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Abstract

We first give a simple entropy argument showing that every m-clause DNF with expected
value λ ∈ [0, 1] under the uniform distribution has average sensitivity (a.k.a. total influence) at
most 2λ log(m/λ). Using a similar idea, we then show the following switching lemma for an
m-clause DNF (or CNF) formula F :

P[ DTdepth(F �Rp) ≥ t ] ≤ O(p log(m+ 1))t.(1)

for all p ∈ [0, 1] and t ∈ N where Rp is the p-random restriction and DTdepth(·) denotes decision-
tree depth. Our proof replaces the counting arguments in previous proofs of H̊astad’s O(pw)t

switching lemma for width-w DNFs [5, 9, 2] with an entropy argument that naturally applies
to unbounded-width DNFs with a bounded number of clauses. With respect to AC0 circuits,
our m-clause switching lemma has similar applications as H̊astad’s width-w switching lemma,

including a 2Ω(n1/(d−1)) lower bound for PARITY.
An additional result of this paper extends inequality (1) to AC0 circuits via a combination of

H̊astad’s switching and multi-switching lemmas [5, 6]. For boolean functions f : {0, 1}n → {0, 1}
computable by AC0 circuits of depth d and size s, we show that

(2) P[ DTdepth(f�Rp) ≥ t ] ≤ (p ·O(log s)d−1)t

for all p ∈ [0, 1] and t ∈ N. As a corollary, we obtain a tight bound on decision-tree size

(3) DTsize(f�Rp) ≤ O(2(1−ε)n) where ε = 1/O(log s)d−1.

Qualitatively, (2) strengthens a similar inequality of Tal [12] with degree in place of DTdepth,
and (3) strengthens a similar inequality of Impagliazzo, Matthews and Paturi [7] with subcube
partition number in place of DTsize.

∗Supported by NSERC and a Sloan Research Fellowship
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1 Introduction

H̊astad’s switching lemma [5] is a cornerstone of circuit complexity. Recall that a DNF formula
is a disjunction F = C1 ∨ · · · ∨ Cm where each clause C` is a conjunction of literals (variables xi
or their negations ¬xi). The width of F is the maximum number of literals in any clause C`. The
switching lemma gives an exponential tail bound on the decision-tree depth of the function F �Rp

(i.e., F under the p-random restriction Rp) when p ≤ 1/O(width(F )).

Theorem 1 (H̊astad’s Switching Lemma [5]). If F is a width-w DNF formula, then

P[ DTdepth(F �Rp) ≥ t ] = O(pw)t

for all p ∈ [0, 1] and t ∈ N.

The first result of this paper is a switching lemma for m-clause DNFs.

Theorem 2 (Switching Lemma for m-Clause DNFs). If F is an m-clause DNF formula, then

P[ DTdepth(F �Rp) ≥ t ] = O(p log(m+ 1))t

for all p ∈ [0, 1] and t ∈ N. (For t ≥ m1−Ω(1), we obtain a slightly stronger bound O(p log(mt +2))t.)

Theorems 1 and 2 are closely related, though incomparable.1 The two switching lemmas have
similar applications with respect to AC0 circuits, including a 2O(n1/(d−1)) lower bound for PARITY.
However, more than the result itself, Theorem 2 is interesting for its proof technique, which replaces
the counting arguments in previous proofs of Theorem 1 [5, 9, 2] with a novel entropy argument
(see the discussion in Remark 10). This new proof technique directly generalizes to a certain class
of p-pseudorandom restrictions where the previous counting arguments seem to break down (see
the discussion in §4.1).

The second result of this paper extends Theorem 2 to higher-depth circuits and slightly sharpens
the previous knowledge of AC0.

Theorem 3 (Criticality and Decision-Tree Size of AC0 Circuits). If f : {0, 1}n → {0, 1} is com-
putable by an AC0 circuit of depth d and size s, then setting r = 1/O(log s)d−1 we have

(i) P[ DTdepth(f�Rp) ≥ t ] ≤ (pr)t for all p ∈ [0, 1] and t ∈ N,

(ii) DTsize(f) = O(2(1− 1
r

)n).

Previously, Tal [12] had shown that (i) holds with degree in place of DTdepth, and Impagliazzo,
Matthews and Paturi [7] had shown that (ii) holds with subcube partition number in place of DTsize.
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Theorem 3 is ultimately proved by a (mostly straightforward) application of H̊astad’s switching
and multi-switching lemmas [5, 6]. Of independent interest, we introduce a notion of criticality of
a boolean function f (the threshold value of p below which DTdepth(f�Rp) has an exponential tail
bound) and observe a connection to decision-tree size.

1In the case of t = O(log(m + 1)), Theorem 2 can be derived from Theorem 1 by truncating clauses to width
log(m + 1); in this case, the m−O(1) approximation error will be less than exp(−t). However, this reduction fails for
t� log(m + 1); this is significant in the context of criticality (see §5). In the other direction, Theorem 1 reduces to
Theorem 2 in the (typical) special case where F is a disjunction or conjunction of 2O(w) many depth-w decision trees
(see Corollary 14).

2Note that degree ≤ DTdepth and subcube partition number ≤ DTsize. The main objective of [7] is a satisfiability
algorithm for AC0. The bound on subcube partition number obtained along the way might in fact arise from a decision

tree; however, this is difficult to ascertain. Their bound on subcube partition number is actually O(2(1− 1
r′ )n) where

r′ = 1/O(log(s/n))d−1; quantitatively, this is better than O(2(1− 1
r
)n) for almost-linear size s ≤ n1+o(1).
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Overview. In §2 we state some preliminary definitions. In §3, as a warm-up to Theorem 2, we
present a simple entropy proof that m-clause DNFs have average sensitivity at most 2m. We then
prove Theorem 2 in §4. In §5 we introduce the notion of criticality and describe its connection to
Theorem 3. (Proofs of the results of this section are included in appendices.) We conclude in §7
by mentioning some open questions raised by this work.

2 Preliminary Definitions

Let N := {0, 1, 2, . . . } and N+ := {1, 2, . . . }. For s ∈ N, let [s] := {1, . . . , s}. For a set S and
t ∈ N,

(
S
t

)
is the set of t-element subsets of S. ln(·) and log(·) are logarithm with base e and 2,

respectively. The entropy of a distribution µ = (µ1, . . . , µm) with µi ≥ 0 and
∑

i∈[m] µi = 1 is the
quantity H(µ) :=

∑
i∈[m] µi log(1/µi), which is always at most log(m).

Throughout this paper, we fix an arbitrary positive integer n and regard [n] as the set of variable
indices for elements of the hypercube {0, 1}n. A boolean function is a function f : {0, 1}n → {0, 1}.

