
Lower	bounds	based	on	
restrictions

Restrictions

• A	(random) restriction is	a	(random)	subset	R of	{0,1}n

• When	R is	a	subcube of	{0,1}n,	identify	with	a	function	
{x1,…,xn}	→	{0,1,⋆} (each	coordinate	fixed	to	0 or	1 or	free)

• For	0	≤	p	≤	1,	let	Rp denotes	the	p-random	restriction

⋆ with	prob.	p
Rp(xi)	=		 0 with	prob.	(1-p)/2

1 with	prob.	(1-p)/2

independently	for	each	variable	xi

Lower	Bounds	from	Restrictions

• A restriction R	⊆ {0,1}n can	be	applied	to	both
– Boolean functions f : {0,1}n →	{0,1}
– Boolean	circuits C		(by	syntactic	simplification)

• Recipe	for	lower	bounds:
Show	that	C	↾ R	becomes	“simple”,	while	f	↾ R	remains	
“complex”	(with	high	prob.	if	R is	random)

Types of Restrictions	R	⊆ {0,1}n
(increasing	order	of	generality)

• subcube xi =	0,		xi =	1

• mon. projection	 xi =	0,		xi =	1,		xi =	xj

• projection	 xi =	0,		xi =	1,		xi =	xj,		xi ≠	xj

• affine	 xi_1	⊕ ⋯ ⊕ xi_k =	0,		

xi_1	⊕ ⋯ ⊕ xi_k =	1

• low-degree	variety P(x1,…,xn)	=	0	where	deg(P)	≤	d

Circuit	Complexity

Circuit	Complexity

• Studies	the	complexity	of	specific	problems	(e.g.						
PARITY,	MATRIX	MULTIPLICATION,	etc.)	in	
combinatorial	models	of	computation,	most	
importantly	Boolean	circuits

• Goal	is	to	prove	unconditional	lower	bounds,	which	
do	not	rely	on	any	unproven	assumptions

Circuit	Complexity

• Studies	the	complexity	of	specific	problems (e.g.						
PARITY,	MATRIX	MULTIPLICATION,	etc.)	in	
combinatorial	models	of	computation,	most	
importantly	Boolean	circuits

• Goal	is	to	prove	unconditional	lower	bounds which	
do	not	reply	on	any	unproven	assumptions

a	problem	(i.e.	decision	problem)	is	
represented	by	a	sequence	of	
boolean	functions	fn :	{0,1}n →	{0,1}

Boolean	Circuits

∧

∨

∨

x1 x2 x3 x4 x5

∧∨

∧

∧

∨∧

¬

¬

¬

¬

size =	#	of	AND	and	OR	gates

Boolean	Circuits

• An	n-variable	Boolean	circuit	computes	an	n-variable	
Boolean	function	{0,1}n →	{0,1}

• A	problem	is	“solved”	by	a	sequence	of	Boolean	
circuits	C1,	C2,	…,	Cn,	… if	Cn computes	the	
appropriate	function	{0,1}n →	{0,1}

Boolean	Circuits

• An	n-variable	Boolean	circuit	computes	an	n-variable	
Boolean	function	{0,1}n →	{0,1}

• A	problem	is	“solved”	by	a	sequence of	Boolean	
circuits	C1,	C2,	…,	Cn,	… if	Cn computes	the	
appropriate	function	{0,1}n →	{0,1}

in	contrast	to	uniformmodels	of	
computation	(e.g.	Turing	machines)	
where	a	single	algorithm	solves	the	
problem	on	all	instances

Circuit	Size

• The	circuit	size of	a	function f	:	{0,1}n →	{0,1} is	the	
minimum	#	of	AND/OR	gates	in	a	circuit	computing	f

• Theorem [Shannon	1949,	Lupanov 1958]

Almost	all	Boolean	functions	have	circuit	size	Θ(2n/n)

• The	goal	in	Circuit	Complexity	is	proving	lower	bounds	
for	explicit Boolean	functions	(e.g.	k-CLIQUE)

Circuit	Size

• Theorem [Schnorr 1976,	Fischer-Pippenger 1979]

Turing	mach.	time	T(n)⟹ circuit	size	O(T(n)*log	T(n))

• Corollary
A	super-polynomial	lower	bound	on	the	circuit	size	
of	any	function	in	NP	(i.e.	NP	⊈ P/poly) implies	P	≠	NP

Circuit	Size

• Theorem [Schnorr 1976,	Fischer-Pippenger 1979]

Turing	mach.	time	T(n)⟹ circuit	size	O(T(n)*log	T(n))

• Corollary
A	super-polynomial	lower	bound	on	the	circuit	size	
of	any	function	in	NP	(i.e.	NP	⊈ P/poly) implies	P	≠	NP

Circuit	Complexity	is	widely	
believed	to	be	the	most	
viable	approach	to	P	≠	NP

Circuit	Size

• Holy	Grail (P	≠	NP)
Prove	a	super-polynomial	lower	bound on	the		
circuit	size	of	any	problem	in	NP

Circuit	Size

• Holy	Grail (P	≠	NP)
Prove	a	super-polynomial	lower	bound on	the				
circuit	size	of	any	problem	in	NP

• Best	known	lower	bound

3n	– O(1) 1976 [Schnorr]

4n	– O(1) 1991	 [Zwick]

4.5n	– o(n) 2001 [Lachish-Raz]

5n	– o(n) 2002	- today		 [Iwama-Morizumi]

Circuit	Size

• Holy	Grail (P	≠	NP)
Prove	a	super-polynomial	lower	bound on	the				
circuit	size	of	any	problem	in	NP

• Best	known	lower	bound

3n	– O(1) 1976 [Schnorr]

4n	– O(1) 1991	 [Zwick]

4.5n	– o(n) 2001 [Lachish-Raz]

5n	– o(n) 2002	- today		 [Iwama-Morizumi]

3.01n for	circuits	in	the	full	
binary	basis (all	fan-in	2	gates)
[Find-Golovnev-Hirsch-Kulikov ’16]

Circuit	Size

• Holy	Grail (P	≠	NP)
Prove	a	super-polynomial	lower	bound on	the				
circuit	size	of	any	problem	in	NP

• Best	known	lower	bound

3n	– O(1) 1976 [Schnorr]

4n	– O(1) 1991	 [Zwick]

4.5n	– o(n) 2001 [Lachish-Raz]

5n	– o(n) 2002	- today		 [Iwama-Morizumi]

Gate-elimination	arguments	
(subcube and	affine	restrictions)

3.01n for	circuits	in	the	full	
binary	basis (all	fan-in	2	gates)
[Find-Golovnev-Hirsch-Kulikov ’16]

∧

x3 x1 x2 x4 x5 x1 x5

∨

∧

¬

¬

∨

∧

∧

∨

¬∨ ¬

x2																		 x3							 x4¬

x4

∧

∧

Formulas are	circuits	with	
the	structure	of	a	tree

leafsize =	#	of	leaves

(DeMorgan) Formulas

Formulas are	circuits	with	
the	structure	of	a	tree

∧

x3 x1 x2 x4 x5 x1 x5

∨

∧

¬

¬

∨

∧

∧

∨

¬∨ ¬

x2																		 x3							 x4¬

x4

∧

∧

Formulas	lack	“memory”:	the	result	of	
each	sub-computation	is	only	used	once

(DeMorgan) Formulas

Formulas are	circuits	with	
the	structure	of	a	tree

∧

x3 x1 x2 x4 x5 x1 x5

∨

∧

¬

¬

∨

∧

∧

∨

¬∨ ¬

x2																		 x3							 x4¬

x4

∧

∧

Formulas	lack	“memory”:	the	result	of	
each	sub-computation	is	only	used	once

Open:		Are	circuits	more	
powerful	than	formulas?

