
Formulas vs. Circuits for Small Distance Connectivity∗

Benjamin Rossman†

University of Toronto

June 18, 2018

Abstract

We prove an nΩ(log k) lower bound on the AC0 formula size of Distance k(n) Connectivity
for all k(n) ≤ log log n and formulas up to depth log n/(log log n)O(1). This lower bound strongly
separates the power of bounded-depth formulas vs. circuits, since Distance k(n) Connectiv-
ity is solvable by polynomial-size AC0 circuits of depth O(log k). For all d(n) ≤ log log log n,
it follows that polynomial-size depth-d circuits—which are a semantic subclass of nO(d)-size
depth-d formulas—are not a semantic subclass of no(d)-size formulas of much higher depth
log n/(log log n)O(1).

Our lower bound technique probabilistically associates each gate in an AC0 formula with an
object called a pathset. We show that with high probability these random pathsets satisfy a
family of density constraints called smallness, a property akin to low average sensitivity. We
then study a complexity measure on small pathsets, which lower bounds the AC0 formula size
of Distance k(n) Connectivity. The heart of our technique is an nΩ(log k) lower bound on
this pathset complexity measure.

∗Journal version of STOC 2014 paper
†Supported by NSERC and the JST ERATO Kawarabayashi Large Graph Project

1

Contents

1 Introduction 3

2 Our Results 6

3 Proof Overview 6

4 Preliminaries 8

5 Pathset Complexity 11

6 From Formulas to Pathset Complexity 16
6.1 Inputs of F . 17
6.2 Gates of F . 17
6.3 Output of F . 18
6.4 Reduction to Pathset Complexity . 18

7 Small Pathsets from Random Restrictions 20
7.1 Proof of Lemma 7.3 . 23

8 Union Trees 25

9 From χ to χ̄ 27

10 Projection and Restriction 29
10.1 χ̄ Decreases Under Projection . 29
10.2 χ̄ Decreases Under Restriction . 30
10.3 The Operation A	B . 31

11 Lower Bound for χ̄ 32
11.1 Definition of ΦA . 32
11.2 Showing χ̄A(A) ≥ ñΦAδ(A) . 33
11.3 Showing ΦA ≥ 1

4.41 log(`A) + ∆A . 35

12 Conclusion 40

A Key Examples 40

B Lower Bound for χ̄: Special Cases 42

C Rectangular Pathsets 45

2

1 Introduction

Understanding the relative power of Boolean formulas vs. circuits is a central challenge in complexity
theory. Circuits are a powerful model of computation, capable of efficiently simulating Turing
machines. On the other hand, formulas (that is, tree-like circuits with fan-out 1) are thought to be
a much weaker model of computation. Many natural problems solvable by small circuits, such as
st-connectivity, are believed to require large formulas. However, no super-polynomial gap between
the formula complexity and circuit complexity of any Boolean function has ever been shown. The
existence of such a gap is a major open question.

Question 1.1. Are polynomial-size Boolean circuits strictly more powerful than polynomial-size
Boolean formulas?

Here we consider non-uniform sequences of circuits and formulas.1 In terms of complexity
classes, this is the question whether NC1 is a proper subclass of P/poly. (Recall that NC1 is
equivalent to the class of languages computable by polynomial-size Boolean formulas [25].) It is
known that Question 1.1 cannot be resolved by simple counting arguments, as Savický and Woods
[22] have shown that, for every constant c > 1, almost all Boolean functions with formula complexity
≤ nc have circuit complexity ≥ nc/c.

The uniform version of Question 1.1 (i.e. whether uniform-NC1 is a proper subclass of P) is also
wide open.2 To answer this question, of course we first need a super-polynomial lower bound on
the formula size of any explicit Boolean function (say, in the class NP). However, despite the fact
that almost all Boolean functions have formula complexity Ω(2n/ log n) [17], the best lower bound
for an explicit function is only Ω(n3−o(1)) [8].

While Question 1.1 remains intriguingly open, in the meantime we can hope to gain insight
by studying the question of formulas vs. circuits in restricted settings where powerful lower bound
techniques are available. In particular, there are natural analogues of Question 1.1 in both the
monotone setting and the bounded-depth setting.

Monotone Formulas vs. Circuits. The separation of monotone formulas vs. circuits was shown
in a classic paper of Karchmer and Wigderson [11] via a lower bound for directed st-connectivity
(stconn).

Theorem 1.2. Monotone formulas solving stconn require size nΩ(logn).

As it was already known that stconn has polynomial-size monotone circuits, Theorem 1.2
implies the separation of monotone classes mNC1 and mP (in fact, it shows mNC1 6= mAC1). In a
notable recent development, Potechin [14] showed that monotone switching networks for stconn
require size nΩ(logn). Potechin’s result strengthens Theorem 1.2 and implies the sharper separation
mL 6= mNL.

1Whenever we speak of a circuits or formulas in this paper, this is understood to mean a sequence (Cn)∞n=1 of
circuits, one for each input size n. In the uniform setting, there is an underlying algorithm which, given 1n as input,
outputs a description of the circuit Cn. In the non-uniform setting, Cn are arbitrary. All bounds mentioned in this
paper may be interpreted in the stronger sense: uniform upper bounds and non-uniform lower bounds.

2A separation of NC1 from P/poly implies the separation of uniform classes uniform-NC1 from P, as a consequence
of the Circuit Evaluation problem being in P.

3

Bounded-Depth Formulas vs. Circuits. In the bounded-depth setting, we consider AC0 cir-
cuits and formulas consisting of unbounded fan-in AND and OR gates and NOT gates. Let
Circuits(s, d) (resp. Formulas(s, d)) denote the class of languages computable by AC0 circuits (resp.
formulas) of size at most s and depth at most d. (We measure circuit size by the number of gates
and formula size by the number of leaves.) Every depth-d circuits of size s can be converted into
a depth-d formula of size at most sd by repeatedly replacing overlapping subcircuits with disjoint
copies. This brute-force conversion of circuits into formulas implies the following relationship of
class for all functions d(n):

(1) Formulas(poly(n), d) ⊆ Circuits(poly(n), d) ⊆ Formulas(nO(d), d).

It is natural to ask whether this relationship of classes is best possible.

Question 1.3. For which functions d(n) does the containment (1) have a converse of the form

Formulas(poly(n), d) 6= Circuits(poly(n), d) or(2)

Circuits(poly(n), d) * Formulas(no(d), d).(3)

For constant d(n) = O(1), the containment (1) implies Formulas(poly(n), d) = Circuits(poly(n), d).
However, there are reasons to believe that (2)—and even the stronger (3)—hold for all super-
constant d(n) = ω(1). In particular, (2) for d(n) = logn is equivalent to conjecture that NC1 6= AC1

(which separates NC1 from P/poly in a strong way).
As a corollary of our main theorem (Corollary 2.3), we are able to show that (3) holds for all

d(n) ≤ log log log n. (Prior to this paper, even the weaker separation (2) was not known to hold
for any super-constant d(n).) In fact, we show something even stronger:

Circuits(poly(n), d) * Formulas(no(d), log n/(log log n)6)(4)

for the same range of d(n) ≤ log log log n. In other words, polynomial-size depth-d circuits cannot
be simulated by AC0 formulas of size no(d) even allowing much greater depth.

In recent work [20] (subsequent to the initial conference publication of this paper), we show that
(3) holds for all d(n) ≤ O(log n/ log logn) and (2) holds for all d(n) ≤ o(log n) using a completely
different technique. Similar results for AC0[⊕] formulas vs. circuits were shown by Rossman and
Srinivasan [21]. However, in contrast to (4), the techniques in [20, 21] do not imply any separation
between circuits of depth d and formulas of depth d+ 1 for any d.

Distance k(n) Connectivity. As with the separation of monotone formulas vs. circuits in [11],
our separation of bounded-depth formulas vs. circuits comes by way of a lower bound for (a param-
eterized version of) st-connectivity. In his survey on graph connectivity [27], Avi Wigderson wrote
“Of all computational problems, graph connectivity is the one that has been studied on the largest
variety of computational models, such as Turing machines, PRAMs, Boolean circuits, decision trees
and communication complexity. It has proven a fertile test case for comparing basic resources such
as time vs. space, nondeterminism vs. randomness vs. determinism, and sequential vs. parallel com-
putation.” There has been some significant progress in the 20 years since [27]. Notably, Reingold
[16] showed that ustconn (undirected st-connectivity) is in DSPACE(log n). However, many basic
questions remain open. Chief among these is the space complexity of stconn. Savitch’s theorem
[23] that stconn ∈ DSPACE(log2 n) is still the best known upper bound.

4

As for lower bounds, in addition to various results in monotone models of computation [11, 14,
15, 24, 26], there are lower bounds in structured models of computations whose basic operations
manipulate pebblings on graphs. One result of this type, due to Edmonds, Poon and Achlioptas [5],
gives a tight space lower bound of Ω(log2 n) on the NNJAG model. In arithmetic circuit complexity,
lower bounds on the formula size of iterated matrix multiplication (the algebraic cousin of stconn)
were shown in restricted settings by Nisan and Wigderson [13] and Kumar and Saraf [12] among
others.

In this paper, we consider a version of stconn parameterized by distance. For a function
k : N → N with k(n) ≤ n, distance k(n) connectivity, denoted stconn(k(n)), is the following
problem: given a directed graph with n vertices and specified vertices s and t, determine whether
or not there is a path of length at most k(n) from s to t. In contrast to stconn and ustconn,
the directed and undirected versions of distance k(n) connectivity are essentially equivalent.3 It is
easy to show that stconn(k(n)) has circuits (moreover, semi-unbounded monotone circuits) of size
O(kn3) and depth 2 log k using the recursive doubling (a.k.a. repeated squared) method of Savitch
[23]. (At the expense of logarithmic depth, one gets smaller circuits of size O(kn2.38) using fast
matrix multiplication.)

