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Abstract

This paper gives the first correlation bounds under product distributions (including the uni-
form distribution) against the class mNC1 of poly(n)-size O(log n)-depth monotone circuits.
Our main theorem, proved using the pathset complexity framework recently introduced in [56],
shows that the average-case k-CYCLE problem (on Erdős-Rényi random graphs with an ap-
propriate edge density) is 1

2 + 1
poly(n) hard for mNC1. As a corollary, via O’Donnell’s hardness

amplification theorem [43], we obtain an explicit monotone function of n variables (in the class
mSAC1) which is 1

2 + n−1/2+ε hard for mNC1 under the uniform distribution, for any desired
ε > 0. (This bound is nearly tight, since every monotone function has correlation Ω( logn√

n
) with

a function in mNC1 [44].)
Unlike previous lower bounds for monotone circuits (i.e. under non-product distributions),

these correlation bounds extend smoothly to negation-limited circuits. By a simple argument
using Holley’s monotone coupling theorem [30], we show the following lemma: under any product
distribution, if a balanced monotone function f is 1

2 +δ hard for monotone circuits of a given size
and depth, then f is 1

2 + (2t+1 − 1)δ hard, up to the same size and depth, for (non-monotone)
boolean circuits with t negation gates. Our correlation bounds against mNC1 thus extend to
NC1 circuits with ( 1

2 − ε) log n negations. (This improves a previous 1
6 log log n lower bound [7]

on the negation-limited complexity of an explicit monotone function; by [21], NC1 circuits with
dlog(n+ 1)e negations are equivalent to full NC1.)
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1 Introduction

The majority of research in Boolean Circuit Complexity has focused on restricted classes of circuits.
Super-polynomial lower bounds have so far been achieved under two basic restrictions: bounded
depth (essentially AC0 [1, 24]) and the monotone setting (circuits without negation gates [51]).
For another natural class, deMorgan formulas (circuits with fan-out 1), nearly cubic n3−o(1) lower
bounds are known [28].

For bounded-depth circuits and deMorgan formulas, the state-of-the-art worst-case lower bounds
(from the 1980’s and 90’s) have recently been matched by tight average-case lower bounds (also
known as correlation bounds) under the uniform distribution. It is now known that

• PARITY is 1
2 + 2−Ω(n/(logS)d−1) hard for depth-d (unbounded fan-in) circuits of size S [29],

• an explicit function (in P) is 1
2 + 2−Ω(r) hard for deMorgan formulas of size n3−o(1)/r2 [40].

(A boolean function f is said to be γ-hard for a class of circuits C under a distribution µ if
Px∼µ[ f(x) = C(x) ] ≤ γ for every circuit C ∈ C. By default µ is the uniform distribution and γ is
typically expressed as 1

2 + δ or 1− δ where δ(n)→ 0.)
In the monotone setting, the knowledge of worst-case lower bounds is much better: a long line

of works [4, 8, 27, 37, 45, 48, 46, 50, 51] (among many others) have achieved nearly all separations
between the monotone versions of important complexity classes, as defined by Grigni and Sipser
[26]. However, when it comes to average-case lower bounds under the uniform distribution (or any
product distribution), nothing has been known. It not known, for instance, whether any monotone
function in NP is 1− 1

poly(n) hard for polynomial-size monotone circuits.
This is a significant gap in our basic understanding of monotone computation. Product distribu-

tions are an important and natural setting for the average-case complexity of monotone functions.
Both k-SAT and k-CLIQUE are believed to be hard-on-average under appropriate product distri-
butions. Analysis of the threshold behavior, as well as the average-case performance of specific
algorithms for these problems is an extremely active topic of research. Product distribution play
a prominent role generally when it comes to monotone functions on the hypercube (see the FKG
inequality [22], the Bollobás-Thomason theorem [18], Friedgut’s threshold theorem [23], etc.) The
special case of the uniform distribution is especially important for applications such as cryptog-
raphy. For these reasons, average-case lower bounds under product distributions, even against
monotone circuits, would be extremely interesting.

Despite the absence of results under product distributions, there is a history of correlation
bounds against monotone circuits under non-product distributions. Consider the very first super-
polynomial lower bound of Razborov [51] for the k-CLIQUE function. Although often stated as a
worst-case lower bound, we can view this result (and the subsequent quantitative improvement of
Alon and Boppana [4]) as a correlation bound under a particular distribution. This distribution,
µ, is the following random graph on n vertices: half of the time, µ is a uniform random k-clique,
and the other half of the time, µ is a uniform random (k− 1)-coclique (i.e. complete (k− 1)-partite
graph). Stated as a correlation bound, the results of [4, 51] show:

• for all 3 ≤ k ≤ n1/4, the k-CLIQUE function on n-vertex graphs is 1
2 + n−Ω(

√
k) hard under

µ for the class mP (poly(n)-size monotone circuits).

For a smaller range k ≤ log n, this hardness improves to (best possible) 1
2 + n−Ω(k). (Correlation

bounds under similar (non-product) distributions were recently [20, 25] obtained for monotone
classes within mP, strengthening previous worst-case separations among these classes.)
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In the context of monotone circuit lower bounds, this distribution µ has a very sensible property:
it is supported entirely on minterms (minimal 1-instances, i.e., k-cliques) and maxterms (maximal
0-instances, of which (k− 1)-cocliques are a subset). µ thus exploits monotonicity in the strongest
possible way. On the other hand, there is something backwards about µ: every 1-instance has
Hamming weight

(
k
2

)
(≤
√
n), which is less the minimum Hamming weight

(
k−1

2

)( n
k−1

)
2 (≥ n2/2)

of any 0-instance. This means that k-CLIQUE is equivalent under µ to the (anti-monotone) thresh-
old function THR<n2/2. Therefore, even though k-CLIQUE is hard under µ for monotone circuits,
it is easy under µ for non-monotone circuits with a single negation gate. This discomfort is ad-
dressed in work of Amano and Maruoka [7], who extended the k-CLIQUE lower bound of [4, 51]
to polynomial-size circuits with 1

6 log log n negation gates by considering a modified distribution
µ′ (a certain convex combination, over various values of ` ∈ {k, . . . , n}, of `-cliques and (k − 1)-
cocliques supported on sets of size `). While the core of the proof in [7] is still a monotone circuit
lower bound for cliques vs. cocliques, this result contributed an insight that sufficiently strong lower
bounds against monotone circuits imply lower bounds against negation-limited boolean circuits (we
capitalize on this insight in Lemma 1.3).

A more natural setting for the average-case analysis of k-CLIQUE is given by the Erdős-Rényi
random graph G(n, p) for the unique p = p(k, n) such that P[ G(n, p) contains a k-clique ] = 1

2 .

(That is, G(n, p) is the p-biased product distribution where p = Θ(n−2/(k−1)) for small k ≤ log n.)
Karp [38] conjectured (in at least the special case p = 1

2) that k-CLIQUE is hard-on-average under
G(n, p). Work of the author [54] gave the first correlation bound for this problem in the restricted
setting of AC0 (polynomial-size constant-depth boolean circuits):

• for all k ≤ log1/2 n, k-CLIQUE is 1
2 + n−Ω(k) hard under G(n, p) for AC0.

Combining the technique of [54] with the “approximation method” framework of Razborov [51],
follow-up work of the author [55] gave a correlation bound against monotone circuits under the
following distribution ν: half of the time, ν is G(n, p) plus a uniform random planted k-clique; the
other half of the time, ν is G(n, 2p) conditioned on not having any k-clique. The result of [55] is

• for all k ≤ log1/2 n, k-CLIQUE is 1
2 + n−Ω(k) hard under ν for mP.

Of course, we would really like to show that k-CLIQUE is 1
2 + o(1) under G(n, p) for mP. (Under

any product distribution, we cannot hope for hardness against mP better than 1
2 + n−1/2, as we

discuss momentarily.) While the result of [55] feels like progress (at least the distribution ν is
realistically hard for non-monotone circuits), ν unfortunately suffers from the same shortcoming as
µ: the 0-instances and 1-instances are separable by an anti-monotone threshold function (in this
case THR< 3

2(n2)p).
In the present paper, we finally prove a correlation bound under G(n, p) in the monotone

setting; however, not for k-CLIQUE and not for monotone circuits, but rather for k-CYCLE and
for monotone formulas.

1.1 Our Results

The main theorem of this paper is a correlation bound for the average-case k-CYCLE problem
against the class mNC1 of poly(n)-size O(log n)-depth monotone circuits (equivalently: poly(n)-
size monotone formulas). We find it convenient to restrict attention to “Ck-partite” input graphs
with kn vertices and kn2 potential edges (Def. 4.2); however, our results hold in the setting of
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G(n, p). For the average-case analysis of k-CYCLE, we consider the (Ck-partite Erdős-Rényi)
random graph, Γ, which includes each potential edge independently with probability p, where p is
the unique threshold value such that P[ Γ contains a k-cycle ] = 1

2 . (Note: p ∼ ck/n for a constant
ck depending on k.) A monotone function f on kn2 variables is said to compute k-CYCLE on Γ
with advantage δ if P[ f(Γ) = k-CYCLE(Γ) ] ≥ 1

2 + δ.

Theorem 1.1 (Main Theorem).

For all k ≤ log log n, if a monotone formula computes k-CYCLE on Γ with advantage n−1/2+c,
then it has size nΩ(c log k).

In particular, log log n-CYCLE is 1
2 + n−1/2+o(1) hard under Γ for monotone formulas of size

no(log log logn) (and hence for mNC1).

This lower bound is essentially tight: k-CYCLE is (worst-case) computable by monotone formu-
las of size nO(log k), as well as by poly(n)-size O(log k)-depth monotone circuits with semi-unbounded
fan-in (i.e. binary AND gates and unbounded OR gates). This places k-CYCLE in the class mSAC1.
(In terms of space complexity, k-CYCLE is computable in NL as well as Ave-L, as defined in [12].)
Theorem 1.1 thus gives a very strong average-case separation of mNC1 from higher complexity
classes.

