

—|X7

k=3, ¢=4| R~ (R* Code(R))

FIMR v v x5\/\/ X5

R={x;P1, x>0}

RY={x;P1,x,"0,
X2 1,) X3 1,
’x5'->0 X; >}
R*={x1»1,x4F>O,
> 1, x3HO
(X5»1X7 }

“——

k=3, £=4

R~ (R*,Code(R))

—|X7

R={x;”1,x,»0}

Code(R) next says:

RY={x;”1,x,”0,
X2 1, %37 1,

}

* find the next satisfied term
of F ! R*(overwriting X, 1, X3P 1)
* the “long path” continues

Xg »> 0

(i.e. var; of term » Q)

R={x;”1,%x,70}

R~={X1I_)1, X4I_)O,
52_9_1, X3P 1,

}

k=3, £=4| R~ (R* Code(R))

0
RV @ VX =Xy =Xy

Fix variables

according to the
long path

k=3, £=4

R~ (R*,Code(R))

D@D DS

—|X7

R={x;”1,x,»0}

RY={x;P1,x,"0,
X, > 1, X3P 1,
Xg P 0, Xy P

}

R*={x;P1,x,P0,
X, 1, X370,
X1, x, P

}

R

k=3, #=4| R (R*,Code(R))

F= Xy Xy =X3 V =Xy X3 Xg V' Xy =X X5 V X3 Xg =Xg V Xq=Xg =X

R={x;»1,x,»0} Code(R) € ({0,1}* X [k])*
given knowledge of R* (and F),
RY={x;P1,x,"0, follow these instructions to
X, > 1, X3P 1, recover R (and along the way R™)

Xs» 0, X, 1}

R*={x;P1,x,P0,
X, 1, X370,
xs» 1, x,» 0}

k=3, £=4| R~ (R* Code(R))

F = X1 XZ _‘X3 \/ _‘Xl X3 X5 \/ XZ _‘X4 X5 \/ X3 X4 _'XG \/ X1 _IX4 _IX7

R={X1I-)1,X4I-)O}

R~={X1I_)1,X4I_)O,
X, 1, X3P 1,
Xg > 0, %, 1}

R*={x;”1,x,”0,
X, 1, X370,
Xs > 1, %, 0}

Code(R) € ({0,1} X [k])?

given knowledge of R* (and F),
follow these instructions to
recover R (and along the way R~)

‘@

v’ R* has £ fewer
stars than R
v’ R» (R*,Code(R))

Is 1-to-1