A restriction is a partial assignment σ ∈ {0, 1}S where S ⊆ [n]. We write Dom(σ) := S and
Stars(σ) := [n] \ S. For restrictions σ ∈ {0, 1}S and τ ∈ {0, 1}T with disjoint supports S ∩ T = ∅,
we write σ ∪ τ for the combined restriction in {0, 1}S∪T . For p ∈ [0, 1], the p-random restriction,
denoted Rp, is a uniform random element {0, 1}III where III is a 1 − p-binomial random subset [n]
(which includes each i ∈ [n] independently with probability 1− p).

A decision tree is a rooted binary tree whose internal nodes (i.e., non-leaves) are labeled by
variables and whose leaves are labeled by output values (by default, either 0 or 1). The depth of
a decision tree is the maximum number of variables queried on a branch. The size of a decision
tree is the number of leaves. For a boolean function f , we denoted by DTdepth(f) and DTsize(f) the
minimum depth and size of a decision tree that computes f .

In this paper, circuits refers to single-output, alternating AC0 circuits; by default, we assume
that inputs to circuits are labeled by literals (variables xi or negated variables ¬xi). The depth of
a circuit is the maximum number of AND and OR gates on any input-to-output path. The size
of a circuit is the number of gates. Under this definition, depth-0 circuits have size 0 and depth-1
circuits have size 1.

A formula is a circuit with the structure of a tree. The special case of depth-2 formulas are
known as DNFs (OR ◦ AND formulas) and CNFs (AND ◦ OR formulas). Formally, a DNF formula
is an ordered sequence of clauses written in the form F = C1∨· · ·∨Cm where each C` is a conjunction
of literals. The width of a DNF is the maximum number of variables in a clause C`.

3 Warm-Up: Average Sensitivity

As a warm-up, we present a simple proof that every m-clause DNF F with expected value λ ∈ [0, 1]
has average sensitivity at most max{2 log(m + 1), 2λ log(m/λ)}. Up to an 1 + o(1) factor, these
bounds can be derived from known results on the average sensitivity of width-w DNFs (see Remark
5). However, our proof involves different argument based on the entropy of the “first witness
function” associated with F . This argument was the starting point for our alternative proof of the
switching lemma and provides a simple illustration of the underlying principle.

Recall the definitions of sensitivity and average sensitivity. For a function f with domain {0, 1}n
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and a point x ∈ {0, 1}n, let

S(f, x) := |{i ∈ [n] : f(x) 6= f(x⊕ i)}| and AS(f) := E
x∈{0,1}n

[ S(f, x) ].

The expected value of f is Ex∈{0,1}n [ f(x) ].

Theorem 4. Every m-clause DNF with expected value λ has average sensitivity at most min{2 log(m+
1), 2λ log(m/λ)}.

Proof. Let F = C1 ∨ · · · ∨Cm be an m-clause DNF. Let F̃ : {0, 1}n → [m+ 1] be the “first witness
function” mapping x ∈ {0, 1}n to the index of the first satisfied clause if any, and otherwise to
m+ 1. Let

S<(F̃ , x) := |{i ∈ [n] : F̃ (x) < F̃ (x⊕ i)}| and AS<(F̃ ) := E
x∈{0,1}n

[ S<(F̃ , x) ].

Observe that AS(F ) ≤ AS(F̃ ) = 2·AS<(F̃ ).
Let µ = (µ1, . . . , µm+1) be the probability distribution induced by F̃ under the uniform distri-

bution on {0, 1}n, that is, µ` := Px∈{0,1}n [ F̃ (x) = ` ]. For each ` ∈ [m], we have

2
E

y∈F̃−1(`)
[ S<(F̃ ,y) ] ≤ E

y∈F̃−1(`)
[ 2S<(F̃ ,y) ] by Jensen’s inequality

≤ 2|C`| since S<(F̃ , y) ≤ |C`| for all y ∈ F̃−1(`)

≤ 1

µ`
since µ` ≤ P

x∈{0,1}n
[ C`(x) = 1 ] = 2−|C`|.

Therefore, E
y∈F̃−1(`)

[ S<(F̃ , y) ] ≤ log(1/µ`).

Using the fact that µ has entropy at most log(m+ 1), we have

AS<(F̃ ) = E
x∈{0,1}n

[ S<(F̃ , x) ]

=
∑
`∈[m]

µ` E
y∈F̃−1(`)

[ S<(F̃ , y) ]

≤
∑
`∈[m]

µ` log(1/µ`) ≤
∑

`∈[m+1]

µ` log(1/µ`) = H(µ) ≤ log(m+ 1).

We conclude that AS(F ) ≤ 2 log(m+ 1).
If F has expected value λ, then letting µ′` := µ`/λ (and noting that λ =

∑
`∈[m] µ`), we have∑

`∈[m]

µ` log(1/µ`) = λ
∑
`∈[m]

µ′`

(
log(1/µ′`)− log(λ)

)
= λ

(
H(µ′)− log(λ)

)
≤ λ log(m/λ).

This gives the bound AS(F ) ≤ 2λ log(m/λ).

For k, t ∈ N, observe that the function PARITY(x1, . . . , xk)∧AND(xk+1, . . . , xk+t) is equivalent
to a DNF with m := 2k clauses and has expected value λ := (1/2)t+1 and average sensitivity
2λ(log(m/λ)− 1) (= 2λ(k + t)). This shows that Theorem 4 is essentially tight for λ ∈ [0, 1

2 ].
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Remark 5. The average sensitivity of a width-w DNF with expected value λ is known to be at most
the minimum of w (Amano [1]), 2λw (Boppana [4]) and 2(1 − λ)w/ log(1/(1 − λ)) (Traxler [13]).
Each of these bounds is tight for a certain values of λ. Extending all three bounds, Scheder and
Tan [11] proved an upper bound of β(λ)w for a certain piecewise linear function β : [0, 1]→ [0, 1];
this bound is asymptotically tight for all values of λ. By approximating any m-clause by a DNF of
width dlogme, they also observe that (1 + o(1))β(λ) log(m+ 1) is an upper bound on the average
sensitivity of m-clause DNFs.

Remark 6. A weak converse to Theorem 4: Keller and Lifshitz [8] recently showed that ev-
ery boolean function with expected value λ and average sensitivity at most 2λ log(m/λ) is ελ-

approximated by a DNF of size 2m
O(1/ε)

.

4 Switching Lemma for m-Clause DNFs

The next lemma is a generalization of the fact that the Shannon entropy of a probability distribution
µ is at most log |Supp(µ)|. Lemma 7 involves the entropy-like quantity

∑
i µi log(1/µi)

t where t ∈ N,
of which Shannon entropy is the case t = 1.

Lemma 7. For all s, t ∈ N+ and µ1, . . . , µs ∈ [0, 1],

s∑
i=1

µi

(
ln(1/µi)

t

)t
≤
(

ln(s)

t

)t
+ 2.

Proof. The function x(ln(1/x)/t)t has its maximum value e−t at x = e−t. If s < 2et, then

s∑
i=1

µi

(
ln(1/µi)

t

)t
≤ se−t < 2.

So we may assume that s ≥ 2et. Let

r := |{i ∈ [s] : µi ≥ e−t}| ≤ et,

η := E
i∈[s] :µi<e−t

[ µi ] ≤ 1/(s− r) ≤ 1/(s− et) ≤ e−t.