Theorem 1.1 also implies (essentially optimal) correlation bounds against mNC1 under the
uniform distribution. Note that the correlation bound in Theorem 1.1 is only 1

2 + (kn2)−1/4+o(1)

in terms of the input size kn2; the random graph Γ, although a product distribution, is not the
uniform distribution. Nevertheless, using O’Donnell’s hardness amplification theorem [43] (and a
primitive device to generate Γ from uniform random bits), we get the following result:

Corollary 1.2. For every ε > 0, there is an explicit monotone function of N variables (in the
class mSAC1) which is 1

2 +N−1/2+ε hard for mNC1 under the uniform distribution.

This function is the direct product1 TRIBES ⊗ log log n-CYCLE ⊗ p-BIAS (on N = poly(n)
variables) where

• p-BIAS : {0, 1}n → {0, 1} is a monotone function with |p-BIAS−1(1)| = dp2ne (i.e. p-BIAS
generates a p′-biased bit where p ≤ p′ < p+ 2−n and p ∼ 1/n is the 1

2 -threshold for log log n-
CYCLE),

• TRIBES : {0, 1}nc → {0, 1} is the “tribes” function of Ben-Or and Linial [13] on nc variables,
where c (= Ω(1/ε)) is a sufficiently large constant.

Since both p-BIAS (suitably defined)2 and TRIBES are in mAC0, this direct product remains
in mSAC1. See O’Donnell’s paper [43] for details on the hardness amplification theorem which
produces Corollary 1.2 from Theorem 1.1. We only remark that all results in [43], while stated in
terms of the class NP, apply equally to mNC1. This observation relies on MAJ ∈ mNC1 [3, 63]
(which is essential in the application of Implagliazzo’s “hard-core set” theorem [31, 39]).

The correlation bound of Corollary 1.2 is nearly best possible under the uniform distribution.
O’Donnell and Wimmer [44] showed that every monotone function {0, 1}n → {0, 1} has agreement

1For boolean functions h : {0, 1}l → {0, 1} and g : {0, 1}m → {0, 1}, the direct product g⊗ h : ({0, 1}l)m → {0, 1}
is defined by (g ⊗ h)(y1, . . . , ym) = g(h(y1), . . . , h(ym)).

2For every m ∈ {0, . . . , 2n}, there is an n-term monotone DNF with exactly m satisfying assignments.
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1
2 + Ω( logn√

n
) with one of functions 0, 1, x1, . . . , xn,MAJ. Since these functions are all in mNC1, it

follows that no monotone function is 1
2 + o( logn√

n
) hard for mNC1. Corollary 1.2 shows that this

correlation bound is nearly achieved by an explicit monotone function. (By counting arguments,
there exist (non-explicit) monotone functions achieving similar correlation bounds [9, 36].)

Finally, we extend these results to negation-limited circuits, by means of a general lemma on
correlation bounds under product distribution. In fact, our observation applies to the broader class
of distributions µ on {0, 1}n which satisfy the FKG lattice condition [22] if

(1) µ(x)µ(y) ≤ µ(x ∧ y)µ(x ∨ y) for all x, y ∈ {0, 1}n.

Note that every product distribution satisfies (1) with equality.

Lemma 1.3. Suppose µ is a distribution which satisfies the FKG lattice condition (1) and f is
a monotone function which is balanced under µ (i.e. Eµ(f) = 1

2). If f is 1
2 + δ hard under µ for

monotone circuits of a given size and depth, then f is 1
2 + (2t+1− 1)δ hard under µ, up to the same

size and depth, for boolean circuits with t negation gates.

Via Lemma 1.3, the correlation bound of Corollary 1.2 extends to NC1 circuits with (1
2−ε) log n

negation gates.

Corollary 1.4. For every ε > 0, there is an explicit function in mSAC1 which is 1
2 + o(1) hard for

NC1 circuits with (1
2 − ε) log n negations under the uniform distribution.

Corollary 1.4 is half optimal, in the sense that NC1 circuits with dlog(n + 1)e negations are
known to be equivalent to full NC1 by well-known results of Markov [42] and Fischer [21] (again
using the fact that MAJ ∈ NC1). This improves the previous 1

6 log logn lower bound of Amano and
Maruoka [7] on the negation-limited complexity of an explicit monotone function {0, 1}n → {0, 1}
(however, unlike Corollary 1.4, the result of [7] applies to polynomial-size circuits of unbounded
depth). For multi-output monotone functions {0, 1}n → {0, 1}n, Jukna [34] proved a (worst-case)
lower bound of log n−O(log log n). (There is an extensive literature on negation-limited complexity;
see Chapter 10 of [35] and papers [11, 14, 16, 36, 64, 67] besides those already mentioned.)

1.2 Overview

We present an outline of the paper, highlighting the main ideas in the proof of Theorem 1.1.

Persistent Minterms. In Section 3 we introduce the key notion of persistent minterms of a
monotone function f under an increasing sequence of monotone restrictions. Formally, we consider
the sequence of monotone function f∨ρ0 ≤ f∨ρ1 ≤ · · · ≤ f∨ρm where ρ0 ≤ ρ1 ≤ · · · ≤ ρm are
elements in {0, 1}n and f∨ρi(x) := f(x ∨ ρi). An element x ∈ {0, 1}n of Hamming weight |x| = k
is a d-persistent minterm of f under ~ρ if it is a common minterm of

(
d+k−1
k−1

)
of the functions f∨ρi .

Persistent minterms behave like ordinary minterms with respect to operations ∨ and ∧ (Lemma
3.7). However, unlike ordinary minterms, persistent minterms are “noise-insensitive” in a certain
sense. Suppose ξ(1), . . . , ξ(m) are independent samples from a distribution of “noise” over {0, 1}n. If
we now define ρi by ξ(1)∪· · ·∪ξ(i), then every persistent minterm is noise-insensitive in the sense of
having survived ≥ 1 hit of monotone noise. This is advantageous for the following reason: whereas
an arbitrary monotone function might (in the worst case) have

(
n
k

)
ordinary minterms of size k, by

choosing an appropriate of distribution of noise, we can ensure that every monotone function (with
very high probability) has few persistent minterms of a given size.
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Average-Case k-CYCLE. In Section 4 we consider the average-case k-CYCLE problem on the
random graph Γ (i.e. the p-biased product distribution on {0, 1}kn2

for appropriate p ∼ 1/n). We
introduce an auxiliary random graph Ξ` consisting of ` (�

√
n) independent paths of length k− 1.

Crucially, Ξ` lives “inside the variance” of the random graph Γ, in the sense that Γ and Γ ∪ Ξ`
have small total variation distance. Because of this, we are able to show the following (roughly
speaking): if a monotone function f has correlation � `k2/

√
n with k-CYCLE under Γ, then a

non-negligible fraction (at least 1/
√
n) of k-cycles Ξ`-noise-invariant minterms of f (Lemma 4.5).

Our proof of Theorem 1.1 can be interpreted as showing that Ξ` is “hard-core noise” for the
average-case k-CYCLE problem. In some sense, all of the action in our proof takes place within
the noise Ξ`. Since ` is very small (we get non-trivial correlation bounds when ` is just nO(1/ log k)),
we are able to exploit monotonicity in a razor-thin way (i.e. less than the “variance” of the random
graph Γ). This appears to be a very special property of the average-case k-CYCLE problem.3

Pathset Complexity. In Section 5 we present the pathset complexity framework and state a
lower bound proved in [56]. Very roughly speaking: for a subgraph A = (VA, EA) of the k-cycle,
a pathset over A is a set of isomorphic copies of A embedded (as “sections”) in VA × [n]. Pathset
complexity is a pathsets with respect to the operations ∪ and ./. Crucially, pathsets are subject to a
collection of density constraints called smallness; this is responsible for the high cost of constructing
pathsets beyond a certain density.

The pathset complexity framework was introduced in [56] with the purpose of separating
formula-size and circuit-size within AC0. The technique is highly specialized to the formula com-
plexity of the (virtually equivalent) average-case k-STCONN / k-CYCLE problems. The paper [56]
proves a lower bound of nΩ(log k) on the pathset complexity of any sufficiently dense pathset over
the k-path / k-cycle (Theorem 5.8). (A reader’s guide to [56] is given in Appendix A.)

Our correlation bound against mNC1 (Theorem 1.1) is proved by reduction to this pathset
complexity lower bound. Given a monotone formula with sufficiently large correlation with k-
CYCLE, we define (random) pathsets at all gates using persistent minterms. We show (Lemma
5.13) that all of these pathsets satisfy the smallness condition (with high probability). In this way,
we are able to obtain a formula-size lower bound from pathset complexity. The proof of Theorem
1.1 is given in Section 6; proofs of various lemmas are included in appendices.

2 Preliminaries

Let N = {0, 1, 2, . . . }. For n ∈ N, let [n] = {1, . . . , n}. We write ln(·) for the natural logarithm and
log(·) for the base-2 logarithm.

Definition 2.1 (Monotone Functions, Minterms, Monotone Restrictions).

B+
n denotes the lattice of monotone (non-decreasing) boolean functions {0, 1}n → {0, 1}. f, g

represent functions in B+
n . f ≤ g denotes f(x) ≤ g(x) for all x ∈ {0, 1}n.

3In particular, consider the average-case k-CLIQUE problem (for small k ≤ logn) on the random graph G(n, p) at
the critical threshold p = Θ(n−2/(k−1)). It is not clear whether k-CLIQUE admits a similar distribution of “hard-core
noise” which lives inside the “variance” of G(n, p). Without such a distribution, the technique of this paper does not
apply. It remains an open question whether average-case k-CLIQUE is 1− 1/poly(n) hard for mNC1.
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For f ∈ B+
n and x ∈ {0, 1}n, we say that x a minterm of f if f(x) = 1 and f(x′) = 0 for all

x′ < x. The set of minterms of f is denoted by M(f). (Note that M(·) gives a bijection from B+
n

to anti-chains in {0, 1}n.)

For f ∈ B+
n and ρ ∈ {0, 1}n, we denote by f∨ρ be the monotone function f∨ρ(x) := f(x∨ ρ). (Note

that f ≤ f∨ρ.) In this context, we view ρ ∈ {0, 1}n as a “monotone restriction” which sets some
variables to 1 (namely, i ∈ [n] such that ρi = 1) and leaves the remaining variables unset.

