Lower bounds based on restrictions

- A (random) restriction is a (random) subset R of {0,1}ⁿ
- When R is a subcube of $\{0,1\}^n$, identify with a function $\{x_1,...,x_n\} \rightarrow \{0,1,\star\}$ (each coordinate fixed to 0 or 1 or free)
- For $0 \le p \le 1$, let \mathbf{R}_p denotes the p-random restriction

$$\mathbf{R}_{p}(\mathbf{x}_{i}) = - \begin{cases} \star & \text{with prob. p} \\ 0 & \text{with prob. (1-p)/2} \\ 1 & \text{with prob. (1-p)/2} \end{cases}$$

independently for each variable x_i

Lower Bounds from Restrictions

- A restriction $R \subseteq \{0,1\}^n$ can be applied to both
 - Boolean functions $f : \{0,1\}^n \rightarrow \{0,1\}$
 - Boolean circuits C (by syntactic simplification)
- <u>Recipe for lower bounds</u>:

Show that C \ R becomes "simple", while f \ R remains "complex" (with high prob. if R is random)

Types of Restrictions $R \subseteq \{0,1\}^n$ (increasing order of generality)

- subcube $x_i = 0, x_i = 1$
- mon. projection $x_i = 0, x_i = 1, x_i = x_j$
- projection $x_i = 0, x_i = 1, x_i = x_j, x_i \neq x_j$
- affine $x_{i_1} \oplus \cdots \oplus x_{i_k} = 0$,

$$\mathbf{x}_{i_1} \oplus \cdots \oplus \mathbf{x}_{i_k} = \mathbf{1}$$

• low-degree variety $P(x_1,...,x_n) = 0$ where deg(P) $\leq d$

Circuit Complexity

Circuit Complexity

- Studies the complexity of specific problems (e.g. PARITY, MATRIX MULTIPLICATION, etc.) in combinatorial models of computation, most importantly Boolean circuits
- Goal is to prove *unconditional lower bounds*, which do not rely on any unproven assumptions

Circuit Complexity

Studies the complexity of specific problems (e.g. PARITY, MATRIX MULTIPLICATION, etc.) in combinatorial models of computation, most importantly Boolean circuits

a **problem** (i.e. decision problem) is represented by a sequence of boolean functions $f_n : \{0,1\}^n \rightarrow \{0,1\}$

JC

Boolean Circuits

size = # of AND and OR gates

Boolean Circuits

- An n-variable Boolean circuit computes an n-variable Boolean function {0,1}ⁿ → {0,1}
- A problem is "solved" by a sequence of Boolean circuits C₁, C₂, ..., C_n, ... if C_n computes the appropriate function {0,1}ⁿ → {0,1}

Boolean Circuits

- An n-variable Boolean circuit computes an n-variable Boolean function {0,1}ⁿ → {0,1}
- A problem is "solved" by a sequence of Boolean circuits C₁, C₂, ..., C_n, ... if C_n computes the appropriate function {0,1}ⁿ → {1}

in contrast to *uniform* models of computation (e.g. Turing machines) where a single algorithm solves the problem on all instances

- The circuit size of a function f : {0,1}ⁿ → {0,1} is the minimum # of AND/OR gates in a circuit computing f
- <u>Theorem</u> [Shannon 1949, Lupanov 1958]
 Almost all Boolean functions have circuit size Θ(2ⁿ/n)
- The goal in Circuit Complexity is proving lower bounds for *explicit* Boolean functions (e.g. k-CLIQUE)

- <u>Theorem</u> [Schnorr 1976, Fischer-Pippenger 1979]
 Turing mach. time T(n) ⇒ circuit size O(T(n)*log T(n))
- <u>Corollary</u>

A *super-polynomial lower bound* on the circuit size of any function in NP (i.e. NP \subseteq P/poly) implies P \neq NP

- <u>Theorem</u> [Schnorr 1976, Fischer-Pippenger 1979]
 Turing mach. time T(n) ⇒ circuit size O(T(n)*log T(n))
- <u>Corollary</u>

A *super-polynomial lower bound* on the circuit size of any function in NP (i.e. NP \subseteq P/poly) implies P \neq NP

Circuit Complexity is widely believed to be the most viable approach to P ≠ NP

• <u>Holy Grail</u> ($P \neq NP$)

Prove a *super-polynomial lower bound* on the circuit size of any problem in NP

• <u>Holy Grail</u> ($P \neq NP$)

Prove a *super-polynomial lower bound* on the circuit size of any problem in NP

Best known lower bound

3n – O(1)	1976	[Schnorr]
4n – O(1)	1991	[Zwick]
4.5n – o(n)	2001	[Lachish-Raz]
5n – o(n)	2002 - today	[lwama-Morizumi]

<u>Best known lower bound</u>

3n – O(1)	1976	[Schnorr]
4n – O(1)	1991	[Zwick]
4.5n – o(n)	2001	[Lachish-Raz]
5n – o(n)	2002 - today	[lwama-Morizumi]

3.01n for circuits in the *full binary basis* (all fan-in 2 gates) [Find-Golovnev-Hirsch-Kulikov '16]

circuit

Gate-elimination arguments

(subcube and affine restrictions)

4n – O(1)	1991	[Zwick]
4.5n – o(n)	2001	[Lachish-Raz]
5n – o(n)	2002 - today	[lwama-Morizumi]

(DeMorgan) Formulas

(DeMorgan) Formulas

(DeMorgan) Formulas

Formulas vs. Circuits

• <u>A Pret-ty Holy Grail</u> $(NC^1 \neq P)$

Prove that **poly-size circuits** are strictly more powerful than **poly-size formulas**