(DeMorgan) Formulas

Formulas	vs.	Circuits

• A	Pret-ty Holy	Grail (NC1 ≠	P)
Prove	that	poly-size	circuits	are	strictly	more	
powerful	than	poly-size	formulas

Formulas	vs.	Circuits

• A	Pret-ty Holy	Grail (NC1 ≠	P)
Prove	that	poly-size	circuits	are	strictly	more	
powerful	than	poly-size	formulas

• Best	known	formula	size	lower	bound

n1.5	– o(1) 1961 [Subbotovskaya]

n2 1971 [Khrapchenko]

n2.5	– o(1) 1991	 [Andreev]

n3	– o(1) 1998	- today		 [Hastad]

(log-factor	improvement	[Tal’14])

Formulas	vs.	Circuits

• A	Pret-ty Holy	Grail (NC1 ≠	P)
Prove	that	poly-size	circuits	are	strictly	more	
powerful	than	poly-size	formulas

• Best	known	formula	size	lower	bound

n1.5	– o(1) 1961 [Subbotovskaya]

n2 1971 [Khrapchenko]

n2.5	– o(1) 1991	 [Andreev]

n3	– o(1) 1998	- today		 [Hastad]

(log-factor	improvement	[Tal’14])

Shrinkage	of	DeMorgan formulas
(simplification under p-random restrictions)

Restricted	Classes
(AC0,	monotone,	etc.)

Restricted	Classes

• AC0 setting		(fast	parallel	computation)
constant-depth,	unbounded	fan-in	AND/OR	gates

• monotone	setting
negation-free	(no	NOT	gates)

• arithmetic	(+, ×),	tropical	(min,	+),	…

AC0 Circuits

x1 x2 x3 x4 x5¬x1 ¬x2 ¬x3 ¬x4 ¬x5

∨

∧

∨ ∨ ∨

∧ ∧ ∧ ∧ ∧∧

∨

∨ ∨ ∨ ∨ ∨ ∨

x1 x2 x3 x4 x5¬x1 ¬x2 ¬x3 ¬x4 ¬x5

∨

∧

∨ ∨ ∨

∧ ∧ ∧ ∧ ∧∧

∨

∨ ∨ ∨ ∨ ∨ ∨

AC0 Circuits

depth is	bounded	by	a	constant	d
(or	slow-growing	function	d(n)	<<	log	n)

AC0 Formulas

∨

∧

∨ ∨

∧ ∧ ∧ ∧ ∧∧ ∧ ∧∧

x5 …¬x8

AC0 Lower	Bounds

• Exponential	lower	bounds	known	since	the	1980’s:
the	depth-d	AC0 circuit	size	PARITYn is	2Θ(n)

[Ajtai,	Furst-Saxe-Sipser,	Yao,	Hastad]

1/(d–1)

AC0 Lower	Bounds

• Exponential	lower	bounds	known	since	the	1980’s:
the	depth-d	AC0 circuit	size	PARITYn is	2Θ(n)

[Ajtai,	Furst-Saxe-Sipser,	Yao,	Hastad]

1/(d–1)

Switching	Lemma
(simplification under p-random restrictions)

Lower	Bound	Techniques

• counting
– almost	all	Boolean	functions	are	complex
– circuit	size	hierarchy	theorem

• gate-elimination	arguments	 [restriction	based]
– best	lower	bounds	for	unrestricted circuits	and	formulas

• switching	lemmas		[restriction	based]
– best	lower	bounds	against	AC0

• polynomial	method
– best	lower	bounds	against	AC0[⊕]

Monotone Lower	Bounds

• We	know	essentially	all	separations	among	
interesting	monotone	classes,	via	a	multitude	of	
techniques

mAC0⊂mNC1⊂mL	⊂mNL⊂mNC⊂mP⊂mNP⊂ ⋯

Gate	Elimination	Arguments
&	Shrinkage

Restrictions

• Consider	a	Boolean	function

f	:	{0,1}n →	{0,1}

• A	restriction (on	the	variables	of	f)	is	a	function

R	:	{x1,…,xn} →	{0,1,⋆}

Restrictions

• Consider	a	Boolean	function

f	:	{0,1}n →	{0,1}

• A	restriction (on	the	variables	of	f)	is	a	function

R	:	{x1,…,xn} →	{0,1,⋆}

equivalently,	a	partial	function	
from	{x1,…,xn}	to	{0,1}

Restrictions

• Consider	a	Boolean	function

f	:	{0,1}n →	{0,1}

• A	restriction (on	the	variables	of	f)	is	a	function

R	:	{x1,…,xn} →	{0,1,⋆}

• Applying	R to	f,	we	get	a	Boolean	function

f	↾ R	:	{0,1}Stars(R) →	{0,1}

Restrictions

• Consider	a	Boolean	function

f	:	{0,1}n →	{0,1}

• A	restriction (on	the	variables	of	f)	is	a	function

R	:	{x1,…,xn} →	{0,1,⋆}

• Applying	R to	f,	we	get	a	Boolean	function

f	↾ R	:	{0,1}Stars(R) →	{0,1}

f	(0	1	1	0	1	0	0	1	0	1	0	0	1	1	0	1	0	1	0	1	0	1	0)

R	 ⋆ 1	⋆ ⋆ 1	0	⋆ 1	⋆ 1	0	0	⋆ ⋆ 0	⋆ 0	⋆ ⋆ ⋆ 0	⋆ 0
f	↾ R	(0 1 1	0	1	0 0	1 0 1	0	0	1	1 0 1 0 1	0	1	0 1 0)

Restrictions

• Consider	a	Boolean	function

f	:	{0,1}n →	{0,1}

• A	restriction (on	the	variables	of	f)	is	a	function

R	:	{x1,…,xn} →	{0,1,⋆}

• Applying	R to	f,	we	get	a	Boolean	function

f	↾ R	:	{0,1}Stars(R) →	{0,1}

• Can	also	apply	R syntactically to	circuits	(and	other	
objects)

Restricting	a	Circuit

∧

∨

x1 x2 x3 x4 x5

∧

∨

¬

¬

¬

¬

• Consider	the	1-bit	restriction	
R	=	{	x2 ↦ 1	}

∧

∨∧

∧ ∨

Restricting	a	Circuit

∧

∨

x1 x3 x4 x5

∧

∨

¬

¬

¬

¬

• Consider	the	1-bit	restriction	
R	=	{	x2 ↦ 1	}

∧

∨∧

∧ ∨

1

Restricting	a	Circuit

∧

∨

x1 x3 x4 x5

∧

∨

¬

¬

¬

¬

• Consider	the	1-bit	restriction	
R	=	{	x2 ↦ 1	}

∧

∨∧

∧ 1

Restricting	a	Circuit

∧

∨

x1 x3 x4 x5

∧

∨

¬

¬

¬

¬

• Consider	the	1-bit	restriction	
R	=	{	x2 ↦ 1	}

∧

∨∧

∧

Restricting	a	Circuit

∧

∨

x1 x3 x4 x5

∧

∨

¬

¬

¬

¬

• Consider	the	1-bit	restriction	
R	=	{	x2 ↦ 1	}

∧

∨∧

∧

Restricting	a	Circuit

∧

∨

x1 x3 x4 x5

∧

∨

¬

¬

¬

¬

• Consider	the	1-bit	restriction	
R	=	{	x2 ↦ 1	}

∨

Gate	Elimination

• Lemma [Schnorr ’76]

If	a	circuit	C (in	basis	{AND2,OR2,NOT}) computes	PARITYn
(n	≥	2),	then	there	exists	a	1-bit	restriction	R killing	at	
least	3 AND/OR	gates	of	C (i.e.	size(C	↾ R)	≤	size(C)	–
3)

• Corollary
PARITYn has	circuit	size	at	least	3n	– 3.		Moreover,	
matching	upper	bound.