Lemma 2.2 (Minterm Lemma). For all f, g ∈ B+
n,

M(f ∨ g) ⊆M(f) ∪M(g), M(f ∧ g) ⊆ {x ∨ y : x ∈M(f), y ∈M(g)}.

In other words, every minterm of f ∨ g is a minterm of f or a minterm of of g, and every
minterm of f ∧ g is the disjunction of a minterm of f and a minterm of g. (This is easy to see, for
instance, by thinking of the DNF representations of f and g.)

Definition 2.3 (Monotone Formulas).

A monotone formula on n variables is a finite rooted binary tree whose leaves (inputs) are labeled
by elements of [n]∪{0, 1} and whose non-leaves (gates) are labeled ∧ or ∨. (In this paper all AND
and OR gates have fan-in 2.)

Every monotone formula Φ on n variables computes a monotone function in B+
n (in the usual way).

For x ∈ {0, 1}n, we write Φ(x) for the value of the monotone function computed by Φ on input x.

Sub(Φ) denotes the set of (syntactic) sub-formulas of Φ. For example, if Φ is the formula Ψ ∧ Ψ,
then Sub(Φ) contains both (left and right) copies of Ψ. Leaves(Φ) (⊆ Sub(Φ)) denotes the set of
leaves in Φ.

The (formula) size of Φ is defined as size(Φ) := |Leaves(Φ)| (= 1
2(|Sub(Φ)|+ 1)). The depth of Φ is

its height as a tree (where a single leaf has depth 0).

3 Persistent Minterms

Notation 3.1. For a partially ordered set L and m ∈ N, we denote by Seqm≤ (L) the set of non-

decreasing chains ~λ = (λ0, λ1, . . . , λm) such that λ0 ≤ λ1 ≤ · · · ≤ λm. (We will consistently index
coordinates of ~λ by λs, λt where 0 ≤ s ≤ t ≤ m.)

Notation 3.2. For d, k ∈ N, let
〈
d
k

〉
:=
(
d+k−1
k−1

)
.

Note the identity
〈
d
k

〉
=
〈
d−1
k

〉
+
〈
d

k−1

〉
.

Lemma 3.3. For all d, k ≥ 1 and ~a ∈ Seqk≤(R), if ak − a0 >
〈
d
k

〉
, then aj − aj−1 >

〈
d−1
j

〉
for some

j ∈ {1, . . . , k}.

Proof. By induction on k: assuming ak − a0 >
〈
d
k

〉
, either ak − ak−1 >

〈
d−1
k

〉
, in which case the

lemma is satisfied with j = k, or else ak−1 − a0 = (ak − a0) − (ak − ak−1) >
〈
d
k

〉
−
〈
d−1
k

〉
=
〈
d

k−1

〉
,

in which case we use the induction hypothesis for (a0, . . . , ak−1) ∈ Seqk−1
≤ (R).

By the same basic induction, we have:
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Lemma 3.4. For all d,m ≥ 1 and ~x ∈ Seqm≤ ({0, 1}n), if m ≥
〈

d
|xm|
〉
, then xs = xt for some

0 ≤ s ≤ t ≤ m with t− s ≥
〈
d−1
|xs|
〉
.

Proof. Suppose m ≥
〈

d
|xm|
〉

and let ` := min{s ≥ 0 : |xs| = |xm|}. If m − ` ≥
〈
d−1
|xm|
〉
, then we are

done. Otherwise, `− 1 = (m− 1)− (m− `) ≥ (
〈

d
|xm|
〉
− 1)− (

〈
d−1
|xm|
〉
− 1) ≥

〈
d

|xm|−1

〉
≥
〈

d
|x`−1|

〉
and

we use the induction hypothesis for the truncated sequence (x0, . . . , x`−1) ∈ Seq`−1
≤ ({0, 1}n).

Definition 3.5 (Persistent Minterms).

For ~f ∈ Seqm≤ (B+
n) and x ∈ {0, 1}n, we say that x is a d-persistent minterm of ~f if it is a common

minterm of fs and ft (i.e. x ∈M(fs) ∩M(ft)) for some 0 ≤ s ≤ t ≤ m such that t− s ≥
〈
d
|x|
〉
.

The set of d-persistent minterms of ~f is denoted by Md(~f).

We have defined persistent minterms in general way for sequences f0 ≤ f1 ≤ · · · ≤ fm of
monotone functions. However, we will be interested in the persistent minterms of an individual
monotone function f under a sequence ρ0 ≤ ρ1 ≤ · · · ≤ ρd of monotone restrictions. (Eventually,
we will utilize this notion by choosing random restrictions ~ρ.)

Notation 3.6. For f ∈ B+
n and ~ρ ∈ Seqm≤ ({0, 1}n), let M~ρ

d(f) :=Md(f
∨ρ0 ≤ f∨ρ1 ≤ · · · ≤ f∨ρm).

Lemma 3.7 (Persistent Minterm Lemma). For all f, g ∈ B+
n and ~ρ ∈ Seqm≤ ({0, 1}n) and d ≥ 1,

M~ρ
d(f ∨ g) ⊆M~ρ

d−1(f) ∪M~ρ
d−1(g),(2)

M~ρ
d(f ∧ g) ⊆

{
x ∨ y : x ∈M~ρ

d−1(f), y ∈M~ρ
d−1(g)

}
.(3)

The proof, which we include in Appendix B, is straightforward (in particular, we show (3) using
Lemma 3.4). We will return to persistent minterms in Section 5.2.

4 Average-Case k-CYCLE

We depart from the setting of monotone functions {0, 1}n → {0, 1} (on n variables) and instead
consider a domain G ∼= {0, 1}k2n of graphs (with kn2 possible edges). Before defining G , let us first
clarify the role of k:

Definition 4.1. Throughout the rest of this paper, let k = k(n) ∈ N be an arbitrary parameter
(i.e. function of n) subject to k ≤ log log n.

The constraint k ≤ log log n is due to the factor of (1/2)O(2k) in Theorem 5.8. Outside of this
theorem, all other lemmas in this paper hold for a larger range of k.

Definition 4.2 (K-Partite Graphs).

All graphs in this paper are finite directed graphs without isolated vertices. Formally, a graph is a
pair G = (VG, EG) where VG is a finite set and EG ⊆ VG × VG and VG =

⋃
vw∈EG{v, w}.

As a special case, ∅ denotes the empty graph with V∅ = E∅ = ∅ (the empty set).

K denotes the k-cycle graph with VK = {v0, v1, . . . , vk−1} and EK = {v0v1, v1v2, . . . , vk−1v0}. (We
never write these indices explicitly, instead always writing v ∈ VK , vw ∈ EK or e ∈ EK .)
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We denote by G (= G (k, n)) the set of K-partite graphs G satisfying

• VG ⊆ {v(i) : v ∈ VK , i ∈ [n]},

• EG ⊆ {v(i)w(j) : vw ∈ EK , i, j ∈ [n]}.

Here v(i) and v(i)w(j) are just a friendly notation for ordered pairs (v, i) and ((v, i), (w, j)).

Equivalently, G is the set of subgraphs of the product graph K × N where N = ([n], [n]2) is the
complete directed graph (with a loop at every vertex).

In the context of functions G → {0, 1}, we identify G with the hypercube {0, 1}kn2
.

Definition 4.3 (k-CYCLE).

For G ∈ G , we say that G is a k-cycle if G is isomorphic to K. Note that G is a k-cycle if and only
if there exists a function ι : VK → [n] such that EG = {v(ι(v))w(ι(w)) : vw ∈ EK}.
We say that G has a k-cycle if it contains a k-cycle as a subgraph.

k-CYCLE denotes the monotone function G → {0, 1} which takes value 1 on G if, and only if, G
has a k-cycle.

We are interested in the average-case analysis of k-CYCLE. For this purpose, we define three
random graphs needed to state our main lemma (on the noise-invariance of minterms of k-CYCLE).

Definition 4.4 (Random Graphs Γ, � and Ξ`).

Γ, � and Ξ` denote the following (independent) random graphs in G :

• Let Γ be the (K-partite, Erdős-Rényi) random graph in G which includes each potential edge
independently with probability p (i.e. P[ Γ = G ] = p|EG|(1 − p)kn2−|EG|) where p = p(k, n)
(∼ (ln 2)1/k/n) is the unique critical threshold such that P[ k-CYCLE(Γ) = 1 ] = 1

2 .

• Let � be the uniform random k-cycle in G . For e ∈ EK , we write �−e for the graph obtained
from � by deleting the edge in � corresponding to e. Note that �−e is a path of length k−1.

• For ` ∈ N, let Ξ` be the random graph �−e11 ∪· · ·∪�−e`` where �1, . . . ,�` are uniform random
k-cycles and e1, . . . , e` are uniform random edges in EK . Equivalently, Ξ` is the union of `
uniform random paths of length k − 1.

We will only consider values of ` much less than
√
n, where random paths �−e11 ∪ · · · ∪ �−e`` are

likely to be vertex-disjoint. The letter Ξ is mnemonic for this situation.

We state the key lemma of this section, whose proof is included in Appendix C.

Lemma 4.5. For every monotone function f : G → {0, 1} and ` ∈ N, if

(4) P
Γ

[
f(Γ) = k-CYCLE(Γ)

]
≥ 1

2
+
C(`+ 1)k2

√
n

where C > 0 is a universal constant, then there exists G ∈ G such that

(5) P
Ξ`

[
P
�

[
� ∈M(f∪G) ∩M(f∪G∪Ξ`)

]
≥ n−1/2

]
≥ n−1/2.

10



Lemma 4.5 says the following: (in the case ` = 0) if a monotone function f has correlation
� k2/

√
n with k-CYCLE on Γ, then there exists a graph G such that a non-negligible fraction of

k-cycles are minterms of f∪G. Moreover, (for ` ≥ 1) if this correlation is � `k2/
√
n, then these

minterms are “Ξ`-noise-invariant” in the following sense: with probability ≥ n−1/2 over Ξ`, at least
1/
√
n fraction of k-cycles are common minterms of f∪G and f∪G∪Ξ` .

The tie-in to persistent minterms is clear. Let d ∈ N and suppose ` is a multiple of m :=
〈
d
k

〉
.