Since x(ln(1/x)/t)t is concave and increasing in the interval [0, e−t], by Jensen’s inequality

E
i∈[s] :µi<e−t

[
µi

(
ln(1/µi)

t

)t ]
≤ η

(
ln(1/η)

t

)t
≤ 1

s− r

(
ln(s− r)

t

)t
.

Therefore,

s∑
i=1

µi

(
ln(1/µi)

t

)t
≤

∑
i∈[s] :µi<e−t

µi

(
ln(1/µi)

t

)t
+

∑
i∈[s] :µi≥e−t

µi

(
ln(1/µi)

t

)t

≤ (s− r) E
i∈[s] :µi<e−t

[
µi

(
ln(1/µi)

t

)t ]
+ re−t

≤
(

ln(s)

t

)t
+ 1.
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For the rest of this section, we fix an m-clause DNF formula F = C1 ∨ · · · ∨ Cm. We also fix
arbitrary p ∈ [0, 1] and t ∈ N+. For ` ∈ [m], let V` ⊆ [n] be the set of variables on which C`
depends (i.e., C` is a conjunction of literals over V`). For uniform random xxx ∈ {0, 1}n, note that
P[ C`(xxx) = 1 ] = 2−|V`|. For `1, . . . , `k ∈ [m], note that P[ C`1(xxx) = · · · = C`k(xxx) = 1 ] is either 0
or 2−|V`1∪···∪V`m | according to whether or not C`1 ∧ · · · ∧ C`k is satisfiable.

As a matter of notation, for ` ∈ [m] and a restriction %, let

C`(%) :=


0 if C`�% ≡ 0,

1 if C`�% ≡ 1,

∗ otherwise (if C`�% is nonconstant).

Similar to all known proofs of H̊astad’s switching lemma for width-w DNFs, our proof of Theorem 2
analyzes the canonical decision tree for F �%, defined below.

Definition 8. The canonical decision tree of F �%, denoted CDT(F �%), is defined inductively as
follows:

• If C1(%) = · · · = Cm(%) = 0 or there exists ` ∈ [m] such that C1(%) = · · · = C`−1(%) = 0 and
C`(%) = 1, then output 0 or 1 accordingly.

• Otherwise, let ` ∈ [m] be unique index such that C1(%) = · · · = C`−1(%) = 0 and C`(%) = ∗.
Let I := V` \ Dom(%) be the set of variables on which C`�% depends. (Note that I is non-
empty.) Query all variables in I, receiving answers σ ∈ {0, 1}I . Proceed as the canonical
decision tree of F �%σ.

Definition 9. For k ∈ N+ and ~t = (t1, . . . , tk) ∈ Nk+, we say that a restriction % is ~t-bad with

respect to F if there exists a sequence ~̀= (`1, . . . , `k) where 1 ≤ `1 < · · · < `k ≤ m such that there
exists a branch in CDT(F �%) which first queries t1 variables from C`1 , then queries t2 variables
from C`2 , and so on up to querying tk variables from C`k .

In addition to the sequence ~̀= (`1, . . . , `k) of clause indices, such a ~t-bad branch in CDT(F �%)
is associated with data

~I = (I1, . . . , Ik), ~σ = (σ1, . . . , σk), ~τ = (τ1, . . . , τk)

where

• Ij = V`j \ (Dom(%) ∪ I`1 ∪ · · · ∪ I`j−1
) is the set of variables queried from clause C`j ,

• σj ∈ {0, 1}Ij is the restriction consisting of answers to queries Ij in the given ~t-bad branch,

• τj ∈ {0, 1}Ij is unique restriction such that C`j (%σ1 . . . σj−1τj) = 1 (i.e., τj is the subclause of
C`j over variables Ij).

Observe that data ~̀, ~I, ~σ, ~τ satisfy the following three properties:

(i) I1 ∪ · · · ∪ Ik ⊆ Stars(%),

(ii) Ij ∈
(
V`j \ (V`1 ∪ · · · ∪ V`j−1

)

tj

)
for all j ∈ [k],
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(iii) C1(%) = · · · = C`1−1(%) = 0 and C`1(%τ1) = 1

C`1+1(%σ1) = · · · = C`2−1(%σ1) = 0 and C`2(%σ1τ2) = 1 and
...

C`k−1+1(%σ1 . . . σk−1) = · · · = C`k−1(%σ1 . . . σk−1) = 0 and C`k(%σ1 . . . σk−1τk) = 1.

Remark 10 (Overview and comparison with H̊astad’s switching lemma). The next two
paragraphs provide a high-level overview of the proof of Theorem 2 and a comparison with previous
proofs of H̊astad’s switching lemma (Theorem 1). Nothing essential is lost in skipping directly to
Lemma 11.

In the setting where F is a width-w DNF with arbitrarily many clauses, Razborov’s proof of
H̊astad’s switching lemma [9] is based on an analysis of the function that maps each ~t-bad restriction
% to the extended restriction %τ1 . . . τk. This function % 7→ %τ1 . . . τk is shown to be O(w)t-to-1 (by
cleverly constructing a second function % 7→ Code(%) with the property that % 7→ (%τ1 . . . τk,Code(%))
is 1-to-1 and |Range(Code)| = O(w)t). Use the fact that P[ Rp = % ] = ( 2p

1−p)tP[ Rp = %τ1 . . . τk ],

it directly follows that P[ Rp is ~t-bad ] = O(pw)t. The bound P[ DTdepth(F �Rp) ≥ t ] = O(pw)t

of Theorem 1 then follows from a union bound over O(1)t choices of k ∈ N+ and ~t ∈ Nk+ with
t1 + · · ·+ tk = t.

In the present setting where F has m clauses of unbounded width, we also essentially consider
the map % 7→ %τ1 . . . τk over ~t-bad restriction %. However, in lieu of the previous counting argument
which bounds the size of preimages of this map, our proof of Theorem 2 involves an entropy argu-
ment. We consider a family of probability distributions µ, each supported on increasing sequences
~̀= (`1, . . . , `k) of clause indices in [m]. (Roughly speaking, each distribution µ in this family corre-
sponds to a Razborov-style decoding procedure applied to a uniform random element xxx ∈ {0, 1}n,
where µ(~̀) is the probability that the decoding procedure visits clauses C`1 , . . . , C`k .) After some

manipulations, we end up with a bound P[ %%% is ~t-bad ] ≤ O(p)t · maxµ
∑

~̀ µ(~̀)
(

1
t log(1/µ(~̀))

)
t.

Our final bound O(p log(m+ 1))t then follows from the entropy-like inequality Lemma 7, together
with the fact that |Supp(µ)| ≤

(
m
k

)
≤ mt for each distribution µ.

Lemma 11 (Main Lemma). For all k ∈ N+ and ~t = (t1, . . . , tk) ∈ Nk+ with t = t1 + · · ·+ tk,

P[ Rp is ~t-bad w.r.t. F ] ≤ (4ep log(e2m))t = O(p log(m+ 1))t.