Formulas vs. Circuits

• <u>A Pret-ty Holy Grail</u> $(NC^1 \neq P)$

Prove that **poly-size circuits** are strictly more powerful than **poly-size formulas**

• Best known formula size lower bound

n ^{3 – o(1)}	1998 - today	[Hastad]
n ^{2.5 – o(1)}	1991	[Andreev]
n ²	1971	[Khrapchenko]
n ^{1.5 – o(1)}	1961	[Subbotovskaya]

Formulas vs. Circuits

• <u>A Pret-ty Holy Grail</u> $(NC^1 \neq P)$

Prove that **poly-size circuits** are strictly more powerful than **poly-size formulas**

Shrinkage of DeMorgan formulas (simplification under p-random restrictions)				
n ²	19	71	[Khrapchenko]	
n ^{2.}	5-o(1) 19	91	[Andreev]	
n ³	- o(1) 19	98 - today	[Hastad]	
(log-factor improvement [Tal'14])				

Restricted Classes (AC⁰, monotone, etc.)

Restricted Classes

- AC⁰ setting (fast parallel computation) constant-depth, unbounded fan-in AND/OR gates
- monotone setting negation-free (no NOT gates)
- arithmetic (+, ×), tropical (min, +), ...

AC⁰ Lower Bounds

 Exponential lower bounds known since the 1980's: the depth-d AC⁰ circuit size PARITY_n is 2^{Θ(n 1/(d-1))}
 [Ajtai, Furst-Saxe-Sipser, Yao, Hastad]

AC⁰ Lower Bounds

 Exponential lower bounds known since the 1980's: the depth-d AC⁰ circuit size PARITY_n is 2^{O(n 1/(d-1))}

[Ajtai, Furst-Saxe-Sipser, Yao, Hastad]

Switching Lemma

(simplification under p-random restrictions)

Lower Bound Techniques

counting

- almost all Boolean functions are complex
- circuit size hierarchy theorem

• gate-elimination arguments [restriction based]

- best lower bounds for *unrestricted* circuits and formulas
- switching lemmas [restriction based]
 - best lower bounds against AC⁰

polynomial method

– best lower bounds against $AC^{0}[\oplus]$

Monotone Lower Bounds

 $\mathsf{mAC}^0 \subset \mathsf{mNC}^1 \subset \mathsf{mL} \subset \mathsf{mNL} \subset \mathsf{mNC} \subset \mathsf{mP} \subset \mathsf{mNP} \subset \cdots$

 We know essentially all separations among interesting monotone classes, via a multitude of techniques

Gate Elimination Arguments & Shrinkage

• Consider a Boolean function

 $f:\{0,1\}^n \rightarrow \{0,1\}$

• A restriction (on the variables of f) is a function

 $\mathsf{R}:\{\mathsf{x}_1,...,\mathsf{x}_n\} \rightarrow \{0,1,\star\}$

• Consider a Boolean function

 $f:\{0,1\}^n \rightarrow \{0,1\}$

• A restriction (on the variables of f) is a function

equivalently, a **partial function** from $\{x_1, ..., x_n\}$ to $\{0, 1\}$

• Consider a Boolean function

 $f:\{0,1\}^n \rightarrow \{0,1\}$

• A restriction (on the variables of f) is a function

 $\mathsf{R}: \{\mathbf{x}_1, \dots, \mathbf{x}_n\} \rightarrow \{0, 1, \star\}$

• Applying R to f, we get a Boolean function

 $f \upharpoonright R : \{0,1\}^{Stars(R)} \rightarrow \{0,1\}$
Restrictions

• Consider a Boolean function

 $f:\{0,1\}^n \rightarrow \{0,1\}$

• A **restriction** (on the variables of **f**) is a function

 $\mathsf{R}:\{x_1,...,x_n\} \rightarrow \{0,1,\star\}$

• Applying R to f, we get a Boolean function

 $f \upharpoonright R : \{0,1\}^{Stars(R)} \rightarrow \{0,1\}$

Restrictions

• Consider a Boolean function

 $f:\{0,1\}^n \rightarrow \{0,1\}$

• A restriction (on the variables of f) is a function

 $\mathsf{R}:\{\mathsf{x}_1,...,\mathsf{x}_n\} \rightarrow \{0,1,\star\}$

• Applying R to f, we get a Boolean function

 $f \upharpoonright R : \{0,1\}^{Stars(R)} \rightarrow \{0,1\}$

Can also apply R syntactically to circuits (and other objects)

Consider the 1-bit restriction
 R = { x₂ ⇒ 1 }

Consider the 1-bit restriction
 R = { x₂ ⇒ 1 }

Consider the 1-bit restriction
 R = { x₂ ↦ 1 }

Consider the 1-bit restriction
 R = { x₂ ↦ 1 }

Consider the 1-bit restriction
 R = { x₂ ↦ 1 }

Consider the 1-bit restriction
 R = { x₂ ⇒ 1 }

• Lemma [Schnorr '76]

If a circuit C (in basis {AND₂,OR₂,NOT}) computes PARITY_n ($n \ge 2$), then there exists a 1-bit restriction R killing at least 3 AND/OR gates of C (i.e. size($C \upharpoonright R$) \le size($C \upharpoonright R$) \le size($C \upharpoonright R$) \le 3)

<u>Corollary</u>

 $PARITY_n$ has circuit size at least 3n - 3. Moreover, matching upper bound.