We may generate Ξ` as a union of independent Ξ
(1)
`/m, . . . ,Ξ

(m)
`/m. Writing ρs for the partial union

Ξ
(1)
`/m∪· · ·∪Ξ

(s)
`/m, we have a non-decreasing sequence ~ρ ∈ Seqm≤ (G ). Notice that every k-cycle which

is a common minterm in M(f∪G) ∩ M(f∪G∪Ξ`) is a d-persistent minterm in M~ρ
d(f
∪G). (This

observation shows up in the proof of Theorem 1.1 in Section 6.)

5 Pathset Complexity

5.1 The Basic Framework

We present the definitions required to state the pathset complexity lower bound (Theorem 5.8),
which we use in our main theorem (Theorem 1.1). For background on these definitions (key
examples, upper bounds, etc.), the reader is referred to the paper [56]; a guide to the relevant
sections in [56] is provided in Appendix A.

Definition 5.1 (Pattern Graphs).

Subgraphs of K are called pattern graphs and designated by letters A,B,C.

Recall that graphs (by definition in this paper) have no isolated vertices. Therefore, pattern graphs
A ⊆ K are in one-to-one correspondence with subsets EA ⊆ EK .

An important parameter of pattern graphs A ⊆ K is the number |VA| − |EA| (i.e. the Euler
characteristic of A). Note that every pattern graph, other than K itself, is a disjoint union of paths.
Therefore,

(6) A 6= K ⇒ |VA| − |EA| = |{connected components of A}|.

Also note that 0 ≤ |VA| − |EA| ≤ k/2 and |VA| − |EA| = 0 ⇔ A ∈ {∅,K}.

Definition 5.2 (Sections).

For A ⊆ K, an A-section is a graph A′ ∈ G such that EA′ = {v(ι(v))w(ι(w)) : vw ∈ EA} for some
function ι : VA → [n]. (As a special case, the empty graph ∅ is the unique ∅-section.)

The set of all A-sections is denoted by GA. As a matter of notation, we consistently write A-sections
using primes (A′, A′′, etc.)

Every A′ ∈ GA is isomorphic to A via the projection v(i) 7→ v (in this sense, A′ is a “section” of the
“product bundle” A×N → A where N = ([n], [n]2) is the complete directed graph).

We have already encountered K-sections and K \ {e}-sections in the guise of random graphs �
and �−e. (Note that K-sections are the same as k-cycles in G (Def. 4.2).)

Definition 5.3 (Pathsets).
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For A ⊆ K, subsets of GA (i.e. sets of A-sections) are called pathsets over A. As a special case,
note that there are two distinct pathsets over ∅: the empty set ∅ and the “identity” pathset {∅}.
Every non-empty pathset A is a pathset over a unique A ⊆ K, which we call its underlying pattern
graph. Pathsets over A,B,C,K are consistently designated by the respective calligraphic letters
A,B, C,K.

The density of a pathset A is defined by

(7) density(A) := |A| / n|VA| = P
A′∈GA

[A′ ∈ A ].

Definition 5.4 (Joins).

For any two pathsets A and B, the join A ./ B is the pathset (over A ∪B) defined by

(8) A ./ B :=
{
C ′ ∈ GA∪B : C ′ = A′ ∪B′ for some A′ ∈ A and B′ ∈ B

}
.

Note that ./ is an associative, commutative and idempotent operation on pathsets. Moreover, ∅
and {∅} act as the zero and identity: A ./ ∅ = ∅ and A ./ {∅} = A. (Taking the view of a pathset
A as a “VA-ary relation” (i.e. a subset of [n]VA), ./ is the standard relational join operation.)

Definition 5.5 (Restrictions).

For pathsets A and B, we say that B is a restriction of A, denoted B � A, if B ⊆ A and there
exists B′ ∈ GA\B such that B = {B′ ∈ GB : B′ ∪B′ ∈ A}.
B is a proper restriction of A, denoted B ≺ A, if B � A and B 6= A.

Definition 5.6 (Smallness).

For ε > 0, a pathset A is ε-small if it satisfies

(9) density(B) ≤ ε|VB |−|EB | for all B � A.

The set of ε-small pathsets (over all pattern graphs) is denoted by Pε.

Note that every pathset over ∅ or K is ε-small, since |V∅|−|E∅| = |VK |−|EK | = 0. ε-smallness
is obviously preserved under subsets, as well as under restrictions: if A ∈ Pε, then A0 ∈ Pε and
B ∈ Pε for every A0 ⊆ A and B � A. Somewhat less obvious is the fact that ε-smallness is also
preserved under joins (Lemma 5.5 of [56]): if A,B ∈Pε, then A ./ B ∈Pε.

Definition 5.7 (Pathset Complexity).

For any ε > 0 (“smallness parameter”), pathset complexity is the function χε : Pε → N defined
inductively as follows:

• (base case) If |EA| ≤ 1, then χε(A) := |EA| · |A|.

That is, χε(∅) = χε({∅}) = 0 and χε(A) = |A| if A is a single edge.

• (induction case) If |EA| ≥ 2, then χε(A) := min
(Bi,Ci)i

∑
i χε(Bi) + χε(Ci)

where (Bi, Ci)i ranges over all sequences of ε-small pathsets Bi, Ci ∈Pε such that Bi, Ci $ A
and Bi ∪ Ci = A and A ⊆

⋃
i Bi ./ Ci.
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In other words, for the (induction case) we consider all possible coverings of A by joins of ε-small
pathsets over proper subgraphs of A.

It is clear from this definition that pathset complexity satisfies the following inequalities:

• (monotonicity) χε(A1) ≤ χε(A2) for all A1 ⊆ A2 ∈Pε,

• (sub-additivity) χε(A1 ∪ A2) ≤ χε(A1) + χε(A2) for all A1,A2 such that A1 ∪ A2 ∈Pε,

• (join inequality) χε(A ./ B) ≤ χε(A) + χε(B) for all A,B ∈Pε.

In fact, these three inequalities provide a dual characterization of pathset complexity: χε is the
unique pointwise maximal function Pε → N which satisfies (base case), (monotonicity), (sub-
additivity) and (join inequality).

The following lower bound on pathset complexity was shown in [56]:

Theorem 5.8 (Pathset Complexity Lower Bound). For every pathset K over K,

(10) χε(K) ≥ (1/2)O(2k) · (1/ε)
1
6

log k · density(K).

Theorem 5.8 corresponds to Theorem 5.8 of [56] (see Appendix A for a reader’s guide). We
mention that the lower bound proved in [56] applies more broadly to pathsets A ∈ Pε over any
pattern graph A ⊆ K:

(11) χε(A) ≥ (1/2)O(2|EA|) · (1/ε)
1
6

log(length(A)) + |VA|−|EA| · density(A)

where length(A) equals the number of edges in the largest connected component of A. In fact,
(11) follows from an even more general lower bound for pathset complexity with respect to patterns
(Theorem 8.3 of [56]). However, for the application in this paper, we only require the bound (10)
for pathsets over K.

5.2 Pathsets of Persistent Minterms

In order to prove formula-size lower bounds using pathset complexity, we associate pathsets with all
monotone formulas on kn2 variables. The pathsets need to satisfy certain consistency conditions;
moreover, these (random) pathsets must be ε-small (with high probability). Persistent minterms
and random restrictions Ξ` accomplish both of these goals. In this subsection, we show how to define
appropriate pathsets using persistent minterms; we deal with ε-smallness in the next subsection.

Definition 5.9 (Pathsets MA(f) and P~ρA(Φ)).

For a monotone function f : G → {0, 1} and A ⊆ K, let MA(f) := GA ∩M(f) be the pathset of
A-sections which are minterms of f .

For a monotone formula Φ and ~ρ ∈ Seqm≤ (G ) and A ⊆ K, the pathset P~ρA(Φ) (over A) is defined by

(12) P~ρA(Φ) := GA ∩M~ρ
depth(Φ)(Φ).

That is, the P~ρA(Φ) is the set of A-sections which are depth(Φ)-persistent minterms of Φ under the
sequence ~ρ.
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Unpacking definitions, for all A 6= ∅, we have the expression

P~ρA(Φ) =
⋃

0≤s≤t≤m : t−s≥〈depth(Φ)
|EA|

〉

(
MA(Φ∪ρs) ∩MA(Φ∪ρt)

)
(13)

⊆
⋃

0≤s≤m−1

(
MA(Φ∪ρs) ∩MA(Φ∪ρs+1)

)
.

The following lemma is a straightforward consequence of (13).

Lemma 5.10. If P~ρA(Φ) is not ε-small, thenMA(Φ∪ρs)∩MA(Φ∪ρs+1) is not (ε/m)-small for some
s ∈ {0, . . . ,m− 1}.

Proof. Assume P~ρA(Φ) is not ε-small. By Def. 5.6, there exists a restriction B � P~ρA(Φ) such that
density(B) > ε|VB |−|EB |. (Note that A,B /∈ {∅,K}.) By Def. 5.5, there exists an (A \ B)-section

B′ ∈ GA\B such that B = {B′ ∈ GB : B′ ∪B′ ∈ P~ρA(Φ)}. Writing As for MA(Φ∪ρs) ∩MA(Φ∪ρs+1),

we have P~ρA(Φ) ⊆
⋃m−1
s=0 As by (13), hence B ⊆

⋃m−1
s=0 {B′ ∈ GB : B′ ∪ B′ ∈ As}. It follows that

there exists s ∈ {0, . . . ,m− 1} such that

density({B′ ∈ GB : B′ ∪B′ ∈ As}) ≥ density(B)/m > ε|VB |−|EB |/m ≥ (ε/m)|VB |−|EB |.

Since {B′ ∈ GB : B′ ∪B′ ∈ As} � As, we conclude that As is not (ε/m)-small.

We next restate the Persistent Minterm Lemma 3.7 in terms of pathsets P~ρA(Φ).

Lemma 5.11. For all monotone functions f, g and monotone formulas Φ,Ψ and ~ρ ∈ Seqm≤ (G ) and
A ⊆ K,

(14) P~ρA(Φ ∨Ψ) ⊆ P~ρA(Φ) ∪ P~ρA(Ψ), P~ρA(Φ ∧Ψ) ⊆
⋃

B,C⊆A :B∪C=A

P~ρB(Φ) ./ P~ρC(Ψ).