Gate	Elimination

• More	sophisticated	gate	elimination	arguments	give																		
the	best	lower	bounds:

5n	– o(n)		 {AND2,OR2,NOT}	basis
[Iwama-Lachish-Morizumi-Raz ‘02]

≈3.01n full	binary	basis
[Find-Golovnev-Hirsch-Kulikov ’16]

Gate	Elimination

• More	sophisticated	gate	elimination	arguments	give																		
the	best	lower	bounds:

5n	– o(n)		 {AND2,OR2,NOT}	basis
[Iwama-Lachish-Morizumi-Raz ‘02]

≈3.01n full	binary	basis
[Find-Golovnev-Hirsch-Kulikov ’16]

uses	affine	restrictions

Gate	Elimination

• Theorem [Chaudhuri-Radhakrishnan ’96]

n1	+	1/exp(d) lower	bound	on	the	depth-d AC0 circuit	size	
of	APPROX-MAJORITY	via	deterministic	restrictions	
(greedily	apply	the	best	1-bit	restriction)

Gate	Elimination

• Theorem [Chaudhuri-Radhakrishnan ’96]

n1	+	1/exp(d) lower	bound	on	the	depth-d AC0 circuit	size	
of	APPROX-MAJORITY	via	deterministic	restrictions	
(greedily	apply	the	best	1-bit	restriction)

• Theorem [Koppary-Srinivasan ’12]

Similar	lower	bound	for	AC0[⊕]	circuits	via
deterministic	low-degree-variety	restrictions	
(method	of	“certifying	polynomials”)

p-Random	Restriction	Rp

• For	0	≤	p	≤	1,	let	Rp denotes	the	p-random	restriction

⋆ with	prob.	p
Rp(xi)	=		 0 with	prob.	(1-p)/2

1 with	prob.	(1-p)/2

independently	for	each	variable	index	i∈ [n]

p-Random	Restriction	Rp

• For	0	≤	p	≤	1,	let	Rp denotes	the	p-random	restriction

⋆ with	prob.	p
Rp(xi)	=		 0 with	prob.	(1-p)/2

1 with	prob.	(1-p)/2

independently	for	each	variable	index	i∈ [n]

Convention:		
Random	objects	written	
in	boldface

Effect	of	Rp

• Rp simplifies	Boolean	functions	computed	by	small:
– DeMorgan formulas
– decision	trees	
– AC0 circuits

• Certain	Boolean	functions,	like	PARITYn,	maintain	
their	complexity	under	Rp

• Ergo,	lower	bounds!

Effect	of	Rp on	DeMorgan Formulas

• Subbotovskaya ‘61
If	F is	an	n-variable	DeMorgan formula,	then

Ex[leafsize(F ↾ random	1-bit	rest.)]	
≤	(1−n)1.5 leafsize(F)

• As	a	consequence,
Ex[leafsize(F ↾ Rp)]	≤	O(p1.5 leafsize(F)	+	1)

Effect	of	Rp on	DeMorgan Formulas

• Subbotovskaya ‘61
If	F is	an	n-variable	DeMorgan formula,	then

Ex[leafsize(F ↾ random	1-bit	rest.)]	
≤	(1−n)1.5 leafsize(F)

• As	a	consequence,
Ex[leafsize(F ↾ Rp)]	≤	O(p1.5 leafsize(F)	+	1)

• Hastad	‘98,	Tal	‘14
Ex[leafsize(F	↾ Rp)]	≤	O(p2 leafsize(F)	+	1)

Effect	of	Rp on	DeMorgan Formulas

• Subbotovskaya ‘61
If	F is	an	n-variable	DeMorgan formula,	then

Ex[leafsize(F ↾ random	1-bit	rest.)]	
≤	(1−n)1.5 leafsize(F)

• As	a	consequence,
Ex[leafsize(F ↾ Rp)]	≤	O(p1.5 leafsize(F)	+	1)

• Hastad	‘98,	Tal	‘14
Ex[leafsize(F	↾ Rp)]	≤	O(p2 leafsize(F)	+	1)

Known as	the	shrinkage	exponent	
of	DeMorgan formulas

Effect	of	Rp on	DeMorgan Formulas

• Subbotovskaya ‘61
If	F	is	an	n-variable	DeMorgan formula,	then

Ex[leafsize(F ↾ random	1-bit	rest.)]	
≤	(1−n)1.5 leafsize(F)

• As	a	consequence,
Ex[leafsize(F ↾ Rp)]	≤	O(p1.5 leafsize(F)	+	1)

• Hastad	‘98,	Tal	‘14
Ex[leafsize(F	↾ Rp)]	≤	O(p2 leafsize(F)	+	1)

• Implies	lower	bounds:
leafsize(PARITYn)	=	Ω(n2)			

leafsize(ANDREEVn)	=	Ω~(n3)

current	frontier

Effect	of	Rp on	Monotone Formulas

• Open	Question What	is	the	shrinkage	exponent	of	
monotone	formulas	(basis	{AND2,OR2})?

• Conjecture Equals the	shrinkage	exponent	of						
read-once	formulas (≈3.27)	 [Hastad-Razborov-Yao	‘97]

The	Switching	Lemma

Decision	Trees

depth	3 x1
0 1

x4
0 1

x7
0 1

x7
0 1

x1
0 1

x8
0 1

x3
0 1

1						0						0						1								0						1						1						0

Decision	Trees

The	decision-tree	depth of	a	Boolean	function	

f	:	{0,1}n →	{0,1}

is	the	minimum	depth	of	a	decision	tree	that	
computes f.

• DTdepth(PARITYn)	=	DTdepth(ANDn)	=	n

• DTdepth(f)	=	0		⇔ f	is	constant

Depth-2	Formulas	(DNFs	and	CNFs)

• DNF =	disjunctive	normal	form	(OR-AND	formula)
• CNF =	conjunctive	normal	form	(AND-OR	formula)

∧

∨

∧ ∧ ∧ ∧ ∧ ∧……

Depth-2	Formulas	(DNFs	and	CNFs)

• DNF =	disjunctive	normal	form	(OR-AND	formula)
• CNF =	conjunctive	normal	form	(AND-OR	formula)
• width =	bottom	fan-in	(max	#	of	variables	in	a	clause)

∧

∨

k
∧ ∧ ∧ ∧ ∧ ∧

∞

……

Depth-2	Formulas	(DNFs	and	CNFs)

• k-DNF =	width-k DNF
• k-CNF =	width-k CNF

∧

∨

k
∧ ∧ ∧ ∧ ∧ ∧

∞

……

Depth-2	Formulas	(DNFs	and	CNFs)

• k-DNF =	width-k DNF =			OR∞	 of	depth-k DTs
• k-CNF =	width-k CNF =	AND∞ of	depth-k DTs

∨
∞

……
k

Depth-2	Formulas	(DNFs	and	CNFs)

• k-DNF =	width-k DNF =			OR∞	 of	depth-k DTs
• k-CNF =	width-k CNF =	AND∞ of	depth-k DTs

• Every	depth-k DT	is	equivalent	to	a	k-DNF	and	a	k-CNF

• Weak	converse:		If	a	Boolean	function	is	equivalent	to	
a	k-DNF	and	an	ℓ-CNF,	then	it	is	equivalent	to	a	DT	of	
depth	kℓ

Decision	Tree	to	DNF

x1
0 1

x4
0 1

x7
0 1

x7
0 1

x1
0 1

x8
0 1

x3
0 1

1						0						0						1								0						1						1						0

∨ (¬x3∧ ¬x1∧ ¬x4)
∨ (¬x3∧ x1∧ x7)
∨ (x3∧ x7∧ x1)
∨ (x3∧ x7∧ x8)

Decision	Tree	to	DNF

x1
0 1

x4
0 1

x7
0 1

x7
0 1

x1
0 1

x8
0 1

x3
0 1

1 0						0						1								0						1						1						0

∨ (¬x3∧ ¬x1∧ ¬x4)
∨ (¬x3∧ x1∧ x7)
∨ (x3∧ x7∧ x1)
∨ (x3∧ x7∧ x8)

Decision	Tree	to	DNF

x1
0 1

x4
0 1

x7
0 1

x7
0 1

x1
0 1

x8
0 1

x3
0 1

1						0						0						1 0						1						1						0

∨ (¬x3∧ ¬x1∧ ¬x4)
∨ (¬x3∧ x1∧ x7)
∨ (x3∧ x7∧ x1)
∨ (x3∧ x7∧ x8)