• More sophisticated gate elimination arguments give the best lower bounds:

5n - o(n) {AND₂,OR₂,NOT} basis

[Iwama-Lachish-Morizumi-Raz '02]

≈3.01n full binary basis
[Find-Golovnev-Hirsch-Kulikov '16]

• More sophisticated gate elimination arguments give the best lower bounds:

5n - o(n) {AND₂,OR₂,NOT} basis

[Iwama-Lachish-Morizumi-Raz '02]

• <u>Theorem</u> [Chaudhuri-Radhakrishnan '96]

n^{1 + 1/exp(d)} lower bound on the depth-d AC⁰ circuit size of APPROX-MAJORITY via *deterministic restrictions* (greedily apply the best 1-bit restriction)

• <u>Theorem</u> [Chaudhuri-Radhakrishnan '96]

n^{1 + 1/exp(d)} lower bound on the depth-d AC⁰ circuit size of APPROX-MAJORITY via *deterministic restrictions* (greedily apply the best 1-bit restriction)

• <u>Theorem</u> [Koppary-Srinivasan '12]

Similar lower bound for AC⁰[⊕] circuits via *deterministic low-degree-variety restrictions* (method of "certifying polynomials")

p-Random Restriction \mathbf{R}_{p}

• For $0 \le p \le 1$, let \mathbf{R}_p denotes the p-random restriction

$$\mathbf{R}_{p}(\mathbf{x}_{i}) = -\begin{cases} \star & \text{with prob. p} \\ 0 & \text{with prob. (1-p)/2} \\ 1 & \text{with prob. (1-p)/2} \end{cases}$$

independently for each variable index $i \in [n]$

Effect of \mathbf{R}_{p}

- **R**_p simplifies Boolean functions computed by small:
 - DeMorgan formulas
 - decision trees
 - AC⁰ circuits
- Certain Boolean functions, like PARITY_n, maintain their complexity under R_p
- Ergo, lower bounds!

• <u>Subbotovskaya '61</u>

If F is an n-variable DeMorgan formula, then Ex[leafsize(F random 1-bit rest.)]

 $\leq (1-n)^{1.5}$ leafsize(F)

• As a consequence,

Ex[leafsize($F \upharpoonright \mathbf{R}_p$)] $\leq O(p^{1.5} \text{ leafsize}(F) + 1)$

• <u>Subbotovskaya '61</u>

If F is an n-variable DeMorgan formula, then Ex[leafsize(F random 1-bit rest.)]

 $\leq (1-n)^{1.5}$ leafsize(F)

• As a consequence,

Ex[leafsize($F \upharpoonright \mathbf{R}_p$)] $\leq O(p^{1.5} \text{ leafsize}(F) + 1)$

• <u>Hastad '98, Tal '14</u>

Ex[leafsize($F \upharpoonright \mathbf{R}_p$)] $\leq O(p^2 \text{ leafsize}(F) + 1)$

• <u>Subbotovskaya '61</u>

If F is an n-variable DeMorgan formula, then

Ex[leafsize(F \ random 1-bit rest.)]

Known as the *shrinkage exponent* of DeMorgan formulas

carsize(r) + 1)

• <u>Hastad '98, Tal '14</u> $Ex[leafsize(F \upharpoonright R_p)] \le O(p^2 leafsize(F) + 1)$

• Implies lower bounds:

• <u>Hastad '98, Tal '14</u>

Ex[leafsize($F \upharpoonright \mathbf{R}_p$)] $\leq O(p^2 \text{leafsize}(F) + 1)$

Effect of \mathbf{R}_{p} on *Monotone* Formulas

- <u>Open Question</u> What is the shrinkage exponent of monotone formulas (basis {AND₂,OR₂})?
- <u>Conjecture</u> Equals the shrinkage exponent of **read-once formulas** (≈3.27) [Hastad-Razborov-Yao '97]

The Switching Lemma

Decision Trees

The *decision-tree depth* of a Boolean function

 $f:\{0,1\}^n \rightarrow \{0,1\}$

is the minimum depth of a decision tree that computes **f**.

- $DT_{depth}(PARITY_n) = DT_{depth}(AND_n) = n$
- $DT_{depth}(f) = 0 \Leftrightarrow f \text{ is constant}$

- **DNF** = disjunctive normal form (OR-AND formula)
- **CNF** = conjunctive normal form (AND-OR formula)

- **DNF** = disjunctive normal form (OR-AND formula)
- **CNF** = conjunctive normal form (AND-OR formula)
- **width** = bottom fan-in (max # of variables in a clause)

- **k-DNF** = width-**k** DNF
- **k-CNF** = width-**k** CNF

- **k-DNF** = width-k DNF = OR_{∞} of depth-k DTs
- **k-CNF** = width-k CNF = AND_{∞} of depth-k DTs

- **k-DNF** = width-k DNF = OR_{∞} of depth-k DTs
- **k-CNF** = width-k CNF = AND_{∞} of depth-k DTs
- Every depth-k DT is equivalent to a k-DNF and a k-CNF
- Weak converse: If a Boolean function is equivalent to a k-DNF and an ℓ-CNF, then it is equivalent to a DT of depth kℓ

k-DNF Switching Lemma

Hastad's Switching Lemma (1986)

If F is a k-DNF (i.e. OR_{∞} of depth-k decision trees), then $Pr[DT_{depth}(F \upharpoonright R_p) \ge t] \le (5pk)^t$

k-DNF Switching Lemma

Hastad's Switching Lemma (1986)

If F is a k-DNF (i.e. OR_{∞} of depth-k decision trees), then $Pr[DT_{depth}(F \upharpoonright R_p) \ge t] \le (5pk)^t$

Dual CNF version

If F is a k-CNF (i.e. AND_{∞} of depth-k decision trees), then Pr[DT_{depth}(F \upharpoonright R_p) ≥ t] ≤ (5pk)^t

Hastad's Switching Lemma (1986)

If F is a k-DNF (i.e. OR_{∞} of depth-k decision trees), then $Pr[DT_{depth}(F \upharpoonright R_p) \ge t] \le (5pk)^t$

Corollary (usual statement of the S.L.)