The main lemma of this subsection gives the key relationship between pathset complexity and
formula size and depth.

Lemma 5.12. Suppose Φ is a monotone formula and ~ρ ∈ Seqm≤ (G ) such that pathsets P~ρA(Ψ) are
ε-small for all Ψ ∈ Sub(Φ) and A ⊆ K. Then

χε(P~ρK(Φ)) ≤ 2O(k2) · depth(Φ)k · size(Φ).(15)

Although the statement of Lemma 5.12 might appear complicated, the proof is actually quite
simple. The derivation of (15) uses only Lemma 5.11 and the key properties (monotonicity),
(sub-additivity) and (join inequality) of pathset complexity. The proof of Lemma 5.12, which is
essentially the same as Lemma 6.7 in [56], is included in Appendix E.

5.3 Smallness Lemma

In the last subsection, we defined pathsets P~ρA(Φ) (for arbitrary sequences ~ρ ∈ Seqm≤ (G )) and showed
a relationship between pathset complexity and formula size, under condition that all of the relevant
pathsets are ε-small. We now show how this ε-smallness condition can be achieved — with high
probability — using random graphs Ξ`. The main technical lemma for this step is the following:
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Lemma 5.13. For every monotone function f : G → {0, 1} and A ⊆ K and ` ∈ N and ε > 0,

(16) P
Ξ`

[
MA(f) ∩MA(f∪Ξ`) is not ε-small

]
≤ (2n)k · exp

(
−Ω(ε`/k2)

)
.

The proof, which uses Janson’s Inequality [33] and the sunflower-plucking technique of Razborov
[51], is included in Appendix D.

6 Proof of Theorem 1.1 (Correlation Bound for k-CYCLE)

Proof of Theorem 1.1. Let k ≤ log log n and suppose Φ is a monotone formula such that

P
Γ

[
f(Γ) = k-CYCLE(Γ)

]
= 1

2 + n−1/2+c.

Our goal is to show the lower bound size(Φ) = nΩ(c log k).
Using the fact that nO(log k) is an upper bound on the size of monotone formulas for k-CYCLE

(together with the “formula balancing lemma” [59, 66]: every monotone formula of size S is equiv-
alent to a monotone formula of depth O(logS)) we may assume that size(Φ) = nO(log k) and
depth(Φ) = O(log k · log n). However, for purposes of this proof, it is enough for us to assume much
weaker upper bounds size(Φ) ≤ exp(n1/k) and depth(Φ) ≤ n1/k. We also assume c = Ω(1/ log k),
since otherwise there is nothing to prove.

We set parameters m, `, ε as follows:

m :=
〈depth(Φ)

k

〉
(=
(depth(Φ)+k−1

k−1

)
), ` := nc/2, ε := n−c/4.

Note that m = O(depth(Φ))k = no(c). We have n−1/2+c = ω((m` + 1)k2/
√
n), that is, Φ satisfies

the hypothesis (4) of Lemma 4.5 (for all sufficiently large n). Therefore, by Lemma 4.5, there exists
G ∈ G such that

P
Ξ`m

[
P
�

[
� ∈M(Φ∪G) ∩M(Φ∪G∪Ξm`)

]
≥ n−1/2

]
= Ω(n−1/2).(17)

Fixing any such G, we now generate random ~ρρρ ∈ Seqm≤ (G ) as follows:

• Let Ξ
(1)
` , . . . ,Ξ

(m)
` be independent random copies of Ξ`.

• For s ∈ {0, . . . ,m}, let ρρρs := G ∪ (Ξ
(1)
` ∪ · · · ∪ Ξ

(s)
` ).

By our choice of m =
〈depth(Φ)

k

〉
and Def. 5.9 of P~ρρρK(Φ) (see (13)), we have

P~ρρρK(Φ) =MK(Φ∪ρρρ0) ∩MK(Φ∪ρρρm).

Since � is uniform in GK , it follows (by definition (7) of density(·)) that

density(P~ρρρK(Φ)) = P
�

[
� ∈M(Φ∪ρρρ0) ∩M(Φ∪ρρρm)

]
.

Since ρρρ0 = G and ρρρm
d
= Ξm`, we see that (17) is equivalent to

P
~ρρρ

[
density(P~ρρρK(Φ)) ≥ n−1/2

]
= Ω(n−1/2).(18)
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We next observe that, with all-but-negligible probability 1 − n−ω(1), pathsets P~ρρρA(Ψ) are all
ε-small:

P
~ρρρ

[ ∨
Ψ∈Sub(Φ)

∨
∅⊂A⊂K

P~ρρρA(Ψ) is not ε-small

]
(by Lemma 5.10)(19)

≤
∑

Ψ∈Sub(Φ)

∑
∅⊂A⊂K

∑
0≤s≤m−1

P
~ρρρ

[
MA(Ψ∪ρρρs) ∩MA(Ψ∪ρρρs+1) is not (ε/m)-small

]
≤ size(Φ) · 2k ·m · exp

(
−Ω(ε`/k2m)

)
(by Lemma 5.13)

= exp(O(n1/k)) · exp(−nc/4−o(c)) (using size(Φ) ≤ exp(n1/k))

= n−ω(1) (using c = Ω(1/ log k)).

As the upshot of (18) and (19), (for all sufficiently large n) there exists ~ρ ∈ Seqm≤ (G ) satisfying
both

• Dense(~ρ), the event that density(P~ρK(Φ)) ≥ n−1/2, and

• Small(~ρ), the event that pathsets P~ρA(Ψ) are ε-small for all Ψ ∈ Sub(Φ) and A ⊆ K.

Fixing any such ~ρ, we complete the reduction to our pathset complexity lower bound (using k ≤
log logn):

size(Φ) ≥ depth(Φ)−k · 2−O(k2) · χε(P~ρK(Φ)) (by Lemma 5.12, since Small(~ρ))

≥ n−O(1) · χε(P~ρK(Φ)) (using depth(Φ) ≤ n1/k)

≥ n−O(1) · 2−O(2k) · (1/ε)
1
6

log k · density(P~ρK(Φ)) (by Theorem 5.8)

= n(c/24) log k−O(1) (by Dense(~ρ)).

Therefore, size(Φ) = nΩ(c log k) as required.
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A Guide to the Lower Bound in [56]

The proof of Theorem 5.8 in the present paper (Theorem 5.8 in [56]) is found in Sections 8-11 of
[56]. The exposition in these sections is self-contained and may be read independently from the
parts of the paper which deal with bounded-depth boolean formulas. The reader may also wish
to consult Section 4 (“Preliminaries”) and Section 5 (“Pathset Complexity”) and Appendices A-C
which give background, motivation, key examples and upper bounds for pathset complexity.

One inconsequential difference which arises between the present paper and [56] is that we deal
with the average-case k-CYCLE problem, whereas [56] considers with average-case DISTANCE-k
STCONN problem. For all intents and purposes, these are the same problem. However, this results
in one difference in definitions: the role of K (the k-cycle graph) in present paper is played by Pk
(the path of length k) in [56]. Thus, patterns graph in [56] are subgraphs of Pk, rather than K
(however this makes no difference in any of the results). Beside this difference, a few minor changes
in notation are described below:

1. |VA| − |EA| and density(A) are denoted by ∆(A) and δ(A) in [56]. Also, in [56] pattern graphs
are consistently represented using letters G,H, while A,B,C are reserved for patterns (a notion
which is crucial to the lower bound in [56], but which we do not require here).

2. The smallness parameter ε > 0 in the present paper corresponds to 1/ñ in [56]. That is,
“small” and “critical” in [56] are equivalent to “1/ñ-small” and “1/ñ-critical” here. The pathset
complexity lower bound in Sections 8-11 of [56] treat ñ as an arbitrary parameter. (The setting
ñ = n1−1/ log k is only used in the specific application of the Theorem 5.8 in Sections 6-7.)

3. In the present paper, a pathset A is defined as a subset of GA (i.e. a set of A-section). In [56],
a pathset A is defined as a subset of [n]VA (i.e. a “VA-ary relation” on [n]). These definitions are
equivalent, since GA and [n]VA are in bijective correspondence (each A′ ∈ GA has EA′ = {v(ιv)w(ιw) :
vw ∈ EA} for a unique ι ∈ [n]VA). While the view of A ⊆ GA is natural for us here, the relational
perspective was convenient in [56] (which dealt with projections of pathsets, in addition to joins
and restrictions).

B Proof of Lemma 3.7 (Persistent Minterms Under ∨ and ∧)
Proof of Lemma 3.7. To simplify notation, we write fs for f∨ρs and gs for g∨ρs .

Proof of (2): Consider any x ∈ M~ρ
d(f ∨ g). Fix 0 ≤ s ≤ t ≤ m such that t − s ≥

〈
d
|x|
〉

and

x ∈ M(fs ∨ gs) ∩M(ft ∨ gt). Since x is a minterm of fs ∨ gs, we have fs(x) = 1 or gs(x) = 1.
Without loss of generality, assume fs(x) = 1. We claim that x is also a minterm of ft. Clearly
ft(x) = 1 since fs ≤ ft. It suffices to show that ft(y) = 0 for all y < x. This follows from the fact
that x is a minterm of ft ∨ gt, hence (ft ∨ gt)(y) = 0 for all y < x. Therefore, x ∈M(fs) ∩M(ft).

Since t− s ≥
〈
d
j

〉
≥
〈
d−1
j

〉
, we conclude that x ∈M~ρ

d−1(f).

Proof of (3): Consider any x ∈ M~ρ
d(f ∧ g). Fix 0 ≤ s ≤ t ≤ m such that t − s ≥

〈
d
|x|
〉

and

x ∈M(fs ∧ gs)∩M(ft ∧ gt). Let ` := t− s. We will construct, by induction on i = 0, 1, . . . , `, two
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sequences y0 ≥ y1 ≥ · · · ≥ y` and z0 ≥ z1 ≥ · · · ≥ z` such that yi ∈M(fs+i) and zi ∈M(gs+i) and
yi ∨ zi = x:

• For the base case i = 0, since x is a minterm of fs∧gs, we have fs(x) = gs(x) = 1. Therefore,
there exist y ∈ M(fs) and z ∈ M(gs) such that y, z ≤ x. Note that (fs ∧ gs)(y ∨ z) = 1 and
y∨ z ≤ x. Again using the fact that x is a minterm of fs∧ gs, it follows that y∨ z = x. These
are the starting terms of our sequence: y0 = y and z0 = z.