Decision	Tree	to	DNF

x1
0 1

x4
0 1

x7
0 1

x7
0 1

x1
0 1

x8
0 1

x3
0 1

1						0						0						1								0						1 1						0

∨ (¬x3∧ ¬x1∧ ¬x4)
∨ (¬x3∧ x1∧ x7)
∨ (x3∧ x7∧ x1)
∨ (x3∧ x7∧ x8)

Decision	Tree	to	DNF

x1
0 1

x4
0 1

x7
0 1

x7
0 1

x1
0 1

x8
0 1

x3
0 1

1						0						0						1								0						1						1 0

∨ (¬x3∧ ¬x1∧ ¬x4)
∨ (¬x3∧ x1∧ x7)
∨ (x3∧ x7∧ x1)
∨ (x3∧ x7∧ x8)

k-DNF	Switching	Lemma

Hastad’s Switching	Lemma (1986)

If	F is	a	k-DNF	(i.e.	OR∞ of	depth-k decision	trees),	then

Pr[DTdepth(F ↾ Rp)	≥	t]	≤	(5pk)t	

k-DNF	Switching	Lemma

Hastad’s Switching	Lemma (1986)

If	F is	a	k-DNF	(i.e.	OR∞ of	depth-k decision	trees),	then

Pr[DTdepth(F ↾ Rp)	≥	t]	≤ (5pk)t

≤	2–t when	p	=	1 /10k	

k-DNF	Switching	Lemma

Hastad’s Switching	Lemma (1986)

If	F is	a	k-DNF	(i.e.	OR∞ of	depth-k decision	trees),	then

Pr[DTdepth(F ↾ Rp)	≥	t]	≤	(5pk)t	

Dual	CNF	version

If	F is	a	k-CNF (i.e.	AND∞ of	depth-k decision	trees),	then

Pr[DTdepth(F ↾ Rp)	≥	t]	≤	(5pk)t	

k-DNF	Switching	Lemma

Corollary (usual	statement	of	the	S.L.)

If	F is	a	k-DNF,	then

Pr[F ↾ Rp is	not	equivalent	to	a	t-CNF]	≤	(5pk)t

Hastad’s Switching	Lemma (1986)

If	F is	a	k-DNF	(i.e.	OR∞ of	depth-k decision	trees),	then

Pr[DTdepth(F ↾ Rp)	≥	t]	≤	(5pk)t	

k-DNF	Switching	Lemma

∧

∨

k
∧ ∧ ∧ ∧ ∧ ∧

∞

……

k-DNF	Switching	Lemma

∧

∨

k
∧ ∧ ∧ ∧ ∧ ∧

∞

……R1/10k

k-DNF	Switching	Lemma

∨

∧

t
∨ ∨ ∨ ∨ ∨ ∨

∞

∧

∨

k
∧ ∧ ∧ ∧ ∧ ∧

∞

……

……

with	prob.	
1	– 2–t

R1/10k

Depth	Reduction

∨

∧

∨ ∨ ∨

∧ ∧ ∧ ∧ ∧∧

∨

∨ ∨ ∨ ∨ ∨ ∨

unbnd'd
fan-in

k k k k k k

Depth	Reduction

∨

∧

∨ ∨ ∨

∧ ∧ ∧ ∧ ∧∧

∨

∨ ∨ ∨ ∨ ∨ ∨

k k k k k k

R1/10k

Depth	Reduction

∨

∧

∨ ∨ ∨

∧ ∧ ∧ ∧ ∧∧

∨

∨ ∨ ∨ ∨ ∨ ∨

k k k k k k

Apply	the	Switching	Lemma	to	each	gate
and	take	a	union	bound	over	failure	events

R1/10k

Depth	Reduction

∨

∧

∨ ∨ ∨ ∨

t t t t t t

∨ ∨ ∨ ∨ ∨ ∨

∧ ∧ ∧ ∧ ∧∧

Apply	the	Switching	Lemma	to	each	gate
and	take	a	union	bound	over	failure	events

Depth	Reduction

∨

∧

∨ ∨ ∨ ∨

t t t t t t

∨ ∨ ∨ ∨ ∨ ∨

∧ ∧ ∧ ∧ ∧∧

Succeeds	almost	surely	provided
t	=	O(log(circuit	size))

Depth	Reduction

∨

∧

∨ ∨ ∨ ∨

∨ ∨ ∨ ∨ ∨ ∨

∧ ∧ ∧ ∧ ∧∧

two	layers	
of	∨-gates

t t t t t t

Depth	Reduction

∨

∧

∨ ∨ ∨ ∨

∧ ∧ ∧ ∧ ∧∧

t t t t t t

PARITY	Lower	Bound

Theorem [Hastad ’86]

Depth	d+1 circuits for	PARITYn have	size	exp(Ω(n1/d))

Theorem [Hastad ’86]

Depth	d+1 circuits for	PARITYn have	size	exp(Ω(n1/d))

PARITY	Lower	BoundMatching	Upper	Bound
PARITYn has	depth	d+1 circuits of	size	exp(O(n1/d))

• depth	2 circuits	of	size	O(2n)		(brute-force	CNF/DNF)
• for	d+1	≥	3,	divide	and	conquer:

n1−1/d

d

n1−1/d n1−1/d

n1/d

2

Matching	Upper	Bound
PARITYn has	depth	d+1 circuits of	size	exp(O(n1/d))

n

d+1

Matching	Upper	Bound
PARITYn has	depth	d+1 circuits of	size	exp(O(n1/d))

• depth	2 circuits	of	size	O(2n)		(brute-force	CNF/DNF)
• for	d+1	≥	3,	divide	and	conquer:

x1 x2 x3 x4 x5¬x1 ¬x2 ¬x3 ¬x4 ¬x5

∨

∧

∨ ∨ ∨

∧ ∧ ∧ ∧ ∧∧

∨

∨ ∨ ∨ ∨ ∨ ∨

PARITY	Lower	Bound

depth	d+1,	size	S

∨

∧

∨ ∨ ∨

∧ ∧ ∧ ∧ ∧∧

∨

∨ ∨ ∨ ∨ ∨ ∨

depth-1 decision	trees

PARITY	Lower	Bound

∨

∧

∨ ∨ ∨

∧ ∧ ∧ ∧ ∧∧

∨

∨ ∨ ∨ ∨ ∨ ∨

depth-1 decision	trees

R1/10

PARITY	Lower	Bound

∨

∧

∨ ∨ ∨

∧ ∧ ∧ ∧ ∧∧

∨

depth	O(log	S) decision	trees	(w.h.p.)

PARITY	Lower	Bound

∨

∧

∨ ∨ ∨

∧ ∧ ∧ ∧ ∧∧

∨

depth	O(log	S) decision	trees	(w.h.p.)

R1	/	10*log	S

PARITY	Lower	Bound

∨

∧

∨ ∨ ∨ ∨

depth	O(log	S)	decision	trees	(w.h.p.)

PARITY	Lower	Bound

∨

∧

∨ ∨ ∨ ∨

R1	/	10*log	S

PARITY	Lower	Bound

depth	O(log	S)	decision	trees	(w.h.p.)

∧

PARITY	Lower	Bound

depth	O(log	S)	decision	trees	(w.h.p.)

∧

R1	/	10*log	S

PARITY	Lower	Bound

depth	O(log	S)	decision	trees	(w.h.p.)

constant function (w.h.p.)

PARITY	Lower	Bound

constant	function (w.h.p.)