If F is a k-DNF, then

Pr[$F \upharpoonright R_p$ is not equivalent to a t-CNF] $\leq (5pk)^t$

Apply the **Switching Lemma** to each gate and take a *union bound over failure events*

Apply the **Switching Lemma** to each gate and take a *union bound over failure events*

Succeeds *almost surely* provided t = O(log(circuit size))

Theorem [Hastad '86]

Depth d+1 circuits for PARITY_n have size $exp(\Omega(n^{1/d}))$

Matching Upper Bound

PARITY_n has depth d+1 circuits of size exp(O(n^{1/d}))

Theorem [Hastad '86]

Depth d+1 circuits for PARITY_n have size $exp(\Omega(n^{1/d}))$

Matching Upper Bound

PARITY_n has depth d+1 circuits of size exp(O(n^{1/d}))

- depth 2 circuits of size O(2ⁿ) (brute-force CNF/DNF)
- for $d+1 \ge 3$, divide and conquer:

Matching Upper Bound

PARITY_n has depth d+1 circuits of size exp(O(n^{1/d}))

- depth 2 circuits of size O(2ⁿ) (brute-force CNF/DNF)
- for $d+1 \ge 3$, divide and conquer:

depth-1 decision trees

depth-1 decision trees

depth O(log S) decision trees (w.h.p.)

depth O(log S) decision trees (w.h.p.)

depth O(log S) decision trees (w.h.p.)

depth O(log S) decision trees (w.h.p.)

constant function (w.h.p.)

- Started with AC⁰ circuit of depth d+1 and size S
- Applied a sequence of restrictions

Combined restriction: **R**_{1/O(log S)^d}

• Circuit reduces to a **constant** (0 or 1) with high prob.

- (AC⁰ circuit of depth d+1 and size S)
 R_{1/O(log S)^d}

 is almost surely constant
- On the other hand, PARITY_n ト R_p is almost surely non-constant for p = ω(1/n)

- (AC⁰ circuit of depth d+1 and size S)
 R_{1/O(log S)^d}

 is almost surely constant
- On the other hand, $PARITY_n \upharpoonright R_p$ is almost surely **non-constant** for $p = \omega(1/n)$

PARITY_m or $1 - PARITY_m$ on m = **Binomial**(n,p) variables

- (AC⁰ circuit of depth d+1 and size S)
 ^R_{1/O(log S)^d}
 is almost surely constant
- On the other hand, PARITY_n ト R_p is almost surely non-constant for p = ω(1/n)
- Therefore, depth d+1 circuits for PARITY_n require size exp(n^{1/d})

Recall: AC⁰ Formulas

Upper Bound

PARITY has depth d+1 circuits of size exp(O(n^{1/d}))

Upper Bound

PARITY has depth d+1 circuits of size exp(O(n^{1/d})) and depth d+1 formulas of size exp(O(dn^{1/d}))

Upper Bound

PARITY has depth d+1 circuits of size exp(O(n^{1/d})) and depth d+1 formulas of size exp(O(dn^{1/d}))

Theorem [Hastad '86]

Depth d+1 circuits for PARITY have size $exp(\Omega(n^{1/d}))$

<u>Upper Bound</u>

PARITY has depth d+1 circuits of size exp(O(n^{1/d})) and depth d+1 formulas of size exp(O(dn^{1/d}))

Theorem [Hastad '86]

Depth d+1 circuits for PARITY have size $exp(\Omega(n^{1/d}))$

Theorem [R.'15]

Depth d+1 formulas for PAR. have size $exp(\Omega(dn^{1/d}))$
Proof of the Switching Lemma

Canonical Decision Tree

- For a DNF formula F and restriction R, we define the canonical decision tree of F[↑]R, denoted CanDT(F[↑]R), as follows:
- If F[↑]R is identically 0 or 1, then CanDT(F[↑]R) outputs
 0 or 1 without making any queries.
- Otherwise, let C be the first term (conjunction of literals) in F such that C^R is not fixed to 0 or 1.
 Query all free variables of C^R. Then proceed as CanDT(F^R) where R' is the extension of R that includes answers to the queried variables.

• Fix a k-DNF F and $\ell \geq 1$

Switching Lemma:

Pr[depth(CanDT(F $\upharpoonright R_p$)) ≥ ℓ] = O(pk) ℓ

• Fix a k-DNF F and $\ell \geq 1$

- Fix a k-DNF F and $\ell \geq 1$
- BAD := { restrictions R | depth(CanDT(F ↾ R)) ≥ ℓ }

```
Switching Lemma:
```

Pr[depth(CanDT(F $\upharpoonright \mathbf{R}_{p})) ≥ \ell$] = O(pk)^ℓ

- Fix a k-DNF F and $\ell \geq 1$
- BAD := { restrictions R | depth(CanDT(F ↾ R)) ≥ ℓ }
- <u>Goal</u>. Pr[$\mathbf{R}_{p} \in BAD$] = O(pk)^{ℓ}

Switching Lemma:

Pr[depth(CanDT(F $\upharpoonright \mathbf{R}_{p})$) ≥ ℓ] = O(pk)^{ℓ}

- Fix a k-DNF F and $\ell \geq 1$
- BAD := { restrictions R | depth(CanDT(F ↾ R)) ≥ ℓ }
- <u>Goal</u>. Pr[$\mathbf{R}_{p} \in BAD$] = O(pk)^{ℓ}