An important relationship between stconn and its parameterized version stconn(k(n)) is
the fact every algorithm for stconn(k(n)) “scales up” to an algorithm for stconn by recursive
kth powering. Conversely, every lower bound for stconn “scales down” to a lower bound for
stconn(k(n)); in particular, Theorem 1.2 implies that monotone formulas solving stconn(k(n))
require size nΩ(log k). This “scaling up” can be stated as the implication

stconn(k(n)) ∈ Circuits(s, d) =⇒ stconn ∈ Circuits(nO(1) · s, logn
log k · d).

As noted in [27], if stconn(k(n)) has polynomial-size circuits of depth o(log k), then stconn has
polynomial-size circuits of depth o(log n) and hence stconn ∈ DSPACE(o(log2 n)). This observa-
tion motivates the following question.

Question 1.4. What is the minimum depth of polynomial-size circuits solving stconn(k(n))?

Furst, Saxe and Sipser [6] showed that stconn /∈ AC0 via the reduction from parity to stconn.
Via the same reduction, it follows from the parity lower bound of H̊astad [7] that stconn(k(n)) /∈
AC0 for k(n) = (log n)ω(1). However, this implies nothing when k(n) = (log n)O(1).

Ajtai [1] proved the first lower bound for small distances k(n), showing that stconn(k(n))
/∈ AC0 for all super-constant k(n) = ω(1). By a careful analysis of Ajtai’s proof, Bellantoni, Pitassi
and Urquhart [3] extracted a lower bound of Ω(log∗ k) on the depth of polynomial-size circuits
solving stconn(k(n)). This was subsequently improved to Ω(log log k) for k(n) = (log n)O(1) by
Beame, Impagliazzo and Pitassi [2], using a special-purpose “connectivity switching lemma” tailored
to stconn(k(n)). It was left as an open problem to further narrow the gap between the O(log k)
and Ω(log log k) upper and lower bounds. In this paper, we completely close this gap by proving a
lower bound of Ω(log k) for all k(n) ≤ log logn (Corollary 2.2). For small but super-constant k(n),
we thereby rule out the possibility of showing that stconn ∈ DSPACE(o(log2 n)) by constructing
polynomial-size circuits for stconn(k(n)) of depth o(log k).

Recently Chen, Oliveira, Servedio and Tan [4] showed a nearly tight nΩ(k1/d/d) size-depth trade-
off for AC0 circuits computing stconn(k(n)) via a clever reduction from stconn(k(n)) to an

3The reduction from stconn(k(n)) to ustconn(k′(n′)) converts a directed graph on n vertices into a layered
undirected graph on n′ = (k + 1)n vertices where k′(n′) = k(n).

5

unbalanced Sipser function. Their result implies an Ω(log k/ log log k) lower bound on the depth
of polynomial-size circuits solving stconn(k(n)), which moreover extends to all k(n). For small

depths d ≤ log k/ log log k where the bound of [4] is nontrivial, the nΩ(k1/d/d) lower bound of [4] is
quantitatively stronger than the nΩ(log k) bound in the present paper. However, the significance of
our result is that it applies to formulas of depths much larger than log k, at which point the circuit
size of stconn(k(n)) is only nO(1).

2 Our Results

Our main theorem is a tight lower bound on the AC0 formula size solving distance k(n) connectivity.

Theorem 2.1 (Main Result). Formulas of depth log n/(log log n)6 solving stconn(k(n)) require
size nΩ(log k) for all k(n) ≤ log logn.

This lower bound is not only worst-case, it even applies to formulas which stconn(k(n)) in the
average-case (see §12). The following two corollaries of Theorem 2.1 were previously mentioned in
the introduction. As discussed, these corollaries answer Questions 1.3 and 1.4 for a limited range
of d(n) and k(n).

Corollary 2.2. Polynomial-size circuits solving stconn(k(n)) require depth Ω(log k) for all k(n) ≤
log logn.

Proof. For contradiction, assume C is a circuit of size nO(1) and depth d(n) = o(log k) solving
stconn(k(n)) for some k(n) ≤ log log n. By the näıve simulation of circuits by formulas, C is equiv-
alent to a depth-d formula of size at most no(log k). But since d = o(log log log n) ≤ log n/(log log n)6,
we get a contradiction with Theorem 2.1.

Corollary 2.3. For all d(n) ≤ log log log n, the class Circuits(poly(n), d) of functions computable
by polynomial-size depth-d circuits is not contained in the class Formulas(no(d), log n/(log log n)6)
of functions computable by formulas of size no(d) and depth log n/(log log n)6.

Proof. The separating language is stconn(k(n)) where k(n) = 2d/2. This is computable by
polynomial-size circuits of depth d(n) = 2 log k which implement the recursive-doubling algorithm.
However, Theorem 2.1 implies that stconn(k(n)) is not computable by formulas of size no(d) and
depth log n/(log log n)6, noting that k(n) ≤ log log n.

Though we omit the analysis from this paper, we remark that the depth log n/(log log n)6 in
our results can be extended to c

k log k log n for an absolute constant c > 0. We state our results

with log n/(log log n)6 since this makes calculations simple and allows us to use H̊astad’s switching
lemma [7] in the standard way (rather than rely on a result of [20], which applies the switching
lemma more efficiently to formulas).

3 Proof Overview

Our proof technique is centered on a new notion of pathset complexity. Informally, a pathset is a
subset A ⊆ [n]k+1 whose elements represent potential paths of length k in a graph of size n. The
pathset complexity of A, denoted χ(A), measures of the minimum number of operations required

6

to construct A via unions (∪) and relational join (./), subject to certain density constraints. (The
formal definition of χ(A), given in §5, is not important for this overview.)

The proof of Theorem 2.1 has two parts. Part 1 shows that every bounded-depth formula F
solving stconn(k(n)) implies an upper bound on the pathset complexity of a certain (random)
pathset AΓ. Part 2 is a general lower bound on χ(A) for arbitrary pathsets A. Combining these
two parts, we get the desired nΩ(log k) lower bound on the size of F .

Before explaining Parts 1 and 2 in more detail, we state the key property of stconn(k(n))
which our proof exploits. Instances for stconn(k(n)) are directed graphs with vertex set [n] and
distinguished vertices s and t (without loss of generality s = 1 and t = 2). An st-path is a sequence
(x0, . . . , xk) ∈ [n]k+1 such that x0 = s and xk = t and xi 6= xj for all i 6= j.

Denote by Γ the random directed graph with edge probability 1/n. (Note that 1/n is below the
threshold for stconn(k(n)), that is, almost surely Γ contains no st-path of length k.) Define AΓ

as the set of st-paths (x0, . . . , xk) ∈ [n]k+1 such that

• (x0, x1), . . . , (xk−1, xk) are non-edges of Γ,

• Γ ∪ {(x0, x1), . . . , (xk−1, xk)} contains a unique st-path of length k (namely, (x0, . . . , xk)).

Then the (average-case) property of stconn(k(n)) that our proof exploits is:

Key Property (§6.3): Almost surely, AΓ contains 99% of st-paths of length k.

We now state Parts 1 and 2 of the proof of Theorem 2.1 in more detail.

Part 1 (§6–7): Suppose F is a formula of depth log n/(log log n)O(1) solving stconn(k(n)).
Then, almost surely (with respect to Γ),

(5) size(F) ≥ 2−O(k2) · n−O(1) · χ(AΓ).

Part 2 (§8–11): For all pathsets A ⊆ [n]k+1, writing δ(A) := |A|/nk+1 for the density of A,

(6) χ(A) ≥ 2−O(2k) · nΩ(log k) · δ(A).

Combining (5) and (6) with δ(AΓ) ≥ 0.99n−2 (by the key property), we get the lower bound

size(F) ≥ 2−O(2k) · nΩ(log k). Since 2−O(2k) is n−O(1) for k(n) ≤ log log n, Theorem 2.1 is proved.
Part 1 builds on the technique of [18]. An essential new ingredient, which distinguishes formulas

from circuits, is a top-down argument (Lemma 6.7) relating formula size to pathset complexity.
For Part 2, we develop a combinatorial framework for studying pathset complexity. This involves

analyzing the union tree of joins which predominates the construction of a given pathset A. In §8
we define an auxiliary notion of pathset complexity with respect to a union tree, denoted χ̄(A). Part
2 then consists of 2a and 2b:

Part 2a (§9): For every pathset A, there exists A′ ⊆ A such that χ(A) ≥ χ̄(A′) and δ(A′) ≥
2−O(2k) · δ(A).

7

Part 2b (§11): For all pathsets A′, χ̄(A′) ≥ nΩ(log k) · δ(A′).

Part 2a is relatively straightforward. This move from χ to χ̄ is precisely where we lose the
factor of 2O(2k), which is the reason that our main theorem is limited to k(n) ≤ log log n. Part 2b
is the combinatorial heart of the paper. The proof involves an intricate induction on objects called
union trees.

Organization of the Paper. Section 4 sets out the basic terminology and notation for the paper.
Section 5 introduces the key notion of pathset complexity. Sections 6–7 contain Part 1 of the proof
of Theorem 2.1. Sections 8–11 contain Part 2 of the proof. We state some conclusions and discuss
future directions in Section 12. Three appendices (Sections A–C) contain supplementary material
including key examples and relatively easier special cases of our main lower bound.