Proof. For better readability, we write %%% instead of Rp for the p-random restriction. Taking a union

bound over possible choices of data ~̀, ~I, ~σ, ~τ and exploiting properties (i)–(iii) of Definition 9, we
have

P[ %%% is ~t-bad ] ≤
m−k+1∑
`1=1

∑
I1∈(

V`1
t1

)
σ1,τ1∈{0,1}I1

m−k+2∑
`2=`1+1

∑
I2∈(

V`2
\V`1
t2

)
σ2,τ2∈{0,1}I2

· · ·
m∑

`k=`k−1+1

∑
Ik∈(

V`k
\(V`1∪···∪V`k−1

)

tk
)

σk,τk∈{0,1}Ik

β~σ(~̀)

≤
∑
`1

max
σ1

∑
`2

max
σ2
· · ·
∑
`k

max
σk

α(~̀)β~σ(~̀)(4)
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where

α(~̀) := 2t
(
|V`1 |
t1

)(
|V`2 \ V`1 |

t2

)
· · ·
(
|V`k \ (V`1 ∪ · · · ∪ V`k−1

)|
tk

)
,

β~σ(~̀) := P[ I1 ∪ · · · ∪ Ik ⊆ Stars(%%%) and

C1(%%%) = · · · = C`1−1(%%%) = 0 and C`1(%%%τ1) = 1

C`1+1(%%%σ1) = · · · = C`2−1(%%%σ1) = 0 and C`2(%%%σ1τ2) = 1 and
...

C`k−1+1(%%%σ1 . . . σk−1) = · · · = C`k−1(%%%σ1 . . . σk−1) = 0 and C`k(%%%σ1 . . . σk−1τk) = 1 ].

Note that the pair (`j , σj) determines both Ij (= Dom(σj)) and τj (= the subclause of C`j over Ij)
for each j ∈ [k]. For this reason, we streamline notation by writing maxσj instead of maxIj ,σj ,τj
and β~σ(~̀) instead of β~I,~σ,~τ (~̀). Observe that α(~̀) is an upper bound on the number of choices of ~σ

for a given ~̀.
Let xxx ∈ {0, 1}n be a uniform random completion of %%% (i.e. a uniform random element of {0, 1}n

subject to xxxi = %%%i for all i ∈ Dom(%%%)). For a restriction π ∈ {0, 1}J , let xxxπ ∈ {0, 1}n denote xxx
overwritten by π (i.e. xxxπi = xxxi for all i ∈ [n] \ J and xxxπj = πj for all j ∈ J). Using the independence
of random variables Stars(%%%) and xxx, we have

β~σ(~̀) ≤ P[ I1 ∪ · · · ∪ Ik ⊆ Stars(%%%) and

C1(xxxτ1...τk) = · · · = C`1−1(xxxτ1...τk) = 0 and C`1(xxxτ1...τk) = 1 and

C`1+1(xxxσ1τ2...τk) = · · · = C`2−1(xxxσ1τ2...τk) = 0 and C`2(xxxσ1τ2...τk) = 1 and
...

C`k−1+1(xxxσ1...σk−1τk) = · · · = C`k−1(xxxσ1...σk−1τk) = 0 and C`k(xxxσ1...σk−1τk) = 1 ]

= (2p)tP[ xxx extends τ1 . . . τk (i.e., xxxτ1...τk = xxx) and

C1(xxxτ1...τk) = · · · = C`1−1(xxxτ1...τk) = 0 and C`1(xxxτ1...τk) = 1 and

C`1+1(xxxσ1τ2...τk) = · · · = C`2−1(xxxσ1τ2...τk) = 0 and C`2(xxxσ1τ2...τk) = 1 and
...

C`k−1+1(xxxσ1...σk−1τk) = · · · = C`k−1(xxxσ1...σk−1τk) = 0 and C`k(xxxσ1...σk−1τk) = 1 ]

= (2p)tµ~σ(~̀)

where

µ~σ(~̀) := P[ C1(xxx) = · · · = C`1−1(xxx) = 0 and C`1(xxx) = 1 and

C`1+1(xxxσ1) = · · · = C`2−1(xxxσ1) = 0 and C`2(xxxσ1) = 1 and
...

C`k−1+1(xxxσ1...σk−1) = · · · = C`k−1(xxxσ1...σk−1) = 0 and C`k(xxxσ1...σk−1) = 1 ].

(Here we have used the fact that C`1(xxx) = C`2(xxxσ1) = · · · = C`k(xxxσ1...σk−1) = 1 implies xxxτ1...τk = xxx.)

Combining (4) with the bound β~σ(~̀) ≤ (2p)tµ~σ(~̀), we have

P[ %%% is ~t-bad ] ≤ (2p)t
∑
`1

max
σ1

∑
`2

max
σ2
· · ·
∑
`k

max
σk

α(~̀)µ~σ(~̀).(5)
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The next step in the proof rewrites (5) by replacing each
∑

`j
maxσj with maxσ∗j

∑
`j

in the

following manner. For j ∈ [k], let Lj be the set of j-tuples (`1, . . . , `j) which extend to at least one

k-tuple ~̀= (`1, . . . , `k) satisfying 1 ≤ `1 < · · · < `k ≤ m and |V`i \ (V`1 ∪ · · · ∪ V`i−1
)| ≥ ti. Let I∗j

and σ∗j range over functions on Lj mapping each (`1, . . . , `j) ∈ Lj to a choice of

I∗j (`1, . . . , `j) ∈
(
V`j \ (V`1 ∪ · · · ∪ V`j−1

)

tj

)
and σ∗j (`1, . . . , `j) ∈ {0, 1}

I∗j (`1,...,`j).

(Note: Since σ∗j determines I∗j , we simplify notation by indexing over ~σ∗ = (σ∗1, . . . , σ
∗
k) alone.)

This allows us to rewrite (5) as

P[ %%% is ~t-bad ] ≤ (2p)t max
~σ∗

∑
~̀

α(~̀)µ~σ∗(~̀)(6)

where

µ~σ∗(~̀) := P[ C1(xxx) = · · · = C`1−1(xxx) = 0 and C`1(xxx) = 1 and

C`1+1(xxxσ
∗
1(`1)) = · · · = C`2−1(xxxσ

∗
1(`1)) = 0 and C`2(xxxσ

∗
1(`1)) = 1 and

C`2+1(xxxσ
∗
1(`1)σ∗2(`1,`2)) = · · · = C`3−1(xxxσ

∗
1(`1)σ∗2(`1,`2)) = 0 and C`3(xxxσ

∗
1(`1)σ∗2(`1,`2)) = 1 and

...

C`k−1+1(xxxσ
∗
1(`1)...σ∗k−1(`1,...,`k−1)) = · · · = C`k−1(xxxσ

∗
1(`1)...σ∗k−1(`1,...,`k−1)) = 0

and C`k(xxxσ
∗
1(`1)...σ∗k−1(`1,...,`k−1)) = 1 ].