<u>Key idea</u>. We associate each $R \in BAD$ with a restriction R^* such that

- Fix a k-DNF F and $\ell \geq 1$
- BAD := { restrictions R | depth(CanDT(F ↾ R)) ≥ ℓ }
- <u>Goal</u>. Pr[$\mathbf{R}_{p} \in BAD$] = O(pk)^{ℓ}

Key idea. We associate each R
$$\subseteq$$
 BAD with a restriction R^{*} such that
① |Stars(R^{*})| = |Stars(R)| - ℓ

- Fix a k-DNF F and $\ell \ge 1$
- BAD := { restrictions R | depth(CanDT(F ↾ R)) ≥ ℓ }
- <u>Goal</u>. Pr[$\mathbf{R}_{p} \in BAD$] = O(pk)^{ℓ}

Key idea. We associate each
$$R \in BAD$$
 with a
restriction R^* such that
(1) $|Stars(R^*)| = |Stars(R)| - \ell$
in particular, $Pr[R_p = R^*] / Pr[R_p = R] = ((1-p)/2p)^{\ell}$

- Fix a k-DNF F and $\ell \geq 1$
- BAD := { restrictions R | depth(CanDT(F ↾ R)) ≥ ℓ }
- <u>Goal</u>. Pr[$\mathbf{R}_{p} \in BAD$] = O(pk)^{ℓ}

- Fix a k-DNF F and $\ell \geq 1$
- BAD := { restrictions R | depth(CanDT(F ↾ R)) ≥ ℓ }
- <u>Goal</u>. Pr[$\mathbf{R}_{p} \in BAD$] = O(pk)^{ℓ}

Key idea.We associate each R ∈ BAD with a
restriction R* such that①
$$|Stars(R*)| = |Stars(R)| - \ell$$
②the map R \mapsto R* is $(4k)^{\ell}$ -to-1

- Fix a k-DNF F and $\ell \geq 1$
- BAD := { restrictions R | depth(CanDT(F ↾ R)) ≥ ℓ }
- <u>Goal</u>. Pr[$\mathbf{R}_{p} \in BAD$] = O(pk)^{ℓ}

<u>Key idea</u>. We associate each R \subseteq BAD with a restriction R* such that ① |Stars(R*)| = |Stars(R)| - ℓ ② the map R \mapsto R* is (4k) ℓ -to-1 <u>Key idea</u>. We associate each $R \subseteq BAD$ with a restriction R^* such that

1 |Stars(R*)| = |Stars(R)| –
$$\ell$$

$$Pr[\mathbf{R}_{p} \in BAD] = \sum_{R \in BAD} Pr[\mathbf{R}_{p} = R]$$

<u>Key idea</u>. We associate each $R \subseteq BAD$ with a restriction R^* such that (1) $|Stars(R^*)| = |Stars(R)| - \ell$

(2) the map
$$R \rightarrow R^*$$
 is $(4k)^{\ell}$ -to-1

<u>Key idea</u>. We associate each $R \subseteq BAD$ with a restriction R^* such that

1 |Stars(R*)| = |Stars(R)| –
$$\ell$$

<u>Key idea</u>. We associate each $R \in BAD$ with a restriction R^* such that

1)
$$|$$
Stars(R*) $|$ = $|$ Stars(R) $|$ - ℓ

2 the map $R \rightarrow R^*$ is $(4k)^{\ell}$ -to-1

$$\begin{aligned} \Pr[\mathbf{R}_{p} &\in \mathsf{BAD}] \\ &= \sum_{R \in \mathsf{BAD}} \Pr[\mathbf{R}_{p} = R] \\ &= \sum_{R \in \mathsf{BAD}} (2p/(1-p))^{\ell} \Pr[\mathbf{R}_{p} = R^{*}] \\ &\leq (4p)^{\ell} \sum_{R \in \mathsf{BAD}} \Pr[\mathbf{R}_{p} = R^{*}] \\ &\leq (4p)^{\ell} (4k)^{\ell} \Pr[\mathbf{R}_{p} \in \{\mathbf{R}^{*} \mid \mathbf{R} \in \mathsf{BAD}\}] \end{aligned}$$

<u>Key idea</u>. We associate each $R \subseteq BAD$ with a restriction R^* such that

1)
$$|$$
Stars(R*) $|$ = $|$ Stars(R) $|$ - ℓ

$$Pr[\mathbf{R}_{p} \in BAD]$$

$$= \sum_{R \in BAD} Pr[\mathbf{R}_{p} = R]$$

$$= \sum_{R \in BAD} (2p/(1-p))^{\ell} Pr[\mathbf{R}_{p} = R^{*}]$$

$$\leq (4p)^{\ell} \sum_{R \in BAD} Pr[\mathbf{R}_{p} = R^{*}]$$

$$\leq (4p)^{\ell} (4k)^{\ell} Pr[\mathbf{R}_{p} \in \{R^{*} \mid R \in BAD\}]$$

$$Pr[...] \leq 1$$

<u>Key idea</u>. We associate each $R \subseteq BAD$ with a restriction R^* such that

1)
$$|$$
Stars(R*)| = $|$ Stars(R)| - ℓ

$$\begin{aligned} \Pr[\mathbf{R}_{p} \in BAD] \\ &= \sum_{R \in BAD} \Pr[\mathbf{R}_{p} = R] \\ &= \sum_{R \in BAD} (2p/(1-p))^{\ell} \Pr[\mathbf{R}_{p} = R^{*}] \\ &\leq (4p)^{\ell} \sum_{R \in BAD} \Pr[\mathbf{R}_{p} = R^{*}] \\ &\leq (4p)^{\ell} (4k)^{\ell} \Pr[\mathbf{R}_{p} \in \{R^{*} \mid R \in BAD\}] \\ &\leq (16pk)^{\ell} \end{aligned}$$