4 Preliminaries

Let n be an arbitrary positive integer (which we view as growing to infinity). Let [n] := {1, . . . , n}.
We note that, for all purposes in this paper, [n] may be regarded as an arbitrary fixed set of size
n. Let k = k(n) and d = d(n) be arbitrary functions of n. As parameters, k represents distance
and d represents depth. No bound on k or d is assumed throughout the paper; assumptions like
k(n) ≤ log log n are explicitly stated where needed. All constants in asymptotic notation (O(·),
etc.) are universal (with no dependence on n, k, d).

Circuits and Formulas. The circuits and formulas considered in this paper are unbounded fan-
in Boolean circuits and formulas with a single output node and NOT gates at the bottom level.
Formally, a circuit is a finite acyclic directed graph with a unique output (node of out-degree 0)
where each input (node of in-degree 0) is labeled by a literal (i.e. Xi or Xi) and each gate (node of
in-degree ≥ 1) is labeled by AND or OR. A formula is a tree-like circuit in which every node other
than the output has out-degree 1. The size of a circuit is the number of gates, while the size of a
formula is the number of leaves. (For a formula F , the circuit-size of F equals the formula-size of
F minus 1.)

Graphs. All graphs in this paper are directed graph G = (VG, EG) where VG is a (possibly empty)
set and EG ⊆ VG × VG. The edge from v to w is written simply as vw to cut down on unnecessary
parentheses.

Two important graphs in this paper are Pk (the directed path of length k) and Pk,n (the
“complete k-layered graph” with k + 1 layers of n vertices and kn2 edges). Formally, let

Pk = (Vk, Ek) where Vk = {v0, . . . , vk} and Ek = {vivi+1 : 0 ≤ i < k}

where v0, . . . , vk are fixed abstract vertices. We will usually omit subscripts writing simply v and
vw for arbitrary elements of Vk and Ek. To define Pk,n, we create (k + 1)n fresh vertices denoted
vi for each v ∈ Vk and i ∈ [n]. Then

Pk,n = (Vk,n, Ek,n) where Vk,n = {vi : v ∈ Vk, i ∈ [n]} and Ek,n = {viwj : vw ∈ Ek, i, j ∈ [n]}.

We refer to subgraphs Γ ⊆ Pk,n with VΓ = Vk,n as k-layered graphs. Throughout the paper,
Γ consistently represents a (random) k-layered graph, while G,H,K are reserved for subgraphs of

8

Pk. We sometimes view Γ as the input to a circuit or formula; in this case, we identify the set of
layered graphs with {0, 1}N where N is a set of kn2 variables indexed by elements of Ek,n.

Layered Distance k(n) Connectivity. As with previous lower bounds for distance k(n) con-
nectivity [1, 2], we consider a variant of the problem on k-layered graphs. Let s, t denote vertices
v1

0, v
1
k respectively. Layered distance k(n) connectivity is the problem of determining whether a

layered graph Γ ∈ {0, 1}N contains a path from s to t. Following [2], we denote this problem by
distconn(k, n). The layered and unlayered versions of distance k(n) connectivity are essentially
equivalent.4 This allows us to restate Theorem 2.1 as a lower bound on distconn(k, n):

Theorem 2.1. (restated) Formulas of depth log n/(log log n)6 solving distconn(k, n) require size
nΩ(log k) for all k(n) ≤ log logn.

Boolean Functions and Restrictions. Let f : {0, 1}I → {0, 1} be a Boolean function where I
is an arbitrary finite set (of “variables”). We say that a variable i ∈ I is live with respect to f if
there exists x ∈ {0, 1}I such that f(x) 6= f(x′) where x′ equals x with its ith coordinate flipped.
Let Live(f) := {i ∈ I : i is live w.r.t. f}.

A restriction on I is any function θ : I → {0, 1, ∗}. We denote by fdθ : {0, 1}θ−1(∗) → {0, 1} the
function (over the “unrestricted” variables i such that θ(i) = ∗) obtained from f by applying the
restriction θ.

Probabilistic Notation. For a finite set I and p, q ∈ [0, 1], we write:

• x ∈ {0, 1}Ip for the random tuple x ∈ {0, 1}I where P[xi = 1] = p independently for all i ∈ I
(in particular, we will consider the random layered graph Γ ∈ {0, 1}N1/n),

• R ⊆p I for the random subset R of I where i ∈ R independently with probability p for all
i ∈ I,

• θ ∈ R(p, q) for the random restriction θ : I → {0, 1, ∗} where P[θ(i) = ∗] = q and P[θ(i) =
1] = (1− q)p for all i ∈ I.

Whenever we say almost surely, this is understood to mean asymptotically almost surely as n→∞
(i.e. with probability that goes to 1 as n→∞).

Tuples and Relations. The following notation pertains to “V -ary” tuples x ∈ [n]V and relations
A ⊆ [n]V where V is an arbitrary finite set.

Definition 4.1 (V -tuples). For x ∈ [n]V and S ⊆ V , we denote by xS ∈ [n]S the restriction of x
to coordinates in S. For x ∈ [n]V and y ∈ [n]W where V ∩W = ∅, let xy ∈ [n]V ∪W denote the
unique z ∈ [n]V ∪W such that zi = xi for all i ∈ V and zj = yj for all j ∈W ; here xy = yx, as there
is no intrinsic linear order on V ∪W . We adopt the convention [n]∅ = {()} where () denotes the
unique ∅-tuple.

4Since k-layered graphs are graphs with (k + 1)n vertices, there is a trivial reduction from distconn(k, n) to
stconn(k′(n′)) where n′ = (k + 1)n and k′(n′) = k. In the opposite direction, there is a simple reduction from
stconn(k(n)) to distconn(k, n) which converts graphs to k-layered graphs.

9

Definition 4.2 (Join). For finite sets V and W and A ⊆ [n]V and B ⊆ [n]W , the join of A and B
is the set

A ./ B := {x ∈ [n]V ∪W : xV ∈ A and xW ∈ B}.

The join operation ./ is a hybrid of intersection ∩ and cartesian product ×: if V = W then
A ./ B = A ∩ B, and if V ∩W = ∅ then A ./ B is the product A × B. Note that A ./ ∅ = ∅ and
A ./ {()} = A.

Definition 4.3 (Density, Projection, Restriction). Let A ⊆ [n]V .

(i) The density of A is defined by δ(A) := |A| / n|V |.

(ii) For S ⊆ V , the S-projection and S-projection density of A are defined by

projS(A) := {xS : x ∈ A}, πS(A) := δ(projS(A)).

That is, πS(A) = |projS(A)| / n|S|, as δ here refers to the density of the S-ary relation
projS(A) ⊆ [n]S .

(iii) For S ⊆ V and z ∈ [n]V \S , the S-restriction of A at z and maximum S-restriction density of
A are defined by

A|zS := {y ∈ [n]S : yz ∈ A}, µS(A) := max
z∈[n]V \S

δ(A|zS).

It will be convenient (later on in §10) to extend this notation as follows: for any sets S and S

such that S ∩ S = ∅ and V ⊆ S ∪ S and any z ∈ [n]S , let A|zS be understood as A|z′V ∩S where
z′ = zV ∩S .

The next lemma gives some basic inequalities on projection and restriction densities, which we
will use throughout this paper.

Lemma 4.4. For all A ⊆ [n]V and S′ ⊆ S ⊆ V ,

δ(A) = µV (A) ≤ µS(A) ≤ µS′(A) ≤ µ∅(A) =

{
0 if A = ∅,
1 if A 6= ∅.= ≤ ≤ =

πV (A) ≤ πS(A) ≤ πS′(A) ≤ π∅(A)

In addition, µS′(A) ≤ µS′(projS(A)).

Another basic inequality is given by the following lemma.

Lemma 4.5. For all A ⊆ [n]V and S ⊆ V ,

δ(A) ≤ πS(A) · µV \S(A).

Lemmas 4.4 and 4.5 follow easily from definitions once the notation is understood. We conclude
this section by stating another basic inequality bounding the density of a join. The following lemma
plays a key role later on (when it is reformulated as Lemma 10.9).

10

Lemma 4.6. For all A ⊆ [n]V and B ⊆ [n]W and S ⊆ V and T ⊆W ,

δ(A ./ B) ≤ πS(A) · µT\S(projT (B)) · µ(V ∪W)\(S∪T)(A ./ B).

Proof. This inequality is mainly derived by two applications of Lemma 4.5. We first project A ./ B
to S ∪ T :

δ(A ./ B) ≤ πS∪T (A ./ B) · µ(V ∪W)\(S∪T)(A ./ B).

We then project projS∪T (A ./ B) to S:

πS∪T (A ./ B) ≤ πS(A ./ B) · µT\S(projS∪T (A ./ B)).

Now note that πS(A ./ B) ≤ πS(A) and

µT\S(projS∪T (A ./ B)) ≤ µT\S(projT (A ./ B)) ≤ µT\S(projT (B)).

These inequalities combine to prove the lemma.

5 Pathset Complexity

In this section, we define the key notion of pathset complexity, state our lower bound for pathset
complexity (Theorem 5.8, to be proved in §8–11), and present a matching upper bound (Proposition
5.11).