For any fixed ~σ∗, observe that the events defining µ~σ∗(~̀) are mutually exclusive as ~̀ varies.
Therefore,

∑
~̀ µ~σ∗(~̀) ≤ 1. (Note: It is important here that σ∗j is a function of (`1, . . . , `j) ∈ Lj

alone and not the entire sequence ~̀= (`1, . . . , `k).)
We next turn to bounding α(~̀). First observe that

µ~σ∗(~̀) ≤ P[ C`1(xxx) = C`2(xxxσ
∗
1(`1)) = · · · = C`k(xxxσ

∗
1(`1)...σ∗k−1(`1,...,`k−1)) = 1 ]

=

{
2−|V`1∪···∪V`k | if C`1 ∧ C`2�σ∗1(`1) ∧ · · · ∧ C`k�σ∗1(`1) . . . σ∗k−1(`1, . . . , `k−1) is satisfiable,

0 otherwise.

Therefore,

|V`1 ∪ · · · ∪ V`k | ≤ log(1/µ~σ∗(~̀)).

It follows that

α(~̀) = 2t
(
|V`1 |
t1

)(
|V`2 \ V`1 |

t2

)
· · ·
(
|V`k \ (V`1 ∪ · · · ∪ V`k−1

)|
tk

)
≤ 2t

(
|V`1 |+ |V`2 \ V`1 |+ |V`k \ (V`1 ∪ · · · ∪ V`k−1

)|
t1 + t2 + · · ·+ tk

)
≤
(

2e|V`1 ∪ · · · ∪ V`k |
t

)t
≤
(

2e log(1/µ~σ∗(~̀))

t

)t
.
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Combining this bound on α(~̀) with (6), we have

P[ %%% is ~t-bad ] ≤
(

4ep

ln 2

)t
max
~σ∗

∑
~̀

µ~σ∗(~̀)

(
ln(1/µ~σ∗(~̀))

t

)t
.(7)

Since
∑

~̀ µ~σ∗(~̀) ≤ 1 and µ~σ∗(·) has support size ≤
(
m
k

)
(i.e. the number of sequences 1 ≤ `1 <

· · · < `k ≤ m), using Lemma 7 and the fact that
(
m
k

)
≤ mt (since k ≤ t), we have∑

~̀

µ~σ∗(~̀)

(
ln(1/µ~σ∗(~̀))

t

)t
≤
(

ln(
(
m
k

)
)

t
+ 2

)t
≤ (ln(e2m))t.

Combining the above inequality with (7), we get the desired bound P[ %%% is ~t-bad ] ≤ (4ep log(e2m))t.

Remark 12. We obtain a slightly better bound in Lemma 11 (and consequently in Theorem 2)
by observing

• if t ≤ m/2, then
ln(
(
m
k

)
)

t
≤

ln(
(
m
t

)
)

t
≤ ln((em/t)t)

t
= ln(em/t),

• if t > m/2, then
ln(
(
m
k

)
)

t
≤ ln(2m)

t
≤ m ln(2)

t
≤ ln(4).

This leads to the bound

P[ Rp is ~t-bad ] ≤ (4ep log(e2 max{ emt , 4}))
t = O(p log(mt + 2))t.

Note that this beats O(p log(m+ 1))t for t ≥ m1−Ω(1). In particular, we get O(p)t for t ≥ m.

Lemma 11 has the following corollary.

Corollary 13. P[ CDT(F �Rp) has depth t ] ≤ (8ep log(e2m))t.

Proof. For any restriction % such that CDT(F �%) has depth t, there exists k ∈ N+ and ~t ∈ Nk+ with
t1 + · · ·+ tk = t such that % is ~t-bad. The number of such pairs (k,~t) for a given t is exactly 2t−1.
Corollary 13 thus follows from Lemma 11 by a union bound.

Theorem 2 (our switching lemma for m-clause DNFs) follows easily from Corollary 11 by an
additional union bound.

Proof of Theorem 2. We will show

P[ DTdepth(F �Rp) ≥ t ] ≤ (16ep log(e2m)) = O(p log(m+ 1))t.

We assume that p ≤ (16e log(e2m))−1 and t ≥ 1 (since the above inequality is trivial otherwise).
By a union bound and Corollary 13, we have

P[ DTdepth(F �Rp) ≥ t ]

≤ P[ CDT(F �Rp) has depth ≥ t ]

≤
∞∑
i=0

P[ CDT(F �Rp) has depth t+ i ]

≤
∞∑
i=0

(8ep log(e2m))t+i ≤ (8ep log(e2m))t
∞∑
i=0

2−i ≤ (16ep log(e2m))t.
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4.1 Applications and Extensions of Theorem 2

We begin with the observation that Theorem 2 applies equally to m-term CNFs (by duality of DNFs
and CNFs and invariance of DT under negations). As an aside, let us point out the proof of Theorem
2 implies the bound P[ DTdepth(F̃ �Rp) ≥ t ] ≤ O(p log(m + 1))t for the “first witness function”

F̃ : {0, 1}n → [m + 1] (similarly, proofs of Theorem 1 imply P[ DTdepth(F̃ �Rp) ≥ t ] ≤ O(pw)t for
width-w DNFs F ).

Since every depth-w decision tree is equivalent to both a 2w-clause DNF and a 2w-term CNF,
Theorem 2 implies the following special case of H̊astad’s switching lemma (Theorem 1):

Corollary 14. If f is a disjunction or conjunction of 2O(w) many depth-w decision trees (and hence
equivalent to a width-w DNF or CNF with 2O(w) clauses), then P[ DTdepth(f�Rp) ≥ t ] = O(pw)t.

In all applications of H̊astad’s switching lemma in circuit complexity that the author is aware of,
Corollary 14 may be used instead. That is, the width-w DNFs and CNFs that arise in applications of
H̊astad’s switching lemma are disjunctions and conjunctions of 2O(w) many depth-w decision trees.
For example, in the classic 2Ω(n1/(d−1)) lower bound on the depth-d AC0 circuit size of PARITY,
H̊astad’s switching lemma is applied (at each gate of the circuit) to disjunctions and conjunctions
of at most s many decision trees of depth O(log s). Corollary 14 thus provides an alternative proof

of an 2Ω(n1/(d−1)) lower bound for PARITY. (This equivalence of Theorems 1 and 2 for applications
in circuit complexity justifies our use of the definite article in our title “an entropy proof of the
switching lemma”.)

One potential advantage of our switching lemma for m-clause DNFs is that its proof extends
directly to a slightly broader class of random restrictions. We say that a random restriction %%% is
p-pseudorandom if it satisfies

• P[ I ⊆ Stars(%%%) ] ≤ p|I| for all I ⊆ [n],

• P[ %%%i = 0 | i ∈ Dom(%%%) ] = P[ %%%i = 1 | i ∈ Dom(%%%) ] = 1
2 independently for all i ∈ [n] (so that

a uniform random completion xxx of %%% is uniformly distributed in {0, 1}n).