Switching Lemma:

 $\Pr[\operatorname{depth}(\operatorname{CanDT}(F \upharpoonright \mathbf{R}_p)) \ge \ell] = O(pk)^{\ell}$

$$\begin{aligned} \Pr[\mathbf{R}_{p} \in \mathsf{BAD}] \\ &= \sum_{R \in \mathsf{BAD}} \Pr[\mathbf{R}_{p} = R] \\ &= \sum_{R \in \mathsf{BAD}} (2p/(1-p))^{\ell} \Pr[\mathbf{R}_{p} = R^{*}] \\ &\leq (4p)^{\ell} \sum_{R \in \mathsf{BAD}} \Pr[\mathbf{R}_{p} = R^{*}] \\ &\leq (4p)^{\ell} (4k)^{\ell} \Pr[\mathbf{R}_{p} \in \{R^{*} \mid R \in \mathsf{BAD}\}] \\ &\leq (16pk)^{\ell} \end{aligned}$$

Switching Lemma:

 $\Pr[\operatorname{depth}(\operatorname{CanDT}(F \upharpoonright \mathbf{R}_p)) \ge \ell] = O(pk)^{\ell}$

<u>Key idea</u>. We associate each R \subseteq BAD with a restriction R* such that ① |Stars(R*)| = |Stars(R)| - ℓ ② the map R \mapsto R* is (4k) ℓ -to-1

<u>Key idea</u>. We associate each R \subseteq BAD with a pair (R*,Code(R)) such that ① |Stars(R*)| = |Stars(R)| - ℓ ② the map R \mapsto R* is (4k) ℓ -to-1 ③ Code(R) \subseteq ({0,1}² × [k]) ℓ

<u>Key idea</u>. We associate each $R \in BAD$ with a pair (R*,Code(R)) such that

- (1) $|Stars(R^*)| = |Stars(R)| \ell$
- (2) the map $R \rightarrow R^*$ is $(4k)^{\ell}$ -to-1
- ③ Code(R) $\in (\{0,1\}^2 \times [k])^{\ell}$
- ④ the map R → (R*,Code(R)) is 1-to-1

$R \mapsto (R^*, Code(R))$

$$k = 3, \ell = 4$$
 R \mapsto (R*,Code(R))

 $\mathsf{F} = \mathsf{x}_1 \mathsf{x}_2 \neg \mathsf{x}_3 \lor \neg \mathsf{x}_1 \mathsf{x}_3 \mathsf{x}_5 \lor \mathsf{x}_2 \neg \mathsf{x}_4 \mathsf{x}_5 \lor \mathsf{x}_3 \mathsf{x}_4 \neg \mathsf{x}_6 \lor \mathsf{x}_1 \neg \mathsf{x}_4 \neg \mathsf{x}_7$

$$k = 3, \ell = 4$$
 R → (R*,Code(R))

$$\mathsf{F} = \mathsf{x}_1 \mathsf{x}_2 \neg \mathsf{x}_3 \lor \neg \mathsf{x}_1 \mathsf{x}_3 \mathsf{x}_5 \lor \mathsf{x}_2 \neg \mathsf{x}_4 \mathsf{x}_5 \lor \mathsf{x}_3 \mathsf{x}_4 \neg \mathsf{x}_6 \lor \mathsf{x}_1 \neg \mathsf{x}_4 \neg \mathsf{x}_7$$

$$\mathsf{R} = \{ \mathsf{x}_1 \mapsto \mathsf{1}, \mathsf{x}_4 \mapsto \mathsf{0} \}$$

$$\mathsf{R} = \{ \mathsf{x}_1 \mapsto \mathsf{1}, \mathsf{x}_4 \mapsto \mathsf{0} \}$$

$$\mathsf{R} = \{ \mathsf{x}_1 \mapsto \mathsf{1}, \mathsf{x}_4 \mapsto \mathsf{0} \}$$

k = 3,
$$\ell = 4$$
R \mapsto (R*,Code(R))F \upharpoonright R $x_1 x_2 \neg x_3 \lor \cdots \lor v_2 \lor \lor x_2 \neg x_4 x_5 \lor x_5 \lor \lor \lor v_1 \neg x_4 \neg x_7$ =R = { $x_1 \mapsto 1, x_4 \mapsto 0$ }R~ = { $x_1 \mapsto 1, x_4 \mapsto 0$,
 $x_2 \mapsto x_3 \mapsto \\ x_5 \mapsto x_7 \mapsto$ }R* = { $x_1 \mapsto 1, x_4 \mapsto 0$,
 $x_2 \mapsto x_3 \mapsto \\ x_5 \mapsto x_7 \mapsto$ }R* = { $x_1 \mapsto 1, x_4 \mapsto 0$,
 $x_2 \mapsto x_3 \mapsto \\ x_5 \mapsto x_7 \mapsto$ }

$$\begin{array}{c} k = 3, \ \ell = 4 \\ R \mapsto (R^*, Code(R)) \\ F \upharpoonright R \times_1 \times_2 \neg \times_3 \lor & \swarrow \times_2 \neg \times_4 \times_5 \lor \times_5 \lor \times_1 \neg \times_4 \neg \times_7 \\ = \\ \hline R = \{ x_1 \mapsto 1, x_4 \mapsto 0 \} \\ \hline R^{\sim} = \{ x_1 \mapsto 1, x_4 \mapsto 0, \\ \times_2 \mapsto \times_3 \mapsto \\ \times_5 \mapsto \times_7 \mapsto \} \\ \hline R^* = \{ x_1 \mapsto 1, x_4 \mapsto 0, \\ (x_2 \mapsto 1, x_3 \mapsto 0, \\ \times_5 \mapsto \neg \times_7 \mapsto \} \\ \hline R^* = \{ x_1 \mapsto 1, x_4 \mapsto 0, \\ (x_2 \mapsto 1, x_3 \mapsto 0, \\ \times_5 \mapsto \neg \times_7 \mapsto \} \\ \hline \end{array}$$