Definition 5.1 (Pattern Graph). Recall that Pk = (Vk, Ek) is the directed path of length k where
Vk = {vi : 0 ≤ i ≤ k} and Ek = {vivi+1 : 0 ≤ i < k}. A pattern graph is a subgraph of Pk
with no isolated vertices. That is, G = (VG, EG) is a pattern graph if, and only if, EG ⊆ Ek and
VG =

⋃
vw∈EG{v, w}. We write ℘k for the set of pattern graphs. (We use the power set notation,

since pattern graphs are in 1-1 correspondence with subsets of Ek.)
Note that every pattern graph is a (possibly empty) disjoint union of directed paths of length

≥ 1. We refer to maximal connected subsets of VG simply as components of G. Two important
parameters of pattern graphs are the number of components (= the number of maximal paths)
and the length of the longest path (= the number of edges in the largest component). These are
denoted by

∆G := # of components in G (= |VG| − |EG|),
`G := length of the longest path in G.

Definition 5.2 (Pathset). For a pattern graph G, a G-pathset is a set A ⊆ [n]VG . Let PG denote
the set of all G-pathsets, i.e., PG is the power set of [n]VG . We sometimes simply refer to pathsets
when the pattern graph G is clear from context.

The intuition for pathsets is as follows. For a pattern graph G, we view each x ∈ [n]VG as
corresponding to a “lifting” of G inside the complete layered graph Pk,n, namely isomorphic copy
of G with vertex set {vi ∈ Vk,n : i = xv} and edge set {viwj ∈ Ek,n : i = xv and j = xw}. In this
view, a pathset A ⊆ [n]VG corresponds to a set of liftings of G. The choice to define pathsets as
relations (subsets of [n]VG) rather than sets of liftings of G (which better matches intuition) allows
us more naturally to work with operations ./ and projS and µS , etc.

11

We next introduce a notion called G-smallness of pathsets A ∈PG. Later on we will show that
for any AC0 computable function f : {0, 1}N → {0, 1}, a certain pathset AΓ

f,G randomly associated
with f is G-small with very high probability (Lemma 6.6). Roughly speaking, G-smallness of
pathsets AΓ

f,G is a property akin to low average sensitivity.

Definition 5.3 (G-small).

(i) Let ε ∈ [1/k, 1/2] be an arbitrary “smallness parameter”, which we fix throughout the rest of
this paper. Let ñ := n1−ε.

(ii) A pathset A ∈ PG is G-small (we simply say small when G is understood from context) if,
for all 1 ≤ t ≤ ∆G and S ⊆ VG such that S is the union of t components of G, A satisfies the
density constraint

µS(A) ≤ ñ−t, that is,
|{x ∈ A : xVG\S = y}|

n|S|
≤ ñ−t for all y ∈ [n]VG\S .

(iii) The set of G-small pathsets is denoted P small
G .

As the terminology suggests, G-smallness is a monotone decreasing property (i.e. if A is G-
small, then so is every A′ ⊆ A). Note that G-smallness consists of 2∆G − 1 density constraints on
A, corresponding to the nonempty unions of the ∆G components of G. Note that for t = ∆G and
S = VG, the constraint µS(A) ≤ ñ−t is equivalent to δ(A) ≤ ñ−∆G . In the special case that G is
connected (i.e. ∆G = 1), A is G-small ⇐⇒ δ(A) ≤ ñ−1.

Regarding the parameter ε, our lower bound for distconn(k, n) will have the form ñΩ(log k) for
formulas of depth log n/(log log n)6. A tighter analysis (not included in this paper) extends this
depth O((ε/k log k) log n). Choosing ε = 1/k or even 1/ log∗ k produces an nΩ(log k) lower bound
with the best 1/4.41 constant, while choosing ε = 1/2 or even 1/100 achieves the optimal depth
O((1/k log k) log n) with a slightly worse constant.

Example 5.4. Let G be the pattern graph with components U = {v1, v2, v3} and U ′ = {v5, v6}
(i.e. VG = {v1, v2, v3, v5, v6} and EG = {v1v2, v2v3, v5v6}). A union tree A ∈PG is G-small if, and
only if,

δ(A) ≤ ñ−2, µU (A) ≤ ñ−1, µU ′(A) ≤ ñ−1.

For example, the pathset A1 := {x : x1 = x5 = 1} is G-small (here x ranges over [n]VG and we
write xi for xvi) since δ(A1) = n−2 < ñ−2 and µU (A1) = µU ′(A1) = n−1 < ñ−1. The pathset
A2 := {x : x1 = x5 and x2 = x6} is G-small as well since δ(A2) = µU (A2) = µU ′(A2) = n−2.
However, pathsets

A3 := {x : x1 = x2 = 1}, A4 := {x : x1 = x5}

are not G-small since µU ′(A3) = 1 > ñ−1 and δ(A4) = n−1 > ñ−2.

The next lemma shows that smallness is preserved under joins. (Note to the reader: Although
it is natural to state Lemma 5.5 now, we will not use this lemma until §11.)

Lemma 5.5. If A is a small G-pathset and B is a small H-pathset, then A ./ B is a small
G ∪H-pathset.

12

Proof. Assume A is a small G-pathset and B is a small H-pathset. To show that A ./ B is a small
G ∪ H-pathset, consider any 1 ≤ t ≤ ∆G∪H and S ⊆ VG ∪ VH such that S contains t distinct
components U1, . . . , Ut of G ∪H. We must show that µS(A ./ B) ≤ ñ−t.

Without loss of generality, assume U1, . . . , Ut are ordered such that, for some t′ ≤ t, we have
Ui ∩ VG 6= ∅ for all 1 ≤ i ≤ t′ and Uj ∩ VG = ∅ for all t′ < j ≤ t. Let S′ = S ∩ VG and
S′′ = Ut′+1 ∪ · · · ∪ Ut. Then S′ contains ≥ t′ components of G, since Ui ∩ VG contains ≥ 1
component of G for all 1 ≤ i ≤ t′. Next note that Uj is a component of H for all t′ < j ≤ t, hence
S′′ is a union of t− t′ components of H. By G-smallness of A and H-smallness of B, it follows that

µS′(A) ≤ ñ−t′ and µS′′(B) ≤ ñt′−t.

Now fix z ∈ [n](VG∪VH)\S which maximizes δ((A ./ B)|zS). Using the basic properties of restric-
tions and joins (Lemmas 4.4 and 4.5), we have

µS(A ./ B) = δ((A ./ B)|zS) = δ((A|zS′) ./ (B|zS∩VH))

≤ δ(A|zS′) · µS\VG(B|zS∩VH)

≤ µS′(A) · µS′′(B).

It follows that µS(A ./ B) ≤ ñ−t, which completes the proof.

Definition 5.6 (Pathset Complexity). For every pattern graph G and pathset A ∈PG, the pathset
complexity χG(A) of A with respect to G is defined by the following induction:

(i) If G is the empty graph, then χG(A) := 0.

(ii) If G consists of a single edge, then χG(A) := |A|.

(iii) If G has ≥ 2 edges, then

χG(A) := min
(Hi,Ki,Bi,Ci)i

∑
i

max{χHi(Bi), χKi(Ci)}

where (Hi,Ki,Bi, Ci)i ranges over sequences5 where

Hi,Ki ⊂ G, Hi ∪Ki = G, Bi ∈P small
Hi , Ci ∈P small

Ki and A ⊆
⋃
i

Bi ./ Ci.

In plain language, (Hi,Ki,Bi, Ci)i ranges over coverings of A by joins of small pathsets over
proper subgraphs of G.

Note that pathset complexity satisfies the following inequalities:

χ∅({()}) ≤ 0 and χG(A) ≤ 1 if |EG| = |A| = 1,(base case)

χG(A′) ≤ χG(A) if A′ ⊆ A,(monotonicity)

χG(A1 ∪ A2) ≤ χG(A1) + χG(A2) for all A1,A2,(sub-additivity)

χG∪H(A ./ B) ≤ max{χG(A), χH(B)} if A ∈P small
G , B ∈P small

H .(join rule)

We will refer to these inequalities repeatedly throughout the paper.

5indexed by i ∈ {1, . . . ,m} for an arbitrary integer m (since the length of this sequence is arbitrary, we simplify
notation by leaving the index set unspecified)

13

Remark 5.7. Pathset complexity has a dual characterization as the unique pointwise maximal
function from pairs (G,A) to R which satisfies (base case), (monotonicity), (sub-additivity) and
(join rule). We will expand on this observation later in Remark 8.4.

We now state our lower bound on pathset complexity (to be proved in §8–11).

Theorem 5.8 (Pathset Complexity Lower Bound). For all A ∈PPk ,

χPk(A) ≥ n(1/4.41) log k

2O(2k)
· δ(A).

In particular, for k ≤ log logn and non-negligible δ(A) = n−O(1), Theorem 5.8 implies χPk(A) ≥
n(1/4.41) log k−O(1). In a moment, we will give an upper bound (Proposition 5.11) which shows that
Theorem 5.8 is tight in the regime of k ≤ log log n and non-negligible δ(A). First, a couple of
remarks which give a different perspective on the definition of χG(A):

Remark 5.9 (Pathset Complexity as Construction Cost). Pathset complexity can be seen as a
minimum construction cost. In this view, the goal is to construct a pathset A ∈ PG out of the
fewest possible “atomic” pathsets (i.e., individual edges). The rules of construction are as follows:

(a) A single “atomic” pathset of the form A ∈ PG where |EG| = |A| = 1 may be bought for
unit cost.

(b) Once a pathset A has been constructed, we may freely discard elements from A (i.e. replace
A with any smaller A′ ⊆ A).

(c) Having constructed two G-pathsets A and A′, we may merge A and A′ into a single G-pathset
A ∪A′ (i.e. replace A and A′ with A ∪A′) at no additional cost.