PARITY	Lower	Bound

decision	tree	of	depth:

• 0	with	high	prob.
• 1	with	prob.	≤	𝜀
• 2	with	prob.	≤	𝜀2

• ⋮

PARITY	Lower	Bound

• Started	with	AC0 circuit	of	depth	d+1 and	size	S	

• Applied	a	sequence	of	restrictions
R1/10,	R1/(10*log	S),	R1/(10*log	S),	…,	R1/(10*log	S)

Combined	restriction:		R1/O(log	S)d

• Circuit	reduces	to	a	constant (0 or	1)	with	high	prob.

d times

PARITY	Lower	Bound

• (AC0 circuit	of	depth	d+1 and	size	S)	↾ R1/O(log	S)d

is	almost	surely	constant

• On	the	other	hand,	PARITYn ↾ Rp is	almost	surely					
non-constant for	p	=	ω(1/n)

PARITY	Lower	Bound

• (AC0 circuit	of	depth	d+1 and	size	S)	↾ R1/O(log	S)d

is	almost	surely	constant

• On	the	other	hand,	PARITYn ↾ Rp is	almost	surely					
non-constant for	p	=	ω(1/n)

PARITYm or	1	– PARITYm on	
m	=	Binomial(n,p)	variables

PARITY	Lower	Bound

• (AC0 circuit	of	depth	d+1 and	size	S)	↾ R1/O(log	S)d

is	almost	surely	constant

• On	the	other	hand,	PARITYn ↾ Rp is	almost	surely					
non-constant for	p	=	ω(1/n)

• Therefore,	depth	d+1	circuits	for	PARITYn require		size	
exp(n1/d)

Recall:	AC0 Formulas

∨

∧

∨ ∨

∧ ∧ ∧ ∧ ∧∧ ∧ ∧∧

x5 …¬x8

Circuits	⇒ FormulasUpper	Bound
PARITY has	depth	d+1 circuits of	size	exp(O(n1/d))

Circuits	⇒ Formulas

∧ ∧

Upper	Bound
PARITY has	depth	d+1 circuits of	size	exp(O(n1/d))

and	depth	d+1 formulas	of	size	exp(O(dn1/d))

Circuits	⇒ FormulasUpper	Bound
PARITY has	depth	d+1 circuits of	size	exp(O(n1/d))

and	depth	d+1 formulas	of	size	exp(O(dn1/d))

Theorem [Hastad ’86]

Depth	d+1 circuits for	PARITY	have	size	exp(Ω(n1/d))

Circuits	⇒ FormulasUpper	Bound
PARITY has	depth	d+1 circuits of	size	exp(O(n1/d))

and	depth	d+1 formulas	of	size	exp(O(dn1/d))

Theorem [Hastad ’86]

Depth	d+1 circuits for	PARITY	have	size	exp(Ω(n1/d))

Theorem [R.’15]

Depth	d+1 formulas for	PAR.	have	size	exp(Ω(dn1/d))

Proof	of	the	
Switching	Lemma

Canonical	Decision	Tree

• For	a	DNF	formula	F	and	restriction	R,	we	define	the	
canonical	decision	tree of	F↾R,	denoted	CanDT(F↾R),	
as	follows:

1. If	F↾R	is	identically	0	or	1,	then	CanDT(F↾R)	outputs	
0	or	1	without	making	any	queries.

2. Otherwise,	let	C	be	the	first	term	(conjunction	of	
literals)	in	F	such	that	C↾R	is	not	fixed	to	0	or	1.
Query	all	free	variables	of	C↾R.		Then	proceed	as	
CanDT(F↾R’)	where	R’	is	the	extension	of	R	that	
includes	answers	to	the	queried	variables.

• Fix	a	k-DNF	F	and	ℓ ≥	1

Switching	Lemma:

Pr[depth(CanDT(F ↾ Rp))	≥	ℓ]	=	O(pk)ℓ

• Fix	a	k-DNF	F	and	ℓ ≥	1

Switching	Lemma:

Pr[depth(CanDT(F ↾ Rp))	≥	ℓ]	=	O(pk)ℓ

Obs:		depth(CanDT(F ↾ Rp))	<	ℓ
Implies	DTdepth(F ↾ Rp)	<	ℓ

• Fix	a	k-DNF	F	and	ℓ ≥	1
• BAD	:=	{	restrictions	R	|	depth(CanDT(F	↾ R))	≥	ℓ }

Switching	Lemma:

Pr[depth(CanDT(F ↾ Rp))	≥	ℓ]	=	O(pk)ℓ

• Fix	a	k-DNF	F	and	ℓ ≥	1
• BAD	:=	{	restrictions	R	|	depth(CanDT(F	↾ R))	≥	ℓ }
• Goal.		Pr[Rp∈ BAD]	=	O(pk)ℓ

Switching	Lemma:

Pr[depth(CanDT(F ↾ Rp))	≥	ℓ]	=	O(pk)ℓ

• Fix	a	k-DNF	F	and	ℓ ≥	1
• BAD	:=	{	restrictions	R	|	depth(CanDT(F	↾ R))	≥	ℓ }
• Goal.		Pr[Rp∈ BAD]	=	O(pk)ℓ

Key	idea.		We	associate	each	R	∈ BAD	with	a	
restriction	R*	such	that

• Fix	a	k-DNF	F	and	ℓ ≥	1
• BAD	:=	{	restrictions	R	|	depth(CanDT(F	↾ R))	≥	ℓ }
• Goal.		Pr[Rp∈ BAD]	=	O(pk)ℓ

Key	idea.		We	associate	each	R	∈ BAD	with	a	
restriction	R*	such	that

① |Stars(R*)|	=	|Stars(R)|	−	ℓ

R* ⋆ 1	⋆ ⋆ 1	0	⋆ 1	⋆ 1	0	0	⋆ ⋆ 0	⋆ 0	⋆ ⋆ ⋆ 0	⋆ 0
R* ⋆ 1	⋆ 0 1	0	⋆ 1	⋆ 1	0	0	1 ⋆ 0	⋆ 0	⋆ 0 ⋆ 0	⋆ 0

(ℓ =	3)

• Fix	a	k-DNF	F	and	ℓ ≥	1
• BAD	:=	{	restrictions	R	|	depth(CanDT(F	↾ R))	≥	ℓ }
• Goal.		Pr[Rp∈ BAD]	=	O(pk)ℓ

Key	idea.		We	associate	each	R	∈ BAD	with	a	
restriction	R*	such	that

① |Stars(R*)|	=	|Stars(R)|	−	ℓ
in	particular,	Pr[Rp =	R*]	/	Pr[Rp =	R]	=	((1-p)/2p)ℓ

• Fix	a	k-DNF	F	and	ℓ ≥	1
• BAD	:=	{	restrictions	R	|	depth(CanDT(F	↾ R))	≥	ℓ }
• Goal.		Pr[Rp∈ BAD]	=	O(pk)ℓ

Key	idea.		We	associate	each	R	∈ BAD	with	a	
restriction	R*	such	that

① |Stars(R*)|	=	|Stars(R)|	−	ℓ
in	particular,	Pr[Rp =	R*]	/	Pr[Rp =	R]	=	((1-p)/2p)ℓ

for	any	restriction	𝜌 with	s	stars,
Pr[Rp =	𝜌]	=	ps (1−p)n−s

• Fix	a	k-DNF	F	and	ℓ ≥	1
• BAD	:=	{	restrictions	R	|	depth(CanDT(F	↾ R))	≥	ℓ }
• Goal.		Pr[Rp∈ BAD]	=	O(pk)ℓ

Key	idea.		We	associate	each	R	∈ BAD	with	a	
restriction	R*	such	that

① |Stars(R*)|	=	|Stars(R)|	−	ℓ
② the	map	R	↦ R*	is	(4k)ℓ-to-1

• Fix	a	k-DNF	F	and	ℓ ≥	1
• BAD	:=	{	restrictions	R	|	depth(CanDT(F	↾ R))	≥	ℓ }
• Goal.		Pr[Rp∈ BAD]	=	O(pk)ℓ