$$\begin{array}{c} k = 3, \ \ell = 4 \\ R \mapsto (R^*, Code(R)) \\ F \upharpoonright R \times_1 \times_2 \neg \times_3 \lor & & & & & & \\ R = \{x_1 \mapsto 1, x_4 \mapsto 0\} \\ \hline R^\sim = \{x_1 \mapsto 1, x_4 \mapsto 0, \\ (x_2 \mapsto 1, x_3 \mapsto 1,), \\ x_5 \mapsto & & & & \\ \hline R^* = \{x_1 \mapsto 1, x_4 \mapsto 0, \\ (x_2 \mapsto 1, x_3 \mapsto 1,), \\ x_5 \mapsto & & & & \\ \hline R^* = \{x_1 \mapsto 1, x_4 \mapsto 0, \\ (x_2 \mapsto 1, x_3 \mapsto 0, \\ x_5 \mapsto & & & \\ \hline R^* = \{x_1 \mapsto 1, x_4 \mapsto 0, \\ (x_2 \mapsto 1, x_3 \mapsto 0, \\ x_5 \mapsto & & & \\ \hline R^* = \{x_1 \mapsto 1, x_4 \mapsto 0, \\ (x_2 \mapsto 1, x_3 \mapsto 0, \\ x_5 \mapsto & & & \\ \hline R^* = \{x_1 \mapsto 1, x_4 \mapsto 0, \\ (x_2 \mapsto 1, x_3 \mapsto 0, \\ x_5 \mapsto & & & \\ \hline R^* = \{x_1 \mapsto 1, x_4 \mapsto 0, \\ (x_2 \mapsto 1, x_3 \mapsto 0, \\ x_5 \mapsto & & & \\ \hline R^* = \{x_1 \mapsto 1, x_4 \mapsto 0, \\ (x_2 \mapsto 1, x_3 \mapsto 0, \\ x_5 \mapsto & & & \\ \hline R^* = \{x_1 \mapsto 1, x_4 \mapsto 0, \\ (x_2 \mapsto 1, x_3 \mapsto 0, \\ x_5 \mapsto & & & \\ \hline R^* = \{x_1 \mapsto 1, x_4 \mapsto 0, \\ (x_2 \mapsto 1, x_3 \mapsto 0, \\ x_5 \mapsto & & \\ \hline R^* = \{x_1 \mapsto 1, x_4 \mapsto 0, \\ (x_1 \mapsto 1, x_2 \mapsto 0, \\ (x_2 \mapsto 1, x_3 \mapsto 0, \\ x_5 \mapsto & & \\ \hline R^* = \{x_1 \mapsto 1, x_4 \mapsto 0, \\ (x_1 \mapsto 1, x_4 \mapsto 0, \\ (x_2 \mapsto 1, x_3 \mapsto 0, \\ (x_2 \mapsto 1, x_3 \mapsto 0, \\ (x_1 \mapsto 1, x_4 \mapsto 0, \\ (x_2 \mapsto 1, x_4 \mapsto 0, \\ (x_1 \mapsto 1, x_4 \mapsto 0, \\ (x_2 \mapsto 1, x_4 \mapsto 0, \\ (x_1 \mapsto 1, x_4 \mapsto 0, \\ (x_2 \mapsto 1, x_4 \mapsto 0, \\ (x_2 \mapsto 1, x_4 \mapsto 0, \\ (x_1 \mapsto 1, x_4 \mapsto 0, \\ (x_2 \mapsto 1, x_4 \mapsto 0, \\ (x_1 \mapsto 1, x_4 \mapsto 0, \\ (x_1 \mapsto 1, x_4 \mapsto 0, \\ (x_1 \mapsto 1, x_4 \mapsto 0, \\ (x_2 \mapsto 1, x_4 \mapsto 0, \\ (x_1 \mapsto 1, x_4 \mapsto 0, \\ (x_$$

$$\mathsf{R} = \{ \mathsf{x}_1 \mapsto \mathsf{1}, \mathsf{x}_4 \mapsto \mathsf{0} \}$$

$$R^{\sim} = \{ \begin{array}{c} x_1 + 1 \\ x_2 + 1 \\ x_3 + 1 \\ x_5 + x_7 \\ \end{array} \right\}$$

$$R^* = \{x_1 \mapsto 1, x_4 \not\models 0, \\ (x_2 \mapsto 1, x_3 \mapsto 0, \\ x_5 \mapsto x_7 \mapsto \}$$

Code(R) says:

- find the first satisfied term of F ↾ R*
- the "long path" begins with
 x₂ ⇒ 1, x₃ ⇒ 1

(i.e. var_2 of term \Rightarrow 1 and var_3 of term \Rightarrow 1)

• ..