(d) Having constructed a G-pathset A and a H-pathset B, provided both A and B are small,
we may join A and B into a single G ∪H-pathset A ./ B paying the maximum construction
cost of A and B.

For a pathset A ∈ PG, χG(A) is equal to the minimum cost of constructing A according to
these rules. Construction rules (a), (b), (c), (d) respectively correspond to inequalities (base case),
(monotonicity), (sub-additivity), (join rule). Only applications of rule (a) increase cost (so mini-
mum construction cost = fewest application of rule (a)). Rule (b) can be used to convert a non-small
pathset into a small pathset (in order to use rule (d), for example). Note that only rule (c) can
increase the density of pathsets.

Remark 5.10 (The Role of Smallness). Suppose we modify construction rule (d) by dropping the
smallness constraint on A and B (this is equivalent to substituting PHi and PKi for P small

Hi
and

P small
Ki

in Definition 5.6(iii)). We could then construct the complete Pk-pathset [n]Vk at a total cost

of kn2 simply by joining pathsets [n]{vi,vi+1} for 0 ≤ i < k. This shows that the smallness constraint
on joins is essential to Theorem 5.8. Intuitively, smallness is responsible for bottlenecks which drive
up the cost of constructing sufficiently dense pathsets. However, smallness is not necessarily an
obstacle for very sparse pathsets like [

√
n]Pk : since [

√
n]{vi,vi+1} are small, we can take joins showing

χPk([
√
n]Pk) ≤ kn.

We conclude this section with an upper bound.

14

Proposition 5.11 (Pathset Complexity Upper Bound). For all A ∈PPk ,

χPk(A) ≤ O(n(1/2)dlog ke+2).

For k ≤ log log n and A ∈ PPk with δ(A) = n−O(1), our lower and upper bounds show that
χPk(A) = nΘ(log k) where the constant in Θ(log k) is between 1

4.41 and 1
2 .

Notation 5.12. For a pattern graph G and an integer s, we denote by G.s the s-shifted pattern
graph with vertex set {vi+s : vi ∈ VG} and edge set {vi+svi+s+1 : vivi+1 ∈ EG}. For a pathset
A ∈ PG, we denote by A.s ∈ PG.s the corresponding s-shifted pathset. Note that pathset
complexity is invariant under shifts (i.e. χG(A) = χG.s(A.s)).

Proof of Proposition 5.11. For simplicity we assume
√
n is an integer. For all k ≥ 1, define Ak ∈

P small
Pk

by

Ak := {x ∈ [n]{0,...,k} : x0, xk ≤
√
n}.

(Note that δ(Ak) = 1/n < 1/ñ, so Ak is indeed Pk-small.)
Letting j = dk/2e, we have

Aj ./ A.jk−j = {x ∈ [n]{0,...,k} : x0, xj , xk ≤
√
n}.

Note that Ak is covered by
√
n “copies” of Aj ./ A.jk−j where, for 1 ≤ t ≤

√
n,

Copyt(Aj ./ A
.j
k−j) := {x ∈ [n]{0,...,k} : x0, xk ≤

√
n and (t− 1)

√
n < xj ≤ t

√
n}.

Note that pathset complexity is invariant under “copies” in this sense (i.e. χG is invariant under
the action of coordinate-wise permutations of [n] on PG):

χPk(Copyt(Aj ./ A
.j
k−j)) = χPk(Aj ./ A.jk−j) (invariance under “copies”)

≤ max{χPj (Aj), χP .jk−j (A
.j
k−j)} (join rule)

≤ max{χPj (Aj), χPk−j (Ak−j)} (invariance under shifts).

Since Ak ⊆
⋃

1≤t≤
√
n Copyt(Aj ./ A

.j
k−j), sub-additivity of χ implies

χPk(Ak) ≤
∑

1≤t≤
√
n

χPk(Copyt(Aj ./ A
.j
k−j)) ≤

√
n ·max{χPj (Aj), χPk−j (Ak−j)}.

This recurrence implies

χPk(Ak) ≤ (
√
n)dlog ke · χP1(A1) = O(n(1/2)dlog ke+1).

Now note that the complete Pk-pathset [n]Vk is covered by n “copies” of Pk. Therefore, by a
similar argument,

χPk([n]Vk) ≤ n · χPk(A) = O(n(1/2)dlog ke+2).

Finally, monotonicity of χ implies that χPk(A) ≤ O(n(1/2)dlog ke+2) for all A ∈PPk .

15

6 From Formulas to Pathset Complexity

In this section we derive our main result (Theorem 2.1) from our lower bound on pathset complexity
(Theorem 5.8). Let F0 be a formula of depth d(n) which solves distconn(k, n) where k(n) ≤
log logn and d(n) ≤ log n/(log log n)6. We must show that F0 has size nΩ(log k).

As a first preliminary step: without loss of generality, we assume that F0 has minimal size
among all depth d(n) formulas solving distconn(k, n). In particular, we have size(F0) ≤ knk−1

since distconn(k, n) has DNFs of this size.
As a second preliminary step, we convert F0 into a fan-in 2 formula F by replacing each

unbounded fan-in AND/OR gate by a balanced binary tree of fan-in 2 AND/OR gates. We have

size(F) = size(F0) ≤ nk and depth(F) ≤ depth(F0) · log(size(F0)) ≤ log2 n.

We write Fin for the set of inputs (i.e. leaves) in F , and Fgate for the set of gates in F , and fout for
the output gate in F . Note that each f ∈ F is computed by an (unbounded fan-in) formula of size
≤ nk and depth ≤ d(n) (by collapsing all adjacent AND/OR gates below f).

In order to lower bound size(F) in terms of pathset complexity, we define a family of pathsets
AΓ
f,G associated with each f ∈ F and G ∈ ℘k and Γ ∈ {0, 1}N . Recall that we identify {0, 1}N with

the set of k-layered graphs where N = Ek,n = {viwj : vw ∈ Ek, i, j ∈ [n]}.

Definition 6.1 (Pathsets AΓ
f,G). For all G ∈ ℘k and x ∈ [n]VG and Γ ∈ {0, 1}N and f ∈ F :

(i) Let NG,x := {viwj ∈ N : i = xv and j = xw} (= {vxvwxw : vw ∈ EG}).

(ii) Let ρΓ
G,x : N → {0, 1, ∗} be the restriction which equals ∗ over NG,x and agrees with Γ over

N \ NG,x. In particular, applying ρΓ
G,x to f , we get a function fdρΓ

G,x : {0, 1}NG,x → {0, 1}
(whose variables correspond to edges of G via the bijection NG,x

∼= EG).

(iii) Let AΓ
f,G be the G-pathset defined by

AΓ
f,G := {x ∈ [n]VG : Live(fdρΓ

G,x) = NG,x}.

That is, AΓ
f,G is the set of x ∈ [n]VG such that the restricted function fdρΓ

G,x depends on all
|NG,x| (= |EG|) of its variables.

In the next three subsections, we prove a sequence of claims about pathsets AΓ
f,G in three cases

where f ∈ Fin and f ∈ Fgate and f = fout.

Remark 6.2. Claims 6.3, 6.4, 6.5 rely on few assumptions about F . In particular, these claims
do not depend on the assumption that F0 has bounded depth (i.e. F has bounded alternations),
nor even that F is a formula as opposed to a circuit. In fact, these claims are valid if F is any
B2-circuit computing distconn(k, n) where B2 is the full binary basis.

Of course, we will eventually use both assumptions that (I) F0 has bounded depth (i.e. F has
bounded alternations), and (II) F is a formula as opposed to a circuit. Our main technical lemma
(Lemma 6.6) relies on (I) but not (II) (not surprisingly, since the proof uses the Switching Lemma,
which does not distinguish between circuits and formulas). A second key lemma (Lemma 6.7) relies
on (II) but not (I) (using a top-down argument which only works for formulas).

16

6.1 Inputs of F

Suppose f is an input in F labeled by a literal (i.e. a variable or its negation) corresponding to
some viwj ∈ N . Then we have the following explicit description of AΓ

f,G:

• if G is the empty graph, then AΓ
f,G = {()} (i.e. the singleton containing the 0-tuple),

• if EG = {vw}, then AΓ
f,G = {x} for the unique x ∈ [n]{v,w} with xv = i and xw = j,

• otherwise (i.e. if |EG| ≥ 2 or EG consists of an single edge other than vw), we have AΓ
f,G = ∅.

By the base case conditions (i) and (ii) in Definition 5.6 of pathset complexity, we have χ∅(A) = 0
and χG(A) = |A| if G has a single edge. The upshot of these observations is the following claim.

Claim 6.3 (Inputs of F). For all f ∈ Fin,
∑
G∈℘k

χG(AΓ
f,G) = 1.

6.2 Gates of F

Suppose f is an AND or OR gate in F with children f1 and f2. Consider any G ∈ ℘k and x ∈ AΓ
f,G

(assuming AΓ
f,G is nonempty). By definition of AΓ

f,G, the function fdρΓ
G,x : {0, 1}NG,x → {0, 1}

depends on all variables in NG,x. Since fdρΓ
G,x is the AND or OR of functions f1dρΓ

G,x and f2dρΓ
G,x,

each variable in NG,x is a live variable for one or both f1dρΓ
G,x and f2dρΓ

G,x.
Define sub-pattern graph G1 ⊆ G as follows: for each vw ∈ EG, let vw be an edge in G1 if and

only if vxvwxw (∈ NG,x) is a live variable for the function f1dρΓ
G,x. Define G2 ⊆ G in the same way

with respect to f2. Since

{vxvwxw : vw ∈ EG} = NG,x = Live(fdρΓ
G,x) = Live(f1dρΓ

G,x) ∪ Live(f2dρΓ
G,x),

it follows that G1 ∪G2 = G.
Let y = xVG1

be the restriction of x (∈ [n]VG) to coordinates in VG1 . By definition of G1, we
have

• vyvwyw = vxvwxw ∈ Live(f1dρΓ
G,x) for all vw ∈ EG1 , and

• vxvwxw /∈ Live(f1dρΓ
G,x) for all vw ∈ EG \ EG1 .