• For the induction step, suppose we have chosen yi−1 ∈ M(fs+i−1) and zi−1 ∈ M(gs+i−1)
such that yi−1 ∨ zi−1 = x. Since fs+i−1 ≤ fs+i and gs+i−1 ≤ gs+i, we have fs+i(yi−1) =
gs+i(zi−1) = 1. Therefore, there exist y ∈ M(fs+i) and z ∈ M(gs+i) such that y ≤ yi−1 and
z ≤ zi−1. Note that (fs+i∧gs+i)(y∨z) = 1 and y∨z ≤ x. Since x is a minterm of fs+i∧gs+i,
it follows that y ∨ z = x. These are the next terms in our sequence: yi = y and zi = z.

Having constructed sequences ~y, ~z ∈ Seq`≥({0, 1}n), we finish the proof using Lemma 3.4. Since ` ≥〈
d
|x|
〉
≥
〈
d
|y0|
〉
, we may apply Lemma 3.4 to the reversed sequence (y`, y`−1, . . . , y0) ∈ Seq`≤({0, 1}n);

we get 0 ≤ a ≤ b ≤ ` such that ya = yb and b− a ≥
〈
d−1
|ya|
〉
. Therefore, ya ∈M~ρ

d−1(f). Similarly, we

get zc ∈M~ρ
d−1(g) for some 0 ≤ c ≤ `. Since y0 ≤ ya ≤ y` and z0 ≤ zc ≤ z` and z0∨y0 = y`∨z` = x,

we conclude that ya ∨ zc = x.

C Proof of Lemma 4.5 (Persistent k-Cycle Minterms)

Definition C.1. We define a Markov chain Γ0 ⊆ Γ1 ⊆ · · · in G by the following process:

• Let Γ0 be the random graph Γ conditioned on k-CYCLE(Γ) = 0.

• Let �1,�2, · · · be independent uniform random k-cycles and let Γt := Γ0 ∪ �1 ∪ · · · ∪ �t

(= Γt−1 ∪�t) for all t ≥ 1.

By standard results in probability theory, the number of k-cycles in Γ is asymptotically Poisson
with mean ln 2. In particular, the probability of Γ having more than (say) log2 n k-cycles is
negligibly small. We will show that Γ is well-approximated by Γt for t ∼ Poisson(ln 2) (where
“well-approximated” means total variation distance O(1/n0.49)). For this purpose, we only care
about very small values of t (say ≤ log2 n). For such t, note that �1, . . . ,�t are very likely to be
the only k-cycles Γt (where “very likely” means with probability better than 1−O(1/n0.99)).

Definition C.2. We define random variables τ and σ over N:

• Let τ be Poisson with mean ln 2. That is, P[ τ = t ] = (ln 2)t/2t! for all t ∈ N. Note that
P[ τ = 0 ] = P[ τ ≥ 1 ] = 1/2.

• Let σ be the random variable with probability mass function4

P[σ = s ] = (ln 2)−1P[ τ ≥ s+ 1 ].

4To see that
∑∞
s=0P[σ = s ] = 1, observe that (for any λ > 0)

∞∑
s=0

P
[

Pois(λ) ≥ s+ 1
]

=

∞∑
t=1

t ·P
[

Pois(λ) = t
]

=

∞∑
t=1

t · λ
te−λ

t!
= λ

∞∑
t=0

λt−1e−λ

(t− 1)!
= λ.
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We denote by Γτ (resp. Γσ) the random graph Γt where t ∈ N is sampled according to τ (resp. σ).

The next lemma gives our reason for considering σ.

Lemma C.3. For every monotone f : G → {0, 1},

(20) P
[
f(Γτ ) = k-CYCLE(Γτ )

]
− 1/2 = ln 2 · P

[
f(Γσ) 6= f(Γσ ∪�)

]
.

Note that (20) is an exact equality, which relates the correlation of f and k-CYCLE on Γτ to
the probability that f distinguishes the two sides of the monotone coupling (Γσ,Γσ ∪�).

Proof. First, we have

P
[
f(Γτ ) = k-CYCLE(Γτ )

]
= P

[
τ = 0

]
P
[
f(Γ0) = 0

]
+ P

[
τ ≥ 1

]
P
[
f(Γτ ) = 1

∣∣ τ ≥ 1
]

(21)

=
1

2

(
P
[
f(Γ0) = 0

]
+ P

[
f(Γτ ) = 1

∣∣ τ ≥ 1
])

=
1

2

(
1− E

[
f(Γ0)

]
+ E

[
f(Γτ )

∣∣ τ ≥ 1
])

=
1

2

(
1 + E

[
f(Γτ )− f(Γ0)

∣∣ τ ≥ 1
])
.

Using the fact that f is monotone and Γ0 ⊆ Γ1 ⊆ · · · , we continue

E
[
f(Γτ )− f(Γ0)

∣∣ τ ≥ 1
]

= P
[
f(Γ0) 6= f(Γτ )

∣∣ τ ≥ 1
]

(22)

=
∑∞

t=1P
[
τ = t

∣∣ τ ≥ 1
]
P
[
f(Γ0) 6= f(Γt)

]
= 2

∑∞
t=1P

[
τ = t

]∑t−1
s=0P

[
f(Γs) 6= f(Γs+1)

]
= 2

∑∞
s=0P

[
τ ≥ s+ 1

]
P
[
f(Γs) 6= f(Γs+1)

]
= 2 ln 2

∑∞
s=0P

[
σ = s

]
P
[
f(Γs) 6= f(Γs+1)

]
= 2 ln 2 · P

[
f(Γσ) 6= f(Γσ+1)

]
.

To complete the proof, we plug (22) into (21) and observe that (Γσ,Γσ+1)
d
= (Γσ,Γσ ∪�).

Next we state three lemmas giving bounds on the total variation distance between various
random graphs which we consider.

Lemma C.4 (Total Variation Distance Bounds).

dTV(Γ,Γτ ) = O(k/
√
n),(23)

dTV(Γ,Γ ∪�−e) = O(k/
√
n),(24)

dTV(Γσ,Γσ ∪ Ξ`) = O(`k/
√
n).(25)
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Proof. We first observe that (25) follows from (24) by the triangle inequality and standard Markov
chain coupling arguments:5

dTV(Γσ,Γσ ∪ Ξ`) ≤ dTV(Γ0,Γ0 ∪ Ξ`)

≤
∑`

i=1 dTV

(
Γ0 ∪ Ξ

(1)
1 ∪ · · · ∪ Ξ

(i−1)
1 , Γ0 ∪ Ξ

(1)
1 ∪ · · · ∪ Ξ

(i)
1

)
≤ ` · dTV(Γ0 ∪ Ξ1)

≤ 2` · dTV(Γ ∪�−e).

For (23) and (24), we use the Poisson approximation theorems of Arratia, Goldstein and Gordon
[10]. (These results not only show that the number of k-cycles in Γ asymptotically Poisson with
mean ln 2, but give a tight approximation to the entire process of indicators of k-cycles.) The proof
of (23) and (24) will be included in the full version of this paper.

Proof of Lemma 4.5. Let f : G → {0, 1} be any monotone function and let

δ := P
[
f(Γ) = k-CYCLE(Γ)

]
− 1/2.

Note that � /∈ M(f∪Γσ) ∩M(f∪Γσ∪Ξ`) if, and only if, f(Γσ ∪ �) = 0 or there exists e ∈ EK
such that f(Γσ ∪ Ξ` ∪�−e) = 1. We have

P
Γσ ,Ξ`,�

[
� /∈M(f∪Γσ) ∩M(f∪Γσ∪Ξ`)

]
(26)

= P

[ (
f(Γσ ∪�) = 0

)
∨
∨
e∈EK

(
f(Γσ ∪ Ξ` ∪�−e) = 1

) ]
≤ P

[ (
f(Γσ ∪�) = 0

)
∨
(
f(Γσ) = 1

)
∨
∨
e∈EK

(
f(Γσ ∪ Ξ` ∪�−e) 6= f(Γσ)

) ]
≤ P

[ (
f(Γσ ∪�) = 0

)
∨
(
f(Γσ) = 1

) ]
+
∑
e∈EK

dTV(Γσ,Γσ ∪ Ξ` ∪�−e)

≤ P
[ (
f(Γσ ∪�) = 0

)
∨
(
f(Γσ) = 1

) ]
+O

(
(`+ 1)k2

√
n

)
(by (24) and (25)).

Since f is monotone and Γσ ⊆ Γσ ∪�, we have f(Γσ) = f(Γσ ∪�) if, and only if, f(Γσ ∪�) = 0
or f(Γσ) = 1. Therefore,

P
[ (
f(Γσ ∪�) = 0

)
∨
(
f(Γσ) = 1

) ]
(27)

= 1− P
[
f(Γσ) 6= f(Γσ ∪�)

]
= 1− 1

ln 2

(
P
[
f(Γτ ) = k-CYCLE(Γτ )

]
− 1

2

)
(by Lemma C.3)

≤ 1− 1

ln 2

(
P
[
f(Γ) = k-CYCLE(Γ)

]
− dTV(Γ,Γτ )− 1

2

)
≤ 1− δ

ln 2
+O

(
k√
n

)
(by (23)).

5Let P be the transition matrix of a Markov chain with state space Ω. Then for all probability distributions µ
and ν on Ω, dTV(µP, νP ) ≤ dTV(µ, ν).
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We now have

min
G∈G

P
Ξ`,�

[
� /∈M(f∪G) ∩M(f∪G∪Ξ`)

]
≤ P

Γσ ,Ξ`,�

[
� /∈M(f∪Γσ) ∩M(f∪Γσ∪Ξ`)

]
(28)

≤ 1− δ

ln 2
+O

(
(`+ 1)k2

√
n

)
(by (26) and (27)).