Corollary 15. If F is an m-term DNF and %%% is a p-pseudorandom restriction, then

P[ DTdepth(F �%%%) ≥ t ] = O(p log(m+ 1))t.

The proof of Corollary 15 directly generalizes Theorem 2. (The key point is that the bound
β~σ(~̀) ≤ (2p)tµ~σ(~̀) in the proof of Lemma 11 applies to any p-pseudorandom %%%.) In contrast,
previous proofs of H̊astad’s switching lemma do not appear to readily extend to p-pseudorandom
restrictions. This suggests that the entropy technique might be useful in obtaining new switching
lemmas for other more general classes of random restrictions. The seemingly greater flexibility of
the entropy technique might also be useful in the design of pseudorandom generators.

5 Criticality and Decision-Tree Size

For every boolean function f , the random variable DTdepth(f�Rp) obeys an exponential tail bound
for all sufficiently small p > 0. So far as I know, there is no name in the literature for the threshold
value of p where an exponential tail bound takes hold. Let me offer:

Definition 16. A boolean function f is p-critical if P[ DTdepth(f�Rp) ≥ t ] ≤ exp(−t) for all t ∈ N.
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Note that if f depends on n variables, then it is 1/en-critical, as P[ DTdepth(f�R1/en) ≥ t ] ≤
P[ Bin(n, 1/en) ≥ t ] ≤ exp(−t). Thus, every boolean function of finitely many variables is p-
critical for some p > 0. The next two propositions give key properties of p-critical functions.
Psroposition 17 in particular, though simple and conceivably folklore, makes an useful connection
between criticality and decision-tree size (and, by extension, satisfiable algorithms).

Proposition 17. Every p-critical boolean function of n variables has decision-tree size ≤ 20·2(1−p)n.

Proof. Suppose f : {0, 1}n → {0, 1} is p-critical. Let SSS be a 1 − p-binomial random subset of
[n] (with density function P[ SSS = S ] = (1 − p)|S|pn−|S|). Let %%% ∈ {0, 1}SSS be a uniform random
restriction with domain SSS. Note that %%%, on its own, is a p-random restriction.

Summarizing the proof: we obtain a decision tree for f by sampling SSS, querying all variables in
SSS, and then appending the optimal decision tree for f�% for each % ∈ {0, 1}SSS . We will show that
the resulting decision tree has size ≤ 20 · 2(1−p)n with nonzero probability. By the magic of the
probabilistic method, we conclude that DTsize(f) ≤ 20 · 2(1−p)n.

First, we observe that, for any fixed S,

DTsize(f) ≤
∑

%∈{0,1}S
2DTdepth(f�%) = 2|S| E

%%%∈{0,1}S
[ 2DTdepth(f�%%%) ].(8)

Since every median of Bin(n, p) is at least bpnc, we have

P[ |SSS| > d(1− p)ne ] = P[ Bin(n, 1− p) > n− bpnc ] = P[ Bin(n, p) < bpnc ] ≤ 1

2
.(9)

We now have

P
SSS

[ DTsize(f) > 20 · 2(1−p)n ] ≤ P
SSS

[
2|SSS| E

%%%∈{0,1}SSS
[ 2DTdepth(f�%%%) ] > 20 · 2(1−p)n

]
(by (8))

≤ P
SSS

[ (
2|SSS| > 2(1−p)n+1

)
∨
(

E
%%%∈{0,1}SSS

[ 2DTdepth(f�%%%) ] > 10
) ]

≤ P
SSS

[ |SSS| > d(1− p)ne ] + P
SSS

[
E

%%%∈{0,1}SSS
[ 2DTdepth(f�%%%) ] > 10

]
≤ 1

2
+

1

10
E[ 2DTdepth(f�Rp) ] (by (9) and Markov’s inequality)

=
1

2
+

1

10

∞∑
t=0

2t · P[ DTdepth(f�Rp) = t ]︸ ︷︷ ︸
≤ exp(−t) by p-criticality of f

=
1

2
+

1

10
· 1

1− (2/e)

< 1.

It follows that DTsize(f) ≤ 20 · 2(1−p)n.

Proposition 18. If f is p-critical, then P[ DTdepth(f�Rq) ≥ t ] = O(q/p)t for all q ∈ [0, 1] and
t ∈ N.
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Proof. We assume that q ∈ [0, p] and t ≥ 1 (since the bound is trivial otherwise). Generate Rq as
the composition of a random restriction %%%1 ∼ Rp (over the variables of f) and %%%2 ∼ Rq/p (over the
variables of f�%%%1). We have

P[ DTdepth(f�Rq) ≥ t ]

= E
%%%1

[
P
%%%2

[ DTdepth((f�%%%1)�%%%2) ≥ t ]
]

=

∞∑
i=0

P
%%%1

[ DTdepth(f�%%%1) = t+ i ]︸ ︷︷ ︸
≤ exp(−t−i) by p-criticality of f

·E
%%%1

[
P
%%%2

[ DTdepth((f�%%%1)�%%%2) ≥ t ]︸ ︷︷ ︸
≤ (2eq(t+i)/pt)t by Cor. 21

∣∣∣ DTdepth(f�%%%1) = t+ i
]

≤ (4eq/p)t ·
∞∑
i=0

exp(−t− i) ·
(

(t+ i)/2t︸ ︷︷ ︸
≤ exp(i/2t)

)t
≤ (4q/p)t ·

∞∑
i=0

exp(−i/2)

= O(q/p)t.

In light of Proposition 18, Theorems 1 and 2 are equivalent to the statements that every width-w
DNF is 1/O(w)-critical and every m-clause DNF is 1/O(log(m+1))-critical. The other main result
of this paper, Theorem 3, is a combination of Propositions 17 and 18 with the following

Theorem 19 (Criticality of AC0 Circuits). For all d ≥ 2, every boolean function computed by an
AC0 circuit of depth d and size s is p-critical for p = 1/O(log s)d−1.

Note that Theorem 2 (i.e., 1/O(log(m+ 1))-criticality of m-clause DNFs) is precisely the case
d = 2 of Theorem 19. However, our proof of Theorem 2 (in the next section) does not involve the
entropy argument of §4. Rather, we use a combination of H̊astad’s switching lemma and H̊astad’s
recent “multi-switching lemma” [6], which was originally devised to obtain tight correlation bounds
between AC0 circuits and PARITY.3 It would be interesting if one could prove Theorem 19 by an
extension of the entropy argument in §4, or via a bound on the criticality of conjunctions of p-critical
functions (see the “criticality question” in §7).

6 Proof of Theorem 19

We begin with a review (and mild reformulation) of H̊astad’s switching and multi-switching lemmas,
as well as the even more basic shrinkage lemma for decision trees.

6.1 Decision-Tree Shrinkage

For a decision tree T and a restriction %, let T �% be the syntactically restricted decision tree (defined
in the obvious way). We will require both of the following “syntactic” and “semantic” versions of
the decision-tree shrinkage lemma.