It follows that Live(f1dρΓ
G1,y

) = Live(f1dρΓ
G,x) = NG1,y, hence y ∈ AΓ

f1,G1
. Similarly, for z = xVG2

,

we have z ∈ AΓ
f2,G2

. This shows that x ∈ AΓ
f1,G1

./ AΓ
f2,G2

.
The observation may be succinctly expressed as

AΓ
f,G ⊆

⋃
G1,G2⊆G :G1∪G2=G

AΓ
f1,G1

./ AΓ
f2,G2

.

Splitting this union into the cases that G1 = G or G2 = G or G1, G2 ⊂ G, we have proved:

Claim 6.4 (Gates of F). For every f ∈ Fgates with children f1, f2 and every G ∈ ℘k,

AΓ
f,G ⊆ AΓ

f1,G ∪ A
Γ
f2,G ∪

⋃
G1,G2⊂G :G1∪G2=G

AΓ
f1,G1

./ AΓ
f2,G2

.

17

6.3 Output of F

We now use the fact that F computes distconn(k, n). Our previous Claims 6.3 and 6.4 applied
to arbitrary Γ ∈ {0, 1}N . We now shift perspective and consider random Γ ∈ {0, 1}N1/n. That is,

Γ is the random k-layered graph (i.e. subgraph of Pk,n) with edge probability 1/n. Recall that
Vk,n = {vi : v ∈ Vk and i ∈ [n]} and s, t are the vertices v1

0, v
1
k. Each x ∈ [n]Vk corresponds to a

path of length k in Pk,n, where x is an st-path if and only if x0 = xk = 1 (writing xi instead of xvi
for the coordinates of x).

Observe that Γ almost surely contains no st-path. To see this, note that there are nk−1 potential
st-paths, each of which is present in Γ with probability (1/n)k. Therefore, the probability that Γ
contains an st-path is at most (1/n) = o(1).

For x ∈ [n]Vk with x0 = xk = 1, let us say that x is Γ-independent if Γ contains no path from

v
(xi)
i to v

(xj)
i for any 0 ≤ i < j ≤ k. By another simple union bound, the probability that a given

x is Γ-independent is at most
(
k
2

)
/n = o(1). It follows that almost surely 0.99 fraction of potential

st-paths are Γ-independent.
Now suppose that Γ contains no st-path and that x ∈ [n]Vk with x0 = xk = 1 is a Γ-independent.

Let e1, . . . , ek be the k edges in x (i.e. ei = v
(xi−1)
i−1 v

(xi)
i). We claim that Γ∪{e1, . . . , ei−1, ei+1, . . . , ek}

contains no st-path for all 1 ≤ i ≤ k. To see this, assume for the sake of contradiction that x′ is an
st-path in Γ∪{e1, . . . , ei−1, ei+1, . . . , ek}. Let e′1, . . . , e

′
k be the edges of x′. Since ei is a non-edge of

Γ, we have ei 6= e′i. Starting at the endpoint of e′i, we can follow the path x′ forwards until reaching
a vertex in x; we can also follow x′ backwards from the initial vertex of e′i until reaching a vertex
in x. This segment of x′ is a path in Γ between two vertices of x, contradiction Γ-independence of
x.

Since fout computes distconn(k, n), it follows that

fout(Γ ∪ {e1, . . . , ek}) = 1 and fout(Γ ∪ {e1, . . . , ei−1, ei+1, . . . , ek}) = 0 for all 1 ≤ i ≤ k.

This shows that the restricted function foutdρΓ
Pk,x

depends on all k unrestricted variables (corre-

sponding to the edges of x); in fact, foutdρΓ
Pk,x

is the AND function. Therefore, x ∈ AΓ
fout,Pk

for
every Γ-independent st-path x.

By this argument, we have proved:

Claim 6.5 (Output of F). lim
n→∞

P
Γ∈{0,1}N

1/n

[δ(AΓ
fout,Pk

) ≥ 0.99n−2] = 1.

6.4 Reduction to Pathset Complexity

We now present the two main lemmas in the reduction from formula size to pathset complexity.
Lemma 6.6, below, is the main technical lemma (the proof, which relies in part on the switching
lemma, is given in §7). This lemma is the only place in the overall proof of Theorem 5.8 which
depends on the assumption that F has bounded depth (though not on the fact that F is a formula
as opposed to a circuit).

Lemma 6.6 (Pathsets AΓ
f,G are Small). Suppose f : {0, 1}N → {0, 1} is computable a circuit of

size nk and depth log n/(log log n)6. Then, for all G ∈ ℘k,

P
Γ∈{0,1}N

1/n

[AΓ
f,G is not G-small] ≤ O(n−2k).

18

Lemma 6.7, below, is the nexus between formula size and pathset complexity. The proof involves
a top-down argument, which is key to distinguishing formulas and circuits. (Though we will apply
Lemma 6.7 to the formula F which we have been considering so far, Lemma 6.7 is stated in general
terms for arbitrary Boolean functions with fan-in 2.)

Lemma 6.7. Let F be any fan-in 2 formula and let Γ ∈ {0, 1}N . If AΓ
f,G ∈ P small

G for all f ∈ F
and G ∈ ℘k, then

χPk(AΓ
fout,Pk

) ≤ 2O(k2) · depth(F)k · size(F).

Proof. Assume AΓ
f,G ∈P small

G for all f ∈ F and G ∈ ℘k. Consider any f ∈ Fgates with children f1

and f2. By Claim 6.4, together with the key properties (monotonicity), (sub-additivity) and (join
rule) of pathset complexity, we have

χG(AΓ
f,G) ≤ χG

(
AΓ
f1,G ∪ A

Γ
f2,G ∪

⋃
G1,G2⊂G :G1∪G2=G

AΓ
f1,G1

./ AΓ
f2,G2

)
≤ χG(AΓ

f1,G) + χG(AΓ
f2,G) +

∑
G1,G2⊂G :G1∪G2=G

(
χG1(AΓ

f1,G1
) + χG2(AΓ

f2,G2
)
)

≤
(
χG(AΓ

f1,G) + 2k
∑
H⊂G

χH(AΓ
f1,H)

)
+
(
χG(AΓ

f2,G) + 2k
∑
H⊂G

χH(AΓ
f2,H)

)
.

If we start from χPk(AΓ
fout,Pk

) and repeatedly apply the above inequality until reaching the
inputs of F , we get a bound of the form

χPk(AΓ
fout,Pk

) ≤
∑

f∈Fin, G∈℘k

cf,G · χG(AΓ
f,G)

for some cf,G ∈ Z≥0. We claim that

cf,G ≤
∑

i,H0,...,Hi :Pk=H0⊃···⊃Hi=G
2ik ·

(
depth of f in F

i

)
≤ 2O(k2) · depth(F)k.

To see this, consider any f ∈ Fin and G ∈ ℘k and let fout = f0, . . . , fd = f be the branch in F
from the output gate down to f . Then in the expansion of χPk(AΓ

fout,Pk
), we get a contribution

of 2ik (≤ 2k
2
) from each sequence (i, t0, H0, t1, H1, . . . , ti, Hi) where 0 = t0 < · · · < ti = d and

Pk = H0 ⊃ · · · ⊃ Hi = G; here ti is the location where the expansion of χPk(AΓ
fout,Pk

) branches as

we move from χHi−1(AΓ
fi−1,Hi−1

) to 2kχHi(AΓ
fi,Hi

). Finally, we bound the number of (t0, . . . , ti) by(
d
i

)
(≤ depth(F)k) and the number of (H0, . . . ,Hi) by 2ik (≤ 2k

2
). Summing over i adds only a

factor of k, so in total we get cf,G ≤ 2O(k2) · depth(F)k.
We now use the fact that

∑
G∈℘k χG(AΓ

f,G) = 1 for all f ∈ Fin (Claim 6.3) and size(F) = |Fin|
(since F is a formula!). Concluding the proof, we have

χPk(AΓ
fout,Pk

) ≤ 2O(k2) · depth(F)k · size(F).

We conclude this section by giving the proof of Theorem 2.1 assuming our pathset complexity
lower bound (Theorem 5.8) and main technical lemma (Lemma 6.6).

Reduction 6.8. Theorem 5.8 and Lemma 6.6 =⇒ Theorem 2.1.

19

Proof. Assuming Theorem 5.8 and Lemma 6.6, we must show that size(F) ≥ nΩ(log k). By Claim
6.5 and Lemma 6.6, there exists Γ ∈ {0, 1}N such that δ(AΓ

fout,Pk
) ≥ 0.99n−2 and AΓ

f,G ∈ P small
G

for all f ∈ F and G ∈ ℘k. Fix any such Γ. We now have

size(F) ≥ 1

2O(k2) · depth(f)k
· χPk(AΓ

fout,Pk
) (Lemma 6.7)

≥ 1

2O(k2) · depth(f)k
· n

(1/4.41) log k

2O(2k)
· δ(AΓ

fout,Pk
) (Theorem 5.8).