Fixing an optimal G in (28), we have (by Markov’s Inequality)

P
Ξ`

[
P
�

[
� ∈M(f∪G) ∩M(f∪G∪Ξ`)

]
≥ 1√

n

]
= 1− P

Ξ`

[
1− P

�

[
� /∈M(f∪G) ∩M(f∪G∪Ξ`)

]
≥ 1− 1√

n

]
≥ 1− 1

1− 1/
√
n

(
1− P

Ξ`,�

[
� /∈M(f∪G) ∩M(f∪G∪Ξ`)

])
≥ 1− P

Ξ`,�

[
� /∈M(f∪G) ∩M(f∪G∪Ξ`)

]
− 1√

n

≥ δ

ln 2
−O

(
(`+ 1)k2

√
n

)
(by (28)).

If δ is larger than C(` + 1)k2/
√
n (for a constant C depending on the constant in the final big-O

term), then the final bound is ≥ 1/
√
n. Equation (5) follows, which completes the proof.

D Proof of Lemma 5.13 (Smallness)

The following definition captures the minimal obstructions to ε-smallness.

Definition D.1. A pathset A is ε-critical if

• density(A) > ε|VA|−|EA| and

• density(B) ≤ ε|VB |−|EB | for every proper restriction B ≺ A.

Note that a pathset A is not ε-small if, and only if, some restriction B � A is ε-critical. (This is
immediate from Definition 5.6 of ε-smallness.)

The key technical step in the proof of Lemma 5.13 is the following lemma on ε-critical pathsets.
This lemma is very similar to Lemma 7.3 of [56] and Theorem 4.4 (“Quasi-sunflower Lemma”) of
[55]. The proof uses Janson’s Inequality [33] in an efficient way.

Lemma D.2. Suppose A is an ε-critical pathset. Let A1, . . . , At where t = |VA| − |EA| enumerate
the connected components of A (in any order). Let R1, . . . ,Rt be independent random pathsets
Ri ⊆pi GAi (that is, P[A′i ∈ Ri ] = pi independently for all A′i ∈ GAi) where pi = `/n|VAi | and
` ≥ k/ε. Then

P
[
A ∩ (R1 ./ · · · ./ Rt) = ∅

]
≤ exp(−ε`/2k).
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Proof. Note that 1 ≤ t ≤ k/2. For S ⊆ [t], let S := [t] \ S.
For every A′ ∈ A, let IA′ ∈ {0, 1} be the indicator for the event that A′ ∈ R1 ./ · · · ./ Rt.

Thus,

(29) A ∩ (R1 ./ · · · ./ Rt) = ∅ ⇔
∑
A′∈A

IA′ = 0.

For i ∈ [t], let A′i be the subgraph of A′ which projects to Ai (i.e. A′i is the unique Ai-section
which is a subgraph of A′). Note that A′ is the edge-disjoint union of graphs A′i.

For S ⊆ [t], let AS :=
⋃
i∈S Ai and let A2

S denote the set of pairs

A2
S :=

{
(A′, A′′) ∈ A2 :

∧
i∈S

(A′i 6= A′′i ) ∧
∧
i∈S

(A′i 6= A′′i )

}
.

Note that A2 is the disjoint union of sets A2
S .

For A′, A′′ ∈ A, observe that IA′ and IA′′ are independent if, and only if, (A′, A′′) ∈ A2
∅. Define

λ :=
∑
A′∈A

E[ IA′ ], ΥS :=
∑

(A′,A′′)∈A2
S

E[ IA′IA′′ ], Υ :=
∑
∅⊂S⊂[t]

ΥS .

In this context, Janson’s Inequality [33] states

P

[ ∑
A′∈A

IA′ = 0

]
≤ exp

(
−min

{
λ

2
,
λ2

2Υ

})
.(30)

In light of (29), it suffices to prove that min{λ, λ2/Υ} ≥ ε`/k.
First we bound λ. For all A′ ∈ A, we have

E[ IA′ ] = P[A′ ∈ R1 ./ · · · ./ Rt ] =
∏
i∈[t]

[A′i ∈ Ri ] =
∏
i∈[t]

pi =
`t

n|VA|
.

Since A is ε-critical, we have density(A) > εt, hence |A| > εt · n|VA|. Therefore,

λ = |A| · E[ IA′ ] =
|A| · `t

n|VA|
> (ε`)t.(31)

Next we bound Υ. For each ∅ ⊂ S ⊂ [t], we have

|A2
S | ≤

∑
B′∈GA

S

|{B′ ∈ GAS : B′ ∪B′ ∈ A}|2(32)

≤
∑

B′∈GA
S

|{B′ ∈ GAS : B′ ∪B′ ∈ A}| · max
B′∈GA

S

|{B′ ∈ GAS : B′ ∪B′ ∈ A}|

= |A| · max
B′∈GA

S

|{B′ ∈ GAS : B′ ∪B′ ∈ A}|

= |A| · n|VAS | · max
B′∈GA

S

density({B′ ∈ GAS : B′ ∪B′ ∈ A})

≤ |A| · n|VAS | · ε|VAS |−|EAS | (by ε-criticality of A)

= |A| · n|VAS | · ε|S| (since |VAS | − |EAS | = |S|).
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For all (A′, A′′) ∈ A2
S , we have

E[ IA′IA′′ ] =
∏
i∈[t]

[A′i ∈ Ri ] ·
∏
j∈S

[A′′j ∈ Rj ] =
∏
i∈[t]

pi ·
∏
j∈S

pj =
`t+|S|

n|VA|+|VAS |
.(33)

Therefore,

ΥS = |A2
S | · E[ IA′IA′′ ] =

|A2
S | · `t+|S|

n|VA|+|VAS |
(by (33))

≤ |A| · ε
|S| · `t+|S|

n|VA|
(by (32))

= λ(ε`)|S| (by (31)).

Since ε` ≥ k ≥ 2t,

Υ =
∑
∅⊂S⊂[t]

ΥS ≤
t−1∑
i=1

(
t

i

)
· λ(ε`)i ≤ λt(ε`)t−1 ·

t−1∑
i=1

(
t

ε`

)i−1

≤ λk(ε`)t−1.

Using this upper bound on Υ and the lower bound λ > (ε`)t (31),

λ2

Υ
≥ λ

k(ε`)t−1
>
ε`

k
.

Plugging the bounds on λ and λ2/Υ into (30) completes the proof.

Lemma D.3. For every ε-critical pathset A and ` ≥ 2k2/ε,

P
Ξ`

[ ∧
A′∈A

A′ * Ξ`

]
≤ exp(−ε`/4k2).

Proof. Let A = A1 ] · · · ] At as in Lemma D.2. Fix distinct edges η1, . . . , ηt ∈ EK such that
ηi /∈ EAi for all i ∈ [t]. The random graph Ξ` is equivalent to �−e11 ∪ · · · ∪�−e`` where �1, . . . ,�`

are independent uniform k-cycles and e1, . . . , e` are independent uniform edges in EK . For i ∈ [t],
let Si ⊆ GAi be the Ai-pathset consisting of the Ai-subsections of all �−ejj such that ej = ηi.
Intuitively, while not a product distribution, Si is similar to a random subset of GAi of size `/k.

Let Ri ⊆pi GAi for pi = `/2kn|VAi | (i.e. half the expected density of Si). It is easy to show that
Si stochastically dominates Ri. Therefore, S1 ./ . . . ./ St stochastically dominates R1 ./ . . . ./ Rt.
By Lemma D.2,

P
Ξ`

[ ∧
A′∈A

A′ * Ξ`

]
= P

S1,...,St

[
A ∩ (S1 ./ . . . ./ St) = ∅

]
≤ P

R1,...,Rt

[
A ∩ (R1 ./ . . . ./ Rt) = ∅

]
≤ exp(−ε`/4k2).

Proof of Lemma 5.13. Let f : G → {0, 1} be a monotone function, let A ⊂ K, let ε > 0, and let
` ∈ N. Our goal is to show

(34) P
Ξ`

[
MA(f) ∩MA(f∪Ξ`) is not ε-small

]
≤ (2n)k exp

(
−Ω(ε`/k2)

)
.

We choose a sequence f =: f0 < · · · < fr by the following process:
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• If MA(fi−1) is ε-small, then halt (i.e. r = i− 1).

• If MA(fi−1) is not ε-small, then pick any ε-critical restriction Bi �MA(fi−1) and set

fi := fi−1 ∨ IndC′i

where C ′i ∈ GA\Bi is the unique A\Bi-section such that Bi = {B′i ∈ GBi : B′i∪C ′i ∈MA(fi−1)}
and IndC′i : G → {0, 1} is the indicator function which takes value 1 on G if and only if C ′i ⊆ G.

(In the language of (quasi-)sunflowers, we are plucking the petals in Bi and adding a minterm at
the core C ′i.)

Note that r ≤ (2n)k, since each C ′i shows up at most once in the construction of fr and there
are at most (2n)k possible C ′i (i.e. 2EA (≤ 2k) possibilities for Ci ⊆ A and nVCi (≤ nk) possibilities
for C ′i ∈ GCi).

Claim D.4. Let H ∈ G and i ∈ {1, . . . , r} and suppose there exists B′i ∈ Bi such that B′i ⊆ H.
Then

(35) MA(fi−1) ∩MA(f∪Hi−1) ⊆MA(fi) ∩MA(f∪Hi ).

To prove the claim, consider any X ∈ MA(fi−1) ∩ MA(f∪Hi−1). We must show that X ∈
MA(fi)∩MA(f∪Hi ). Since fi ≤ f∪Hi , this is equivalent to showing that fi(X) = 1 and fi(Y ∪H) = 0
for all Y ⊂ X. Since X is a minterm of fi−1 and fi−1 ≤ fi, we have fi(X) = 1.

Now consider any Y ⊂ X. Since X is a minterm of f∪Hi−1 , we have fi−1(Y ∪ H) = 0. Since
fi = fi−1 ∨ IndC′i , it remains to show that IndC′i(Y ∪H) = 0, that is, C ′i * Y ∪H. This is easiest
to argue by contradiction. Assume (for contradiction) that C ′i ⊆ Y ∪H. Since B′i ⊆ H, we have
B′i ∪ C ′i ⊆ Y ∪H. On the other hand, since B′i ∪ C ′i ∈ MA(fi−1), we have fi−1(B′i ∪ C ′i) = 1 and
hence fi−1(Y ∪H) = 1. This contradicts the fact that fi−1(Y ∪H) = 0 (as we already noted, since
X is a minterm of f∪Hi−1).