3Roughly speaking, for width-w DNFs with 2O(w) clauses, the switching lemma is effective for t ≤ w, while the
multi-switching lemma is effective for t ≥ w. Our use of the switching and multi-switching lemmas in Appendix 6 is
very similar to their use by Tal [12] in bounding the Fourier spectrum of AC0 circuits.
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Lemma 20 (Syntactic Decision-Tree Shrinkage Lemma). If T is a depth-k decision tree, then

P[ T �Rp has depth ≥ ` ] ≤ (2epk/`)`.

Proof. For any decision tree T , let random variable QQQ(T ) ∈ N be the number of variables queried
by T on a uniform random input. This random variable has density function

P[ QQQ(T ) = ` ] = 2−` ·#{leaves of T at distance ` from the root}.

Suppose T has depth k. Without loss of generality, assume that no variable is queried more
than once on any branch of T . Observe that random variables QQQ(T �Rp) and Bin(QQQ(T ), p) are
identically distributed.

The lemma is proved by the following calculation:

P[ T �Rp has depth ≥ ` ] = P
Rp

[ P
QQQ(T �Rp)

[ QQQ(T �Rp) ≥ ` ] ≥ 2−` ]

≤ 2`P[ QQQ(T �Rp) ≥ ` ] (Markov’s inequality)

= 2`P[ Bin(QQQ(T ), p) ≥ ` ]

≤ 2`P[ Bin(k, p) ≥ ` ] ≤ (2p)`
(
k
`

)
≤ (2epk/`)`.

Corollary 21 (Semantic Decision-Tree Shrinkage Lemma). If f is a boolean function with decision-
tree depth k, then

P[ DTdepth(f�Rp) ≥ ` ] ≤ (2epk/`)`.

6.2 H̊astad’s Switching and Multi-Switching Lemmas

For parameters d, k, s, t ∈ N, we speak of following classes (with respect to a common fixed set of
variables, w.l.o.g. [n]):

• DT(k) is the class of depth-k decision trees.

• CKT(d, s) is the class of single-output AC0 circuits of depth d and size s. If s = s1 + · · ·+ sd
where s1, . . . , sd−1 ≥ 1 and sd = 1, let CKT(d; s1, . . . , sd) denote the subclass of circuits in
CKT(d, s) which have si depth-i subcircuits for all i ∈ {1, . . . , d}.

• CKT(d, s) ◦ DT(k) is the class of circuits in CKT(d, s) whose inputs are labeled by decision
trees in DT(t).

• DT(t) ◦ CKT(d, s) ◦ DT(k) is the class of depth-t decision trees, whose leaves are labeled by
elements of CKT(d, s) ◦ DT(k).

(Recall that circuit size is the number of gates; depth-1 circuits have size 1; depth-0 circuits have
size 0.) Note the following edge cases:

CKT(0, 0) = DT(1) = {literals and constants},
CKT(d, s) = CKT(d, s) ◦ DT(1) = DT(0) ◦ CKT(d, s) ◦ DT(1).

We say that a boolean function f belongs to one of these classes if f is computed by an object in
the class.

We next state H̊astad’s switching lemma [5] and multi-switching lemma [6] in the form that
they are used in application to AC0 circuits.
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Lemma 22 (H̊astad’s Switching Lemma [5] + Union Bound). If d ≥ 1 and f ∈ CKT(d; s1, . . . , sd)◦
DT(k), then

P[ f�Rp /∈ CKT(d− 1; s2, . . . , sd) ◦ DT(t− 1) ] ≤ s1(5pk)t.

Proof. Consider the CKT(d; s1, . . . , sd) ◦ DT(k) circuit which computes f . Each bottom-level gate
is equivalent to a width-k DNF or CNF formula. The switching lemma (Theorem 1) implies that
under the random restriction Rp, each of these DNFs and CNFs lies in the class DT(t − 1) with
probability ≥ 1 − (5pk)t. The lemma follows by taking a union bound over the s1 bottom-level
gates.

Lemma 23 (H̊astad’s Multi-Switching Lemma [6]). If d ≥ 1 and f ∈ CKT(d; s1, . . . , sd) ◦ DT(k)
and ` ≥ log s1 + 1, then

P[ f�Rp /∈ DT(t− 1) ◦ CKT(d− 1; s2, . . . , sd) ◦ DT(`) ] ≤ s1(50pk)t.

This natural reformulation of the multi-switching lemma is due to Prahladh Harsha and Srikanth
Srinivasan (personal communication). H̊astad’s originally devised this result in [6] in order to obtain
nearly optimal correlation bounds between AC0 circuits and PARITY. Impagliazzo, Matthews and
Paturi [7] independently obtained a similar multi-switching lemma, which also gives nearly optimal
correlation bounds between AC0 circuits and PARITY (and which are in fact even better for
almost-linear size s ≤ n1+o(1)).

6.3 Combined Multi-Switching Lemma

The main ingredient for our proof of Theorem 19 is the following lemma, which combines H̊astad’s
multi-switching lemma with the syntactic decision-tree shrinkage lemma.

Lemma 24 (Combined Multi-Switching Lemma). If d, t ≥ 1 and f ∈ DT(t−1)◦CKT(d; s1, . . . , sd)◦
DT(k) and ` ≥ log s1 + 1, then

P[ f�Rp /∈ DT(t− 1) ◦ CKT(d− 1; s2, . . . , sd) ◦ DT(`) ] ≤ s1(200pk)t/2.

Observe that Lemma 24 involves a weaker hypothesis than Lemma 23 (f is assumed to lie in a
large class). It bounds the probability of the same event, but gives a weaker bound (s1(200pk)t/2

instead of s1(50pk)t). The advantage of Lemma 24 is that it is suited to induction on d.

Proof. Suppose f is computed by a depth t − 1 decision tree T , each of whose leaves λ is labeled
by a circuit Cλ ∈ CKT(d, s,m) ◦ DT(k). Consider events

A def⇐⇒ T �Rp has depth ≤ dt/2e − 1,

B def⇐⇒ Cλ�Rp ∈ DT(dt/2e − 1) ◦ CKT(d− 1; s2, . . . , sd) ◦ DT(`) for every leaf λ of T .

Note the implication

A ∧ B =⇒ f�Rp ∈ DT(t− 1) ◦ CKT(d− 1; s2, . . . , sd) ◦ DT(log s+ 1).
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By Lemma 20 (the syntactic decision-tree shrinkage lemma), we have

P[ ¬A ] = P[ T �Rp has depth ≥ dt/2e ]

≤ (2ep(t− 1)/dt/2e)dt/2e

≤ (4ep)t/2.

By Lemma 23 (the multi-switching lemma) and a union bound, we have

P[ ¬B ] ≤
∑
λ

P[ Cλ�Rp /∈ DT(dt/2e − 1) ◦ CKT(d− 1; s2, . . . , sd) ◦ DT(`) ]

≤
∑
λ

s1(50pk)dt/2e

≤ 2t−1s1(50pk)dt/2e.