Using inequalities

depth(F) ≤ log2 n, δ(AΓ
fout,Pk

) ≥ 0.99n−2, k ≤ log log n,

we get the desired bound size(F) ≥ n(1/4.41) log k−O(1).

7 Small Pathsets from Random Restrictions

In this section, we prove Lemma 6.6 showing that, with high probability over random Γ ∈ {0, 1}N1/n,

pathsets AΓ
f,G are small for all f ∈ F and G ∈ ℘k. The proof has the following scheme:

Janson’s Inequality [9]

⇓
Lemma 7.3

Switching Lemma [7]

⇓
Lemma 7.4︸ ︷︷ ︸

⇓
Preliminary Lemma 7.5

⇓
Main Technical Lemma 6.6

The central argument is contained in the proof of Preliminary Lemma 7.5 (from which Lemma 6.6
essentially follows as a corollary).

Remark 7.1. Lemma 6.6 is similar to the main technical lemma in the k-clique lower bound of
[18]. One important difference is that here we require a upper tail bound where a upper bound
on expectation was sufficient for the k-clique result. (Moreover, the tail bound that we require is
stronger than what one gets by applying Markov’s inequality to the upper bound on expectation.)

Recall that G-smallness consists of 2∆G − 1 density constraints corresponding to the nonempty
unions of components of G. We say that non-small pathset A is G-critical if it violates only the
“top” constraint δ(A) > ñ−∆G . Formally:

Definition 7.2 (Critical Pathsets). For a pattern graph G and pathset A ∈PG, we say that A is
G-critical if δ(A) > ñ−∆G and µVG\S(A) ≤ ñs−∆G for all 1 ≤ s < ∆G and every S ⊆ VG such that
S is the union of s components of G.

20

Observe that if A ∈ PG is G-critical and S′ ⊆ VG has nonempty intersection with exactly
s ≥ 1 components of G, then µVG\S′(A) ≤ ñs−∆G . This is seen by letting S ⊆ VG be the union

of components which S′ intersects and noting that µVG\S′(A) ≤ µVG\S(A) ≤ ñs−∆G by Lemma 4.4
and the definition of G-critical.

The following lemma, to be proved in §7.1, gives a concentration-of-measure inequality for
critical pathsets. Recall that ε ∈ [1/k, 1/2] is an arbitrary “smallness parameter” chosen in Def.
5.3(i).

Lemma 7.3. Let G be a pattern graph and suppose A is a G-critical pathset. Let q = (1/n)1+(ε/2k).
Then

P
R⊆qN

[
#
{
x ∈ A : NG,x ⊆ R

}
≤ nε/2

2

]
≤ exp

(
−Ω
(nε/2

2k

))
.

We now give the core argument in the proof of Lemma 6.6. We will use the following consequence
of H̊astad’s Switching Lemma [7].

Lemma 7.4 (Consequence of the Switching Lemma). If a Boolean function f is computable by
AC0 circuits of depth d and size s, then for all 0 ≤ q ≤ p ≤ 1/2,

P
θ∈R(p,q)

[
|Live(fdθ)| ≥ 2r

]
≤ s ·O

(
r(q/p)1/d

)r
.

Proof. We first hit the circuit with a R(p0, p) random restriction where p0 = 1
1−p(p+q2 − pq). We

when hit the circuit with a sequence of d unbiased R(1/2, (q/p)1/d) random restrictions, applying
the switching lemma in the usual way. (The preliminary R(p0, p) creates the correct bias of 1’s and
0’s, but does not simplify the circuit.) Letting θ be the composition of these random restrictions,
we get a bound of s · O(r(q/p)1/d)r on the probability that fdθ has decision-tree depth ≥ r. The
lemma follows, since the number of live variables is at most 2 raised to the decision-tree depth.

We remark that Lemma 7.4 is not the most efficient bound that can obtained from the switching
lemma, in particular for AC0 formulas [20]. However, it suffices for our (preliminary) technical
lemma.

Lemma 7.5. Suppose f : {0, 1}N → {0, 1} is computed by a circuit of size at most nk and depth
log n/(log log n)6. Let G,H be pattern graphs with VG∩VH = ∅ and let y ∈ [n]VH . For Γ ∈ {0, 1}N ,
define G-pathset AΓ by

AΓ :=
{
x ∈ [n]VG : NG,x ⊆ Live(fdρΓ

G∪H,xy)
}
.

Then P
Γ∈{0,1}N

1/n

[AΓ is G-critical] ≤ O(n−3k).

We remark that the bound O(n−3k) can be strengthened to O(n−Ω(k log logn)) or even better.
We state the lemma with O(n−3k) since this is all we require.

Proof. Define I ⊆ {0, 1}N by

I :=
{
I ∈ {0, 1}N : Iν = 0 for all ν ∈ N \NH,y

}
.

Note that |I| = 2|NH,y | = 2|EH | ≤ 2k.

21

For I ∈ I, define fI : {0, 1}N → {0, 1} by fI(Γ) = f(Γ⊕ I). For all x ∈ [n]VG and Γ ∈ {0, 1}N ,
we have

NG,x ∩ Live(fdρΓ
G∪H,xy) =

⋃
I∈I

Live(fIdρΓ
G,x).(7)

For R ⊆ N , let θΓ
R : N → {0, 1, ∗} be the restriction taking value ∗ over R and equal to Γ over

N \R. Define pathsets BR and CΓ
R by

BR :=
{
x ∈ [n]VG : NG,x ⊆ R

}
,

CΓ
R :=

{
x ∈ [n]VG : NG,x ⊆

⋃
I∈I Live(fIdθΓ

R)
}
.

It follows from (7) that AΓ ∩ BR ⊆ CΓ
R. Also, since |NG,x| = |EG| ≤ k and |I| ≤ 2k,∣∣CΓ

R

∣∣1/k ≤ ∣∣∣ ⋃
I∈I

Live(fIdθΓ
R)
∣∣∣ ≤ 2k ·max

I∈I

∣∣Live(fIdθΓ
R)
∣∣.(8)

We now consider independent random Γ ∈ {0, 1}N1/n and randomR ⊆q N where q = (1/n)1+(ε/2k).

Note that θΓ
R has distributionR(1/n, q). Also, note thatAΓ and BR are independent, asAΓ depends

only on Γ and BR depends only on R.
We may assume that k ≤ log1/3 n, since otherwise the lemma is trivial. In particular, 2k =

o(nε/2) (recall that ε = 1/ log k) and hence exp(−Ω(nε/2/2k)) = o(1). We have

P
Γ

[
AΓ is G-critical

]
≤ P

Γ

[
P
R

[
|AΓ ∩ BR| ≤

nε/2

2

]
≤ exp

(
−Ω
(nε/2

2k

))]
(Lemma 7.3)

= P
Γ

[
P
R

[
|AΓ ∩ BR| >

nε/2

2

]
≥ 1− o(1)

]
≤ (1 + o(1)) P

Γ,R

[
|AΓ ∩ BR| >

nε/2

2

]
(Markov ineq.)

≤ (1 + o(1)) P
Γ,R

[
|CΓ
R| >

nε/2

2

]
(AΓ ∩ BR ⊆ CΓ

R)

≤ (1 + o(1))2k max
I∈I

P
Γ,R

[∣∣Live(fIdθΓ
R)
∣∣ > nε/2k

2k+1

]
(by (8))

≤ (log n)2 max
I∈I

P
Γ,R

[∣∣Live(fIdθΓ
R)
∣∣ > nε/4k

]
where this last inequality uses k ≤ log logn and ε ≥ 1/k (hence 2k+1 ≤ nε/4k for sufficiently large
n).

For each I ∈ I, fI is computable by AC0 formulas with the same size and depth as f , namely
nk and log n/(log log n)6. Since θΓ

R has distribution R(1/n, (1/n)1+(ε/2k)), Lemma 7.4 implies that

P
Γ,R

[∣∣Live(fIdθΓ
R)
∣∣ > nε/4k

]
≤ nk ·O

(
(n−ε/4k)(log logn)6/ logn

)
(ε/4k) logn

≤ O(nk−(ε/4k)2(log logn)6) ≤ O(n−Ω(k log logn))

again using ε ≥ 1/k and k ≤ log log n. Finally, we get the bound

P
Γ

[
AΓ is G-critical

]
≤ (log n)2 ·O(n−Ω(k log logn)) ≤ O(n−3k).

22

Finally, we derive Lemma 6.6 from Lemma 7.5.

Proof of Lemma 6.6. Suppose f : {0, 1}N → {0, 1} is computable a circuit of size nk and depth
log n/(log log n)6. Fix a pattern graph G. We must show

P
Γ∈{0,1}N

1/n

[AΓ
f,G is not G-small] ≤ O(n−2k).

Suppose Γ ∈ {0, 1}N is any layered graph such that AΓ
f,G is not G-small. We claim that there

exist S ⊆ VG and z ∈ [n]VG\S such that S is a nonempty union of components of G and the pathset
BΓ
S,z is G|S-critical where G|S is the induced subgraph of G on S and

BΓ
S,z :=

{
y ∈ [n]S : NG|S ,y ⊆ Live(fdρΓ

G,yz)
}
.

We first note that it suffices to prove this claim. Since there are 2∆G − 1 (≤ 2k) choices for S and
≤ nk choices for z, assuming the claim we have

P
Γ∈{0,1}N

1/n

[AΓ
f,G is not G-small] ≤ P

Γ∈{0,1}N
1/n

[∨
S,z

BΓ
S,z is G|S-critical

]
≤ 2knkO(n−3k) (by Lemma 7.5)

= O(n−2k).