Key	idea.		We	associate	each	R	∈ BAD	with	a	
restriction	R*	such	that

① |Stars(R*)|	=	|Stars(R)|	−	ℓ
② the	map	R	↦ R*	is	(4k)ℓ-to-1

any	restriction	𝜌 equals	R*	for	
at	most	(4k)ℓ distinct	R	∈ BAD

Key	idea.		We	associate	each	R	∈ BAD	with	a	
restriction	R*	such	that

① |Stars(R*)|	=	|Stars(R)|	−	ℓ
② the	map	R	↦ R*	is	(4k)ℓ-to-1

Pr[Rp∈ BAD]
=	∑R∈BAD	Pr[Rp =	R]	

Key	idea.		We	associate	each	R	∈ BAD	with	a	
restriction	R*	such	that

① |Stars(R*)|	=	|Stars(R)|	−	ℓ
② the	map	R	↦ R*	is	(4k)ℓ-to-1

Pr[Rp∈ BAD]
=	∑R∈BAD	Pr[Rp =	R]
=	∑R∈BAD	(2p/(1-p))ℓPr[Rp =	R*]

Key	idea.		We	associate	each	R	∈ BAD	with	a	
restriction	R*	such	that

① |Stars(R*)|	=	|Stars(R)|	−	ℓ
② the	map	R	↦ R*	is	(4k)ℓ-to-1

Pr[Rp =	R]	=	(2p/(1-p))ℓPr[Rp =	R*]

Pr[Rp∈ BAD]
=	∑R∈BAD	Pr[Rp =	R]
=	∑R∈BAD	(2p/(1-p))ℓPr[Rp =	R*]			
≤	(4p)ℓ∑R∈BAD	Pr[Rp =	R*]

Key	idea.		We	associate	each	R	∈ BAD	with	a	
restriction	R*	such	that

① |Stars(R*)|	=	|Stars(R)|	−	ℓ
② the	map	R	↦ R*	is	(4k)ℓ-to-1

w.l.o.g.	p	≤	1/2

Pr[Rp∈ BAD]
=	∑R∈BAD	Pr[Rp =	R]
=	∑R∈BAD	(2p/(1-p))ℓPr[Rp =	R*]			
≤	(4p)ℓ∑R∈BAD	Pr[Rp =	R*]	
≤	(4p)ℓ (4k)ℓPr[Rp∈ {R*	|	R	∈ BAD}]

Key	idea.		We	associate	each	R	∈ BAD	with	a	
restriction	R*	such	that

① |Stars(R*)|	=	|Stars(R)|	−	ℓ
② the	map	R	↦ R*	is	(4k)ℓ-to-1

Pr[Rp∈ BAD]
=	∑R∈BAD	Pr[Rp =	R]
=	∑R∈BAD	(2p/(1-p))ℓPr[Rp =	R*]			
≤	(4p)ℓ∑R∈BAD	Pr[Rp =	R*]	
≤	(4p)ℓ (4k)ℓPr[Rp∈ {R*	|	R	∈ BAD}]

Key	idea.		We	associate	each	R	∈ BAD	with	a	
restriction	R*	such	that

① |Stars(R*)|	=	|Stars(R)|	−	ℓ
② the	map	R	↦ R*	is	(4k)ℓ-to-1

Pr[…]	≤	1

Pr[Rp∈ BAD]
=	∑R∈BAD	Pr[Rp =	R]
=	∑R∈BAD	(2p/(1-p))ℓPr[Rp =	R*]			
≤	(4p)ℓ∑R∈BAD	Pr[Rp =	R*]	
≤	(4p)ℓ (4k)ℓPr[Rp∈ {R*	|	R	∈ BAD}]			
≤	(16pk)ℓ

Key	idea.		We	associate	each	R	∈ BAD	with	a	
restriction	R*	such	that

① |Stars(R*)|	=	|Stars(R)|	−	ℓ
② the	map	R	↦ R*	is	(4k)ℓ-to-1

Q.E.D.

Pr[Rp∈ BAD]
=	∑R∈BAD	Pr[Rp =	R]
=	∑R∈BAD	(2p/(1-p))ℓPr[Rp =	R*]			
≤	(4p)ℓ∑R∈BAD	Pr[Rp =	R*]
≤	(4p)ℓ (4k)ℓPr[Rp∈ {R*	|	R	∈ BAD}]			
≤	(16pk)ℓ Q.E.D.

Switching	Lemma:

Pr[depth(CanDT(F ↾ Rp))	≥	ℓ]	=	O(pk)ℓ

Pr[Rp∈ BAD]
=	∑R∈BAD	Pr[Rp =	R]
=	∑R∈BAD	(2p/(1-p))ℓPr[Rp =	R*]			
≤	(4p)ℓ∑R∈BAD	Pr[Rp =	R*]				 (w.l.o.g.	p
≤	(4p)ℓ (4k)ℓPr[Rp∈ {R*	|	R	∈ BAD}]			
≤	(16pk)ℓ Q.E.D.

Switching	Lemma:

Pr[depth(CanDT(F ↾ Rp))	≥	ℓ]	=	O(pk)ℓ

more	careful	analysis	gives	(5pk)ℓ

Key	idea.		We	associate	each	R	∈ BAD	with	a	
restriction	R*	such	that

① |Stars(R*)|	=	|Stars(R)|	−	ℓ
② the	map	R	↦ R*	is	(4k)ℓ-to-1

Key	idea.		We	associate	each	R	∈ BAD	with	a						
pair	(R*,Code(R))	such	that

① |Stars(R*)|	=	|Stars(R)|	−	ℓ
② the	map	R	↦ R*	is	(4k)ℓ-to-1
③

④

Key	idea.		We	associate	each	R	∈ BAD	with	a						
pair	(R*,Code(R))	such	that

① |Stars(R*)|	=	|Stars(R)|	−	ℓ
② the	map	R	↦ R*	is	(4k)ℓ-to-1
③ Code(R)	∈ ({0,1}2⨉ [k])ℓ

④

Key	idea.		We	associate	each	R	∈ BAD	with	a						
pair	(R*,Code(R))	such	that

① |Stars(R*)|	=	|Stars(R)|	−	ℓ
② the	map	R	↦ R*	is	(4k)ℓ-to-1
③ Code(R)	∈ ({0,1}2⨉ [k])ℓ

④

in	particular,	Code(R)	has	
(4k)ℓ possible	values

Key	idea.		We	associate	each	R	∈ BAD	with	a						
pair	(R*,Code(R))	such	that

① |Stars(R*)|	=	|Stars(R)|	−	ℓ
② the	map	R	↦ R*	is	(4k)ℓ-to-1
③ Code(R)	∈ ({0,1}2⨉ [k])ℓ

④ the	map	R	↦ (R*,Code(R))	is	1-to-1

Key	idea.		We	associate	each	R	∈ BAD	with	a						
pair	(R*,Code(R))	such	that

① |Stars(R*)|	=	|Stars(R)|	−	ℓ
② the	map	R	↦ R*	is	(4k)ℓ-to-1
③ Code(R)	∈ ({0,1}2⨉ [k])ℓ

④ the	map	R	↦ (R*,Code(R))	is	1-to-1

③ &	④ imply	②

Key	idea.		We	associate	each	R	∈ BAD	with	a						
pair	(R*,Code(R))	such	that

① |Stars(R*)|	=	|Stars(R)|	−	ℓ
② the	map	R	↦ R*	is	(4k)ℓ-to-1
③ Code(R)	∈ ({0,1}2⨉ [k])ℓ

④ the	map	R	↦ (R*,Code(R))	is	1-to-1

intuitively,	Code(R)	is	a	“recipe”	
for	inverting	R	↦ (R*,Code(R))	
given	knowledge	of	R*

R	↦ (R*,Code(R))	

R	↦ (R*,Code(R))	k	=	3,		ℓ =	4

F	= x1 x2 ¬x3∨ ¬x1 x3 x5∨ x2 ¬x4 x5∨ x3 x4 ¬x6∨ x1	¬x4 ¬x7

R	↦ (R*,Code(R))	k	=	3,		ℓ =	4

F	= x1 x2 ¬x3∨ ¬x1 x3 x5∨ x2 ¬x4 x5∨ x3 x4 ¬x6∨ x1	¬x4 ¬x7

R	=	{	x1 ↦ 1,	x4 ↦ 0	}

R	↦ (R*,Code(R))	k	=	3,		ℓ =	4

F↾R x1 x2 ¬x3∨ ¬x1 x3 x5∨ x2 ¬x4 x5∨ x3 x4 ¬x6∨ x1	¬x4 ¬x7
1 0			 1			 0			 1			1			