From Claim D.4, we have following implication: for all H ∈ G and A ⊆ K, ifMA(f)∩MA(f∪H)
is not ε-small, then there exist i ∈ {1, . . . , r} such that B′i * H for all B′i ∈ Bi. Equation (34) now
follows by Lemma D.3:

P
Ξ`

[
MA(f) ∩MA(f∪Ξ`) is not ε-small

]
≤
∑

1≤i≤r
P
Ξ`

[ ∧
B′i∈Bi

B′i * Ξi

]
≤ (2n)k exp

(
−Ω(ε`/k2)

)
.

E Proofs of Lemma 5.12 (Pathset Complexity and Formula Size)

Proof of Lemma 5.12. Assume Φ is a monotone formula and ~ρ ∈ Seqm≤ (G ) such that P~ρA(Ψ) is
ε-small for every subformula Ψ of Φ and every A ⊆ K.

Consider any φ ∈ Leaves(Φ) labeled by the indicator variable for a potential edge v(i)w(j).

Clearly P~ρA(φ) = ∅ for all A ⊆ K except possibly when EA = {vw}, in which case the only

possibility for P~ρA(φ) other than ∅ is the singleton pathset {A′} where A′ is the A-section with

EA′ = {v(i)w(j)}. It follows that
∑

A⊆K |P
~ρ
A(φ)| ≤ 1.
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Next, consider Ψ ∈ Sub(Φ) with an ∨-gate on top: Ψ = Ψ1 ∨ Ψ2. For all A ⊆ K, by Lemma

5.11, we have P~ρA(Ψ) ⊆ P~ρA(Ψ1) ∪ P~ρA(Ψ2). By properties (monotonicity) and (sub-additivity) of
χε, it follows that

χε(P~ρA(Ψ)) ≤ χε(P~ρA(Ψ1)) + χε(P~ρA(Ψ2)).(36)

Now consider Ψ = Ψ1 ∧Ψ2 ∈ Sub(Φ). By Lemma 5.11,

P~ρA(Ψ) ⊆ P~ρA(Ψ1) ∪ P~ρA(Ψ2) ∪
⋃

B,C$A :B∪C=A

P~ρB(Ψ1) ./ P~ρC(Ψ2).

(This expression extracts from (14) the case where B = A, noting that P~ρA(Ψ1) ./ P~ρC(Ψ2) ⊆
P~ρA(Ψ1); and similarly the case where C = A.) By properties (monotonicity), (sub-additivity) and
(join inequality) of χε,

χε(P~ρA(Ψ)) ≤ χε(P~ρA(Ψ1)) + χε(P~ρA(Ψ2)) +
∑

B,C$A :B∪C=A

(
χε(P~ρB(Ψ1)) + χε(P~ρC(Ψ2))

)
(37)

≤
(
χε(P~ρA(Ψ1)) + 2k

∑
B$A

χε(P~ρB(Ψ1))

)
+

(
χε(P~ρA(Ψ2)) + 2k

∑
B$A

χε(P~ρB(Ψ2))

)
.

If we now start with χε(P~ρK(Φ)) and repeatedly expand according to (37) and (36) down to the
leaves of Φ, we get a bound of the form

P~ρK(Φ) ≤
∑

φ∈Leaves(Φ)

∑
A⊆K

cφ,A · χε(P~ρA(φ))

for certain coefficients cφ,A ∈ N. For φ ∈ Leaves(Φ) at depth d (≤ depth(Φ)), the coefficient cφ,A
equals the sum, over all chains K = B0 ⊃ B1 ⊃ · · · ⊃ Bt = A, of 2kt times the binomial coefficient(
d
t

)
(counting the locations of the ∧-gates above φ where branching occurred in the expansion of

(37)). From this explanation, we extract an upper bound

cφ,A ≤ 2O(k2) · depth(Φ)k.

Using the fact that
∑

A⊆K |P
~ρ
A(φ)| ≤ 1 for all φ ∈ Leaves(Φ) (which we established earlier), together

with size(Φ) = |Leaves(Φ)| (here is where we use the fact that Φ is a formula), we conclude

P~ρK(Φ) ≤ 2O(k2) · depth(Φ)k · size(Φ).

F Proof of Lemma 1.3 (Negation-Limited Circuits)

Our proof of Lemma 1.3 combines a monotone coupling theorem of Holley [30] (which is the main
ingredient in the proof of his generalization the FKG inequalities [22]) with an observation about
negations in circuits due to Amano and Maruoka [7]. We require one definition:

Definition F.1. For a boolean (not necessarily monotone) function h : {0, 1}n → {0, 1}, let

mon-pairs(h) :=
{

(x, y) ∈ {0, 1}n × {0, 1}n : h(x) = 0 and h(y) = 1 and x < y
}
.
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The following lemma and its proof are adapted from Theorem 3.2 of [7]; the only difference is
that we consider all monotone pairs, rather than only the monotone boundary (i.e. only monotone
pairs (x, y) with |y| − |x| = 1).

Lemma F.2. For every circuit C with t negation gates, there exist t′ = 2t+1− 1 monotone circuits
M1, . . . ,Mt′ of the same size and depth such that mon-pairs(C) ⊆

⋃t′

i=1 mon-pairs(Mi).

Proof. Let C1, . . . ,Ct be the sub-circuits of C which feed directly into negation gates, listed in
“topological order” such that i < j whenever Ci is a sub-circuit of Cj . Also, let Ct+1 be C itself.
For every j ∈ {1, . . . , t + 1} and α ∈ {0, 1}j−1, let Mα be the monotone circuit obtained from Cj
by, for each i ∈ {1, . . . , j − 1} such that Ci is a sub-circuit of Cj , replacing the negation gate above
Ci with the constant αi. The number of these monotone circuits is

∑t+1
j=1 2j−1 = 2t+1− 1. To finish

the argument, consider any (x, y) ∈ mon-pairs(C). Let j be the first index such that Cj(x) 6= Cj(y),
and let α ∈ {0, 1}j−1 be the element αi := Ci(x) = Ci(y). Then (x, y) ∈ mon-pairs(Mα). Therefore,
mon-pairs(C) ⊆

⋃
{mon-pairs(Mα) : j ∈ [t+ 1], α ∈ {0, 1}j−1}.

Lemma F.3 ([30]). Let µ0, µ1 be two strictly positive probability distributions on {0, 1}n which
satisfy the “Holley condition”

µ0(x)µ1(y) ≤ µ0(x ∧ y)µ1(x ∨ y) for all x, y.(38)

Then there exists a probability distribution ν on {0, 1}n × {0, 1}n such that∑
y ν(x, y) = µ0(x) for all x,(39) ∑
x ν(x, y) = µ1(y) for all y,(40)

ν(x, y) = 0 unless x ≤ y.(41)

We call ν satisfying (39), (40), (41) a monotone coupling of µ0 and µ1. The elementary proof of
Lemma F.3 given by Holley [30] uses a Markov chain coupling argument. We remark that Lemma
F.3 also follows from an earlier (and much more general) monotone coupling theorem of Strassen
[60].

Lemma F.4. Let µ be a distribution on {0, 1}n which satisfies the FKG lattice condition (1), and
let f : {0, 1}n → {0, 1} be a monotone function such that Eµ(f) ∈ (0, 1). For b ∈ {0, 1}, define the
distribution µb on {0, 1}n by

(42) µb(x) :=


µ(x)/(1− Eµ(f)) if f(x) = b = 0,

µ(x)/Eµ(f) if f(x) = b = 1,

0 otherwise.

Then the pair µ0, µ1 satisfy the Holley condition (38).

Proof. We simply observe:

• If f(x) = 1, then µ0(x) = µ0(x ∧ y) = 0.

• If f(y) = 0, then µ1(y) = µ1(x ∨ y) = 0.
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• If f(x) = 0 and f(y) = 1, then

µ0(x)µ1(y) =
µ(x)µ(y)

Eµ(f)(1− Eµ(f))
≤ µ(x ∧ y)µ(x ∨ y)

Eµ(f)(1− Eµ(f))
= µ0(x ∧ y)µ1(x ∨ y).

Proof of Lemma 1.3. Let µ be a distribution on {0, 1}n which satisfies the FKG lattice condition
(1), and suppose f ∈ B+

n such that Eµ(f) = 1/2 (i.e. f is balanced with respect to µ). We prove
the contrapositive statement to Lemma 1.3. Assume C is a monotone circuit which computes f on
µ with advantage δ, that is,

P
x∼µ

[
C(x) = f(x)

]
= 1/2 + δ.

We will show that f is computed with advantage ≥ δ/(2t+1− 1) by a monotone circuit of the same
size and depth.

Define µ0 and µ1 by (42) as in Lemma F.4. By Lemma F.3 there exists a distribution ν,
supported on mon-pairs(f), satisfying (39), (40), (41). Note that, for every monotone function
h : {0, 1}n → {0, 1}, we have

ν
(
mon-pairs(h)

)
= E

(x,y)∼ν

[
h(y)− h(x)

]
(43)

= E
(x,y)∼ν

[
h(y)

]
− E

(x,y)∼ν

[
h(x)

]
= P

(x,y)∼ν

[
h(y) = 1

]
+ P

(x,y)∼ν

[
h(x) = 0

]
− 1

= 2
(
P
y∼µ

[
h(y) = 1 and f(y) = 1

]
+ P
x∼µ

[
h(x) = 0 and f(x) = 0

])
− 1

= 2 P
x∼µ

[
h(x) = f(x)

]
− 1.

It follows from Lemma F.2 that there exists a monotone circuit M, of the same size and depth
as C, such that

ν
(
mon-pairs(M)

)
≥ (2t+1 − 1)−1ν

(
mon-pairs(C)

)
.

We finish the proof using two applications of (43):

P
x∼µ

[
M(x) = f(x)

]
=

1

2

(
1 + ν

(
mon-pairs(M)

))
≥ 1

2

(
1 + (2t+1 − 1)−1ν

(
mon-pairs(C)

))
=

1

2

(
1 + (2t+1 − 1)−1

(
2 P
x∼µ

[
C(x) = f(x)

]
− 1
))

=
1

2
+

δ

2t+1 − 1
.
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