Putting things together, we have

P[ f�Rp /∈ DT(t− 1) ◦ CKT(d− 1; s2, . . . , sd) ◦ DT(log s+ 1) ] ≤ P[ ¬A ] + P[ ¬B ]

≤ (4ep)t/2 + 2t−1s1(50pk)t/2

≤ 1
2(16ep)t/2 + 1

2s1(200pk)t/2

≤ s1(200pk)t/2.

We are finally ready to prove Theorem 19. The proof involves a similar use of the switching and
multi-switching lemmas as in H̊astad [5, 6] and Tal [12]. The only difference is our use of Lemma
24 (the combined multi-switching lemma) to deal with the outer decision tree at each stage of the
restriction.

Proof of Theorem 19. Let C be a circuit of depth d and size s (where d, s ≥ 2 without loss
of generality), which computes a boolean function f . We wish to show that f is p-critical for
p = 1/O(log s)d−1, that is,

P[ DTdepth(f�Rp) ≥ t ] ≤ exp(−t)

for all t ∈ N.
The case t = 0 is trivial. For the case 1 ≤ t ≤ log s, we will use Lemma 22 (the switching lemma

+ union bound) in the completely standard way. For the case t ≥ log s, we will use Lemma 24 (our
“combined multi-switching lemma”).

First, we fix some parameters. For i ∈ {1, . . . , d}, let si be the number of depth-i subcircuits of
C. Note that s = s1 + · · ·+ sd and sd = 1. Let

` := dlog se+ 1, p :=
1

12800d+1`d−1
, and pi =

1

12800i`d−1
for i ∈ {1, . . . , d}.

Note that p = O(log s)d (as required) and p1 = p/pd = 1/12800 and pi/pi−1 = 1/12800` for all
i ∈ {2, . . . , d}.
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Small t case: 1 ≤ t ≤ log s.

For i ∈ {1, . . . , d−1}, let Ai denote the event that DTdepth(g�Rpi) ≤ ` for all functions g computed
by depth-i subcircuits of C. By Lemma 22, we have

P[ ¬A1 ] ≤ s1(5p1)` = s1(1/2560)`.

Again by Lemma 22, we have

P[ ¬A2 | A1 ] ≤ s2(5(p2/p1)`)` = s2(1/2560)`.

Here we view Rp2 as the composition of Rp1 (over the variables of f) and Rp2/p1 (over the free
variables of Rp1).

Similarly, for all i ∈ {2, . . . , d− 1}, we have

P[ ¬Ai | A1 ∧ · · · ∧ Ai−1 ] ≤ si(1/2560)`.

Therefore,

P[ ¬Ad−1 ] ≤
∑d−1

i=1 P[ ¬Ai | A1 ∧ · · · ∧ Ai−1 ]

≤ (s1 + · · ·+ sd−1)(1/2560)`

= (s− 1)(1/2560)`

≤ (1/1280)` (since ` > log s)

≤ (1/1280)t (since ` > t).

By a final application of Lemma 22, we have

P[ DTdepth(f�Rp) ≥ t | Ad−1 ] ≤ (5(p/pd−1)`)t

= (1/32768000)t.

Combining the above inequalities, we get the desired bound

P[ DTdepth(f�Rp) ≥ t ] ≤ P[ ¬Ad−1 ] + P[ DTdepth(f�Rp) ≥ t | Ad−1 ]

≤ (1/1280)t + (1/32768000)t

< exp(−t).

(The final inequality is easily shown to hold for all t ≥ 1.)

Large t case: t ≥ log s.

Initially, we have f ∈ CKT(d; s1, . . . , sd) ◦ DT(1).
For i ∈ {1, . . . , d}, let Bi be the event

Bi
def⇐⇒ f�Rpi ∈ DT(t− 1) ◦ CKT(d− i; si+1, . . . , sd) ◦ DT(`).

In particular, note that

Bd ⇐⇒ f�Rpd ∈ DT(t+ `− 1)

17



since DT(t− 1) ◦ CKT(0, 0) ◦ DT(`) = DT(t+ `− 1).
By Lemma 23 (the multi-switching lemma), we have

P[ ¬B1 ] ≤ s1(50p1)t = s1(1/256)t.

Next, for all i = 2, . . . , d, by Lemma 24 (the combined multi-switching lemma) we have

P[ ¬Bi | B1 ∧ · · · ∧ Bi−1 ] ≤ si(200(pi/pi−1)`)t/2 = si(1/64)t/2 = si(1/8)t.

Therefore,

P[ DTdepth(f�Rpd) ≥ t+ ` ] = P[ ¬Bd ]

≤
∑d

i=1P[ ¬Bi | B1 ∧ · · · ∧ Bi−1 ]

≤ s1(1/256)t + (s2 + · · ·+ sd)(1/8)t

≤ s(1/8)t

≤ s(1/8)
1
3

log s+ 2
3
t (since t ≥ log s)

= (1/4)t.

As a last step, we apply Lemma 21 (the semantic decision-tree shrinkage lemma) to get

P[ DTdepth(f�Rp) ≥ t | DTdepth(f�Rpd) ≤ t+ `− 1 ] ≤ (2e(p/pd+1)t/(t+ `− 1))t

≤ (e/3200)t

using p/pd+1 = 1/12800 and t+ `− 1 = t+ dlog se ≥ 2t.
Putting these inequalities together, we get the desired bound

P[ DTdepth(f�Rp) ≥ t ] ≤ P[ f�Rpd ≥ t+ ` ] + P[ DTdepth(f�Rp) ≥ t | f�Rpd ≤ t+ `− 1 ]

≤ (1/4)t + (e/3200)t

≤ exp(−t).

7 Open Questions

Prove that AC0 formulas F of depth d and size s are 1/O(1
d log s)d−1-critical. A result of

the author in [10] implies that F satisfies

(10) P[ DTdepth(F �Rp) ≥ t ] ≤ exp(−t) where p = 1/O(1
d log s)d−1

for all t ≤ O(log s). To show that F is p-critical, it suffices to extend (10) to t ≥ Ω(log s). This
would be interesting, at it implies a better bound on decision-tree size and, as a corollary (assuming
a randomized procedure for obtaining the decision tree), a faster randomized SAT algorithm for
AC0 formulas vis-à-vis AC0 circuits.

A more conventional entropy argument. Our proof of Theorem 2 relies on Lemma 7 involving
the entropy-like quantity

∑
i µi log(1/µi)

t. Is there an alternative (information-theoretic) proof of
Theorem 2 that uses the more conventional Shannon entropy?

18



Criticality question. Suppose boolean functions f1, . . . , fm are hereditarily p-critical, meaning
that every subfunction fi�% is p-critical (for all i ∈ [m] and restriction %). Is the function f1∧· · ·∧fm
necessarily p/O(log(m+ 1))-critical? If so, note that this directly implies Theorem 19.
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