R	=	{	x1 ↦ 1,	x4 ↦ 0	}

R	↦ (R*,Code(R))	k	=	3,		ℓ =	4

F↾R x1 x2 ¬x3∨ ¬x1 x3 x5∨ x2 ¬x4 x5∨ x3 x4 ¬x6∨ x1	¬x4 ¬x7

R	=	{	x1 ↦ 1,	x4 ↦ 0	}

1 0			 1			 0			 1			1			

R	↦ (R*,Code(R))	k	=	3,		ℓ =	4

F↾R x1 x2 ¬x3∨ ¬x1 x3 x5∨ x2 ¬x4 x5∨ x3 x4 ¬x6∨ x1	¬x4 ¬x7

CanDT(F↾R)	=

R	=	{	x1 ↦ 1,	x4 ↦ 0	}
0 1

0 1

0 1

1

1
0 1

01

x2

x3

x7

x5

0 1

x3

......

R	=	{	x1 ↦ 1,	x4 ↦ 0	}

R	↦ (R*,Code(R))	k	=	3,		ℓ =	4

F↾R	
=
x1 x2 ¬x3∨ ¬x1 x3 x5∨ x2 ¬x4 x5∨ x3 x4 ¬x6∨ x1	¬x4 ¬x7

R	∈ BAD,	since	
CanDT(F	↾ R)	≥	4	

0 1

0 10 1

0 1

1

1
0 1

01

x2

x3

x7

x5
R	∈ BAD,	since	
CanDT(F	↾ R)	≥	ℓ

x3

......

R	=	{	x1 ↦ 1,	x4 ↦ 0	}

R	↦ (R*,Code(R))	k	=	3,		ℓ =	4

F↾R	
=
x1 x2 ¬x3∨ ¬x1 x3 x5∨ x2 ¬x4 x5∨ x3 x4 ¬x6∨ x1	¬x4 ¬x7

R~	=	{ x1 ↦ 1,	x4 ↦ 0,
x2 ↦ 1,	x3 ↦ 1,
x5 ↦ 0,	x7 ↦ 1	}

0 1

0 1

0 1

1

1
0 1

01

x2

x3

x7

x5

0 1

x3

R	=	{	x1 ↦ 1,	x4 ↦ 0	}

R	↦ (R*,Code(R))	k	=	3,		ℓ =	4

F↾R	
=
x1 x2 ¬x3∨ ¬x1 x3 x5∨ x2 ¬x4 x5∨ x3 x4 ¬x6∨ x1	¬x4 ¬x7

R~	=	{ x1 ↦ 1,	x4 ↦ 0,
x2 ↦ 1,	x3 ↦ 1,
x5 ↦ 0,	x7 ↦ 1	}

R*	=	{ x1 ↦ 1,	x4 ↦ 0,
x2 ↦ 1,	x3 ↦ 0,
x5 ↦ 1,	x7 ↦ 0	}

0 1

0 1

0 1

1

1
0 1

01

x2

x3

x7

x5

0 1

x3

......

R	=	{	x1 ↦ 1,	x4 ↦ 0	}

R	↦ (R*,Code(R))	k	=	3,		ℓ =	4

F↾R	
=
x1 x2 ¬x3∨ ¬x1 x3 x5∨ x2 ¬x4 x5∨ x3 x4 ¬x6∨ x1	¬x4 ¬x7

R~	=	{ x1 ↦ 1,	x4 ↦ 0,
x2 ↦ 1, x3 ↦ 1,
x5 ↦ 0, x7 ↦ 1 }

R*	=	{ x1 ↦ 1,	x4 ↦ 0,
x2 ↦ 1, x3 ↦ 0,
x5 ↦ 1, x7 ↦ 0 }

0 1

0 1

0 1

1

1
0 1

01

x2

x3

x7

x5

0 1

x3

......

R	=	{	x1 ↦ 1,	x4 ↦ 0	}

R	↦ (R*,Code(R))	k	=	3,		ℓ =	4

F↾R	
=
x1 x2 ¬x3∨ ¬x1 x3 x5∨ x2 ¬x4 x5∨ x3 x4 ¬x6∨ x1	¬x4 ¬x7

R~	=	{ x1 ↦ 1,	x4 ↦ 0,
x2 ↦ 1, x3 ↦ 1,
x5 ↦ 0, x7 ↦ 1 }

R*	=	{ x1 ↦ 1,	x4 ↦ 0,
x2 ↦ 1, x3 ↦ 0,
x5 ↦ 1, x7 ↦ 0 }

0 1

0 1

0 1

1

1
0 1

01

x2

x3

x7

x5

0 1

x3

......

R	=	{	x1 ↦ 1,	x4 ↦ 0	}

R	↦ (R*,Code(R))	k	=	3,		ℓ =	4

F↾R	
=
x1 x2 ¬x3∨ ¬x1 x3 x5∨ x2 ¬x4 x5∨ x3 x4 ¬x6∨ x1	¬x4 ¬x7

R~	=	{ x1 ↦ 1,	x4 ↦ 0,
x2 ↦ 1, x3 ↦ 1,
x5 ↦ 0, x7 ↦ 1 }

R*	=	{ x1 ↦ 1,	x4 ↦ 0,
x2 ↦ 1,	x3 ↦ 0,
x5 ↦ 1, x7 ↦ 0 }

0 1

0 1

0 1

1

1
0 1

01

x2

x3

x7

x5

✓

0 1

x3

......

R	=	{	x1 ↦ 1,	x4 ↦ 0	}

R	↦ (R*,Code(R))	k	=	3,		ℓ =	4

F↾R	
=
x1 x2 ¬x3∨ ¬x1 x3 x5∨ x2 ¬x4 x5∨ x3 x4 ¬x6∨ x1	¬x4 ¬x7

R~	=	{ x1 ↦ 1,	x4 ↦ 0,
x2 ↦ 1,	x3 ↦ 1,
x5 ↦ 0, x7 ↦ 1 }

R*	=	{ x1 ↦ 1,	x4 ↦ 0,
x2 ↦ 1,	x3 ↦ 0,
x5 ↦ 1, x7 ↦ 0 }

0 1

0 1

0 1

1

1
0 1

01

x2

x3

x7

x5

✓

0 1

x3

......

R	=	{	x1 ↦ 1,	x4 ↦ 0	}

R	↦ (R*,Code(R))	k	=	3,		ℓ =	4

F↾R	
=
x1 x2 ¬x3∨ ¬x1 x3 x5∨ x2 ¬x4 x5∨ x3 x4 ¬x6∨ x1	¬x4 ¬x7

R~	=	{ x1 ↦ 1,	x4 ↦ 0,
x2 ↦ 1,	x3 ↦ 1,
x5 ↦ 0, x7 ↦ 1 }

R*	=	{ x1 ↦ 1,	x4 ↦ 0,
x2 ↦ 1,	x3 ↦ 0,
x5 ↦ 1, x7 ↦ 0 }

✓

≈≈

Code(R)	says:
• find	the	first	satisfied	term
of	F	↾ R*
• the	“long	path”	begins	with

x2 ↦ 1,	x3 ↦ 1
(i.e.	var2 of	term	↦ 1	and	
var3 of	term	↦ 1)
• …

R	=	{	x1 ↦ 1,	x4 ↦ 0	}

R	↦ (R*,Code(R))	k	=	3,		ℓ =	4

F↾R	
=
x1 x2 ¬x3∨ ¬x1 x3 x5∨ x2 ¬x4 x5∨ x3 x4 ¬x6∨ x1	¬x4 ¬x7

R~	=	{ x1 ↦ 1,	x4 ↦ 0,
x2 ↦ 1,	x3 ↦ 1,
x5 ↦ 0, x7 ↦ 1 }

R*	=	{ x1 ↦ 1,	x4 ↦ 0,
x2 ↦ 1,	x3 ↦ 0,
x5 ↦ 1, x7 ↦ 0 }

1 0 1

Fix	variables	
according	to	the	
beginning	of	the	
long	path

R	=	{	x1 ↦ 1,	x4 ↦ 0	}

R	↦ (R*,Code(R))	k	=	3,		ℓ =	4

F↾R	
=
x1 x2 ¬x3∨ ¬x1 x3 x5∨ x2 ¬x4 x5∨ x3 x4 ¬x6∨ x1	¬x4 ¬x7

R~	=	{ x1 ↦ 1,	x4 ↦ 0,
x2 ↦ 1,	x3 ↦ 1,
x5 ↦ 0, x7 ↦ 1 }

R*	=	{ x1 ↦ 1,	x4 ↦ 0,
x2 ↦ 1,	x3 ↦ 0,
x5 ↦ 1,	x7 ↦ 0 }

0 1

0 10 1

0 1

... 1

1

...