To see why the claim holds, assume that AΓ
f,G is not G-small and consider the following proce-

dure. Initially set S ← VG and z ← () (the empty tuple). If BΓ
S,z is G|S-critical, then we are done.

Otherwise, since BΓ
S,z is neither G|S-small nor G|S-critical, there is a proper subset T ⊂ S such that

T is a union of t ≥ 1 components of VG|S and µT (BΓ
S,z) > ñ−t. By definition of µT , there exists

y ∈ [n]S\T such that δ(BΓ
S,z|

y
T) > ñ−t. Note that T is a union of components of G and yz ∈ [n]VG\T .

Also, for all u ∈ [n]T , we have NG|T ,u ⊆ NG|S ,uy and hence

u ∈ BΓ
S,z|

y
T =⇒ uy ∈ BΓ

S,z

=⇒ NG|S ,uy ⊆ Live(fdρΓ
G,uyz)

=⇒ NG|T ,u ⊆ Live(fdρΓ
G,uyz)

=⇒ u ∈ BΓ
T,yz.

Therefore, BΓ
S,z|

y
T ⊆ BΓ

T,yz. It follows that δ(BΓ
T,yz) > ñ−t and, hence, BΓ

T,yz is not G|T -small. We

now update S ← T and z ← yz. Since BΓ
S,z is not G|S-small, we may repeat this process so long

as BΓ
S,z is not G|S-critical. Since S shrinks with every step, eventually this process will terminate,

at which point BΓ
S,z is G|S-critical (and S is nonempty by definition of G|S-criticality). Thus, the

claim holds and the lemma is proved.

7.1 Proof of Lemma 7.3

For the proof of Lemma 7.3 we use a concentration of measure inequality due to Janson [9].

23

Lemma 7.6 (Janson’s Inequality [9]). Let Ω be a finite universal set and let R be a random subset
of Ω given by P[r ∈ R] = pr, these events mutually independent over r ∈ Ω. Let {Si}i∈I be an
indexed family of subsets of Ω. Define λ and Υ by

λ :=
∑
i∈I
P
[
Si ⊆ R

]
, Υ :=

∑
(i,j)∈I2 : i 6=j, Si∩Sj 6=∅

P
[
Si ∪ Sj ⊆ R

]
.

Then, for all 0 ≤ t ≤ λ, P
[

#
{
i ∈ I : Si ⊆ R

}
≤ λ− t

]
≤ exp

(
− t2

2(λ+ Υ)

)
.

Proof of Lemma 7.3. Let G be a nonempty pattern graph, let A be a G-critical pathset, and let
q = (1/n)1+(ε/2k). We must show

P
R⊆qN

[
#
{
x ∈ A : NG,x ⊆ R

}
≤ nε/2

2

]
≤ exp

(
−Ω
(nε/2

2k

))
.

As in Janson’s Inequality, define λ and Υ by

λ :=
∑
x∈A

P
[
NG,x ⊆ R

]
, Υ :=

∑
(x,y)∈A2 :x6=y,NG,x∩NG,y 6=∅

P
[
NG,x ∪NG,y ⊆ R

]
.

Taking t = λ/2 in Lemma 7.6, we get

(9) P
[

#
{
x ∈ A : NG,x ⊆ R

}
≤ λ

2

]
≤ exp

(
− 1

16
min

{
λ,

λ2

Υ

})
.

Recall that ∆G = |VG| − |EG| and ñ = n1−ε. By G-criticality of A,

|A| = n|VG|δ(A) > n|VG|ñ−∆G = n|EG|+ε∆G .

Note that P[NG,x ⊆ R] = q|EG| for all x ∈ A. Since |EG| ≤ k and ∆G ≥ 1, it follows that

λ = |A| · q|EG| > nε(∆G−|EG|/2k) ≥ nε(∆G−(1/2)) ≥ nε/2.(10)

To complete the proof, it suffices to show that
λ2

Υ
≥ nε/2

2k
.

For all (x, y) ∈ A2, let

Tx,y :=
{
vw ∈ EG : xv = yv and xw = yw

}
.

Note that x = y iff Tx,y = EG, and NG,x ∩NG,y 6= ∅ iff Tx,y 6= ∅, and |NG,x ∪NG,y| = 2|EG|− |Tx,y|.
Next, note that Υ =

∑
T : ∅⊂T⊂EG ΥT where

ΥT :=
∑

(x,y)∈A2 :Tx,y=T

P
[
NG,x ∪NG,y ⊆ R

]
= #

{
(x, y) ∈ A2 : Tx,y = T

}
· q2|EG|−|T |.

24

Now consider any fixed ∅ ⊂ T ⊂ EG. Let S =
⋃
vw∈T {v, w} and let s be the number of

components of G which S intersects. Note that 1 ≤ s ≤ |S|− |T |, since |S|− |T | equals the number
of components in the induced subgraph G|S . We have

#
{

(x, y) ∈ A2 : Tx,y = T
}
≤
∑
z∈[n]S

∣∣A|zVG\S∣∣2
≤
(∑
z∈[n]S

∣∣A|zVG\S∣∣)(max
z∈[n]S

∣∣A|zVG\S∣∣)
= |A| · n|VG|−|S| · µVG\S(A)

≤ |A| · n|VG|−|S| · ñs−∆G (by G-criticality of A)

= |A| · n|EG|−|S|+s+ε(∆G−s).

It follows that

ΥT = #
{

(x, y) ∈ A2 : Tx,y = T
}
· q2|EG|−|T |

≤ |A| · n|EG|−|S|+s+ε(∆G−s) · q2|EG|−|T |

≤ λ · n|T |−|S|+s+ε(∆G−s) (using λ = |A| · q|EG| and q ≤ n−1)

≤ λ · nε(∆G−1) (using 1 ≤ s ≤ |S| − |T |).

We now have

λ2

Υ
=

λ2∑
T : ∅⊂T⊂EG ΥT

≥ λ · n−ε(∆G−1)

2k
(by the above)(11)

≥ nε/2

2k
(since λ ≥ nε(∆G−(1/2)) by (10)).

Plugging (10) and (11) into (9) completes the proof.

8 Union Trees

At this point in the paper, it only remains to prove Theorem 5.8, our lower bound on pathset
complexity χ. As the first step in the proof, we introduce the notion of union trees and pathset
complexity w.r.t. union trees, denoted χ̄. Intuitively, a union tree is a blueprint for constructing a
pattern graph via pairwise unions starting from individual edges. This leads to a more constrained
notion of pathset complexity where the allowable joins are prescribed by a given union tree.

Fixing the union tree of allowable joins can only increase the cost of constructing a pathset,
hence χ ≤ χ̄. Counterintuitively, the lower bound on χ is derived from a lower bound on χ̄. This
lower bound on χ̄ is the true combinatorial lower bound in this paper. (Unfortunately, in the shift

from χ to χ̄ we lose a factor of 2O(2k), which is the reason that Theorem 5.8 only holds up to
k(n) ≤ log logn.)

In this section, we present the definition of χ̄ and state our lower bound for χ̄ (Theorem 8.3).
The reduction from Theorem 8.3 to Theorem 5.8 is given in §9. In §10 we prove some preliminary
lemmas (on properties of χ̄ with respect to projections and restrictions). Finally we prove Theorem
8.3 in §11.

25

Definition 8.1 (Union Trees). A union tree is a (rooted, unordered) binary tree whose leaves are
labeled by edges of Pk (i.e. elements of Ek = {vivi+1 : 0 ≤ i < k}). Every union tree A is associated
with a pattern graph denoted GA = (VA, EA) where EA is the set of edges of Pk which label leaves
in A.

The empty union tree (of size 0) is denoted ∅. Union trees of size 1 (corresponding to elements of
Ek) are said to be atomic. Union trees of size ≥ 2 are non-atomic. Throughout, A and B represent
non-empty union trees. Let {A,B} (= {B,A}) denote the union tree with children A and B. Note
that every non-atomic union tree has the form {A,B} for some A and B; also, G{A,B} = GA ∪GB.

For a union tree A, sub-union trees of A are sub-trees of A consisting a node in A and all nodes
below that node with the inherited labeling of leaves. The sub-union tree and strict sub-union tree
relations are denoted by � and ≺ respectively.

To simplify notation, for a union tree A we write PA for PGA and projA for projVA and `A for
`GA , etc. We consistently write A,B, C for pathsets with underlying union trees A,B,C respectively.

Definition 8.2 (Pathset Complexity w.r.t. Union Trees). For every union tree A and pathset
A ∈PA, the pathset complexity of A with respect to A, denoted χ̄A(A), is defined by the following
induction:

(i) χ̄∅({()}) := 0, that is, the pathset complexity of {()} w.r.t. the empty union tree ∅ is 0.

(ii) If A is atomic and |A| = 1, then χ̄A(A) := 1.

(iii) For non-atomic A = {B,C},

χ̄A(A) := min
(Bi,Ci)i

∑
i

max{χ̄B(Bi), χ̄C(Ci)}

where (Bi, Ci)i ranges over sequences such that Bi ∈P small
B , Ci ∈P small

C and A ⊆
⋃
i Bi ./ Ci.

In Appendices A–C we present some key examples of union trees and prove upper and lower
bounds for χ̄ with respect to some special classes of union trees. The material in these appendices
is not directly needed for our main results. However, these appendices serve as a warm-up and
motivation for the lower bound that follows.

The following inequalities (analogous to the