$$\begin{array}{c} k = 3, \ \ell = 4 \end{array} \qquad R \mapsto (R^*, Code(R)) \\ 1 \\ 0 \\ F \upharpoonright R \\ x_1 & 2 \\ \hline \end{array} \\ \downarrow 0 \\ F \upharpoonright R \\ x_1 & 2 \\ \hline \end{array} \\ \downarrow 0 \\ \hline \\ R^* = \{x_1 \mapsto 1, x_4 \mapsto 0, \\ (x_2 \mapsto 1, x_3 \mapsto 1,) \\ x_5 \mapsto \hline x_7 \\ \hline \end{array} \\ \begin{array}{c} Fix \text{ variables} \\ according \text{ to the} \\ beginning \text{ of the} \\ long \text{ path} \end{array} \\ \hline \\ R^* = \{x_1 \mapsto 1, x_4 \mapsto 0, \\ x_2 \mapsto 1, x_3 \mapsto 0, \\ x_5 \mapsto \hline x_7 \\ \hline \end{array} \\ \hline \end{array} \\ \begin{array}{c} R^* = \{x_1 \mapsto 1, x_4 \mapsto 0, \\ x_2 \mapsto 1, x_3 \mapsto 0, \\ x_5 \mapsto \hline x_7 \\ \hline \end{array} \\ \hline \end{array} \\ \begin{array}{c} R^* = \{x_1 \mapsto 1, x_4 \mapsto 0, \\ x_5 \mapsto \hline x_7 \\ \hline \end{array} \\ \begin{array}{c} R^* = \{x_1 \mapsto 1, x_4 \mapsto 0, \\ x_2 \mapsto 1, x_3 \mapsto 0, \\ x_5 \mapsto \hline x_7 \\ \hline \end{array} \\ \hline$$

$$[k = 3, \ell = 4] \qquad R \mapsto (R^*, Code(R))$$

$$F \upharpoonright R \xrightarrow{} \bigvee \xrightarrow{} \bigvee \xrightarrow{} \bigvee x_2 \neg x_4 x_5 \lor x_5 \lor x_1 \neg x_4 \neg x_7$$

$$\mathsf{R} = \{ \mathsf{x}_1 \mapsto \mathsf{1}, \mathsf{x}_4 \mapsto \mathsf{0} \}$$

$$R^{\sim} = \{ x_1 \mapsto 1, x_4 \mapsto 0, \\ x_2 \mapsto 1, x_3 \mapsto 1, \\ (x_5 \mapsto 0 \times_7 \mapsto) \}$$

$$R^* = \{x_1 \mapsto 1, x_4 \mapsto 0, \\ x_2 \mapsto 1, x_3 \mapsto 0, \\ (x_5 \mapsto 1) \times_7 \mapsto \}$$

Code(R) next says:

- find the next satisfied term
 of F ↑ R*(overwriting x₂ ↦ 1, x₃ ↦ 1)
- the "long path" continues

 $x_5 \Rightarrow 0$ (i.e. var_3 of term $\Rightarrow 0$)

•

k = 3,
$$\ell = 4$$
R \mapsto (R*,Code(R))F \ R \swarrow (R*, Code(R))F \ R \checkmark (R*, \land (R*, \land (R))R = { $x_1 \Rightarrow 1, x_4 \Rightarrow 0$ }R^~ = { $x_1 \Rightarrow 1, x_4 \Rightarrow 0$,
 $x_2 \Rightarrow 1, x_3 \Rightarrow 1$,
 $x_5 \Rightarrow 0, x_7 \Rightarrow$ }R* = { $x_1 \Rightarrow 1, x_4 \Rightarrow 0$,
 $x_2 \Rightarrow 1, x_3 \Rightarrow 0$,
 $x_5 \Rightarrow 1, x_7 \Rightarrow$ }

$$k = 3, \ell = 4$$
 R \mapsto (R*,Code(R))

$$F = x_{1} x_{2} \neg x_{3} \lor \neg x_{1} x_{3} x_{5} \lor x_{2} \neg x_{4} x_{5} \lor x_{3} x_{4} \neg x_{6} \lor x_{1} \neg x_{4} \neg x_{7}$$

$$\mathsf{R} = \{ \mathsf{x}_1 \mapsto \mathsf{1}, \mathsf{x}_4 \mapsto \mathsf{0} \}$$

$$R^{\sim} = \{ x_1 \mapsto 1, x_4 \mapsto 0, \\ x_2 \mapsto 1, x_3 \mapsto 1, \\ x_5 \mapsto 0, x_7 \mapsto 1 \}$$

$$\frac{Code(R) \subseteq (\{0,1\}^2 \times [k])^{\ell}}{\text{given knowledge of R* (and F),}}$$

follow these instructions to
recover R (and along the way R~)

$$R^* = \{ x_1 \mapsto 1, x_4 \mapsto 0, \\ x_2 \mapsto 1, x_3 \mapsto 0, \\ x_5 \mapsto 1, x_7 \mapsto 0 \}$$

$$k = 3, \ell = 4$$
 R → (R*,Code(R))

$$F = x_{1} x_{2} \neg x_{3} \lor \neg x_{1} x_{3} x_{5} \lor x_{2} \neg x_{4} x_{5} \lor x_{3} x_{4} \neg x_{6} \lor x_{1} \neg x_{4} \neg x_{7}$$

$$\mathsf{R} = \{ \mathsf{x}_1 \mapsto \mathsf{1}, \mathsf{x}_4 \mapsto \mathsf{0} \}$$

$$R^{\sim} = \{ x_1 \mapsto 1, x_4 \mapsto 0, \\ x_2 \mapsto 1, x_3 \mapsto 1, \\ x_5 \mapsto 0, x_7 \mapsto 1 \}$$

$$R^* = \{ x_1 \mapsto 1, x_4 \mapsto 0, \\ x_2 \mapsto 1, x_3 \mapsto 0, \\ x_5 \mapsto 1, x_7 \mapsto 0 \}$$

 $\frac{\text{Code}(R) \subseteq (\{0,1\}^2 \times [k])^{\ell}}{\text{given knowledge of } R^* \text{ (and F),}}$ follow these instructions to recover R (and along the way R~)

R* has ℓ fewer

✓ $R \mapsto (R^*, Code(R))$

stars than R

is 1-to-1