0 1

01

x2

x3x3

x7

x5

R	=	{	x1 ↦ 1,	x4 ↦ 0	}

R	↦ (R*,Code(R))	k	=	3,		ℓ =	4

F↾R	
=
x1 x2 ¬x3∨ ¬x1 x3 x5∨ x2 ¬x4 x5∨ x3 x4 ¬x6∨ x1	¬x4 ¬x7

R~	=	{ x1 ↦ 1,	x4 ↦ 0,
x2 ↦ 1,	x3 ↦ 1,
x5 ↦ 0, x7 ↦ 1 }

R*	=	{ x1 ↦ 1,	x4 ↦ 0,
x2 ↦ 1,	x3 ↦ 0,
x5 ↦ 1,	x7 ↦ 0 }

0 1

0 10 1

0 1

1

1
0 1

01

x2

x3x3

x7

x5......

R	=	{	x1 ↦ 1,	x4 ↦ 0	}

R	↦ (R*,Code(R))	k	=	3,		ℓ =	4

F↾R	
=
x1 x2 ¬x3∨ ¬x1 x3 x5∨ x2 ¬x4 x5∨ x3 x4 ¬x6∨ x1	¬x4 ¬x7

R~	=	{ x1 ↦ 1,	x4 ↦ 0,
x2 ↦ 1,	x3 ↦ 1,
x5 ↦ 0, x7 ↦ 1 }

R*	=	{ x1 ↦ 1,	x4 ↦ 0,
x2 ↦ 1,	x3 ↦ 0,
x5 ↦ 1, x7 ↦ 0 }

0 1

0 10 1

0 1

1

1
0 1

01

x2

x3x3

x7

x5

✓

......

R	=	{	x1 ↦ 1,	x4 ↦ 0	}

R	↦ (R*,Code(R))	k	=	3,		ℓ =	4

F↾R	
=
x1 x2 ¬x3∨ ¬x1 x3 x5∨ x2 ¬x4 x5∨ x3 x4 ¬x6∨ x1	¬x4 ¬x7

R~	=	{ x1 ↦ 1,	x4 ↦ 0,
x2 ↦ 1,	x3 ↦ 1,
x5 ↦ 0, x7 ↦ 1 }

R*	=	{ x1 ↦ 1,	x4 ↦ 0,
x2 ↦ 1,	x3 ↦ 0,
x5 ↦ 1, x7 ↦ 0 }

0 1

0 10 1

0 1

1

1
0 1

01

x2

x3x3

x7

x5

✓

......

R	=	{	x1 ↦ 1,	x4 ↦ 0	}

R	↦ (R*,Code(R))	k	=	3,		ℓ =	4

F↾R	
=
x1 x2 ¬x3∨ ¬x1 x3 x5∨ x2 ¬x4 x5∨ x3 x4 ¬x6∨ x1	¬x4 ¬x7

R~	=	{ x1 ↦ 1,	x4 ↦ 0,
x2 ↦ 1,	x3 ↦ 1,
x5 ↦ 0, x7 ↦ 1 }

R*	=	{ x1 ↦ 1,	x4 ↦ 0,
x2 ↦ 1,	x3 ↦ 0,
x5 ↦ 1, x7 ↦ 0 }

✓

Code(R)	next	says:
• find	the	next	satisfied	term	
of	F	↾ R*(overwriting	x2 ↦ 1,	x3 ↦ 1)
• the	“long	path”	continues

x5 ↦ 0
(i.e.	var3 of	term	↦ 0)
• …

R	=	{	x1 ↦ 1,	x4 ↦ 0	}

R	↦ (R*,Code(R))	k	=	3,		ℓ =	4

F↾R	
=
x1 x2 ¬x3∨ ¬x1 x3 x5∨ x2 ¬x4 x5∨ x3 x4 ¬x6∨ x1	¬x4 ¬x7

R~	=	{ x1 ↦ 1,	x4 ↦ 0,
x2 ↦ 1,	x3 ↦ 1,
x5 ↦ 0, x7 ↦ 1 }

R*	=	{ x1 ↦ 1,	x4 ↦ 0,
x2 ↦ 1,	x3 ↦ 0,
x5 ↦ 1, x7 ↦ 0 }

0

Fix	variables	
according	to	the	
long	path

R	=	{	x1 ↦ 1,	x4 ↦ 0	}

R	↦ (R*,Code(R))	k	=	3,		ℓ =	4

F↾R	
=
x1 x2 ¬x3∨ ¬x1 x3 x5∨ x2 ¬x4 x5∨ x3 x4 ¬x6∨ x1	¬x4 ¬x7

R~	=	{ x1 ↦ 1,	x4 ↦ 0,
x2 ↦ 1,	x3 ↦ 1,
x5 ↦ 0, x7 ↦ 1 }

R*	=	{ x1 ↦ 1,	x4 ↦ 0,
x2 ↦ 1,	x3 ↦ 0,
x5 ↦ 1, x7 ↦ 0 }

0 1

0 10 1

0 1

1

1
0 1

01

x2

x3x3

x7

x5......

R	=	{	x1 ↦ 1,	x4 ↦ 0	}

R	↦ (R*,Code(R))	k	=	3,		ℓ =	4

R*	=	{ x1 ↦ 1,	x4 ↦ 0,
x2 ↦ 1,	x3 ↦ 0,
x5 ↦ 1, x7 ↦ 0	}

R~	=	{ x1 ↦ 1,	x4 ↦ 0,
x2 ↦ 1,	x3 ↦ 1,
x5 ↦ 0, x7 ↦ 1	}

Code(R)	∈ ({0,1}2⨉ [k])ℓ
given	knowledge	of	R* (and	F),	
follow	these	instructions	to	
recover	R	(and	along	the	way	R~)

F	= x1 x2 ¬x3∨ ¬x1 x3 x5∨ x2 ¬x4 x5∨ x3 x4 ¬x6∨ x1	¬x4 ¬x7

R	=	{	x1 ↦ 1,	x4 ↦ 0	}

R	↦ (R*,Code(R))	k	=	3,		ℓ =	4

R*	=	{ x1 ↦ 1,	x4 ↦ 0,
x2 ↦ 1,	x3 ↦ 0,
x5 ↦ 1, x7 ↦ 0	}

R~	=	{ x1 ↦ 1,	x4 ↦ 0,
x2 ↦ 1,	x3 ↦ 1,
x5 ↦ 0, x7 ↦ 1	}

Code(R)	∈ ({0,1}2⨉ [k])ℓ
given	knowledge	of	R* (and	F),	
follow	these	instructions	to	
recover	R	(and	along	the	way	R~)

F	= x1 x2 ¬x3∨ ¬x1 x3 x5∨ x2 ¬x4 x5∨ x3 x4 ¬x6∨ x1	¬x4 ¬x7

ü R*	has	ℓ fewer	
stars	than	R

ü R	↦ (R*,Code(R))	
is	1-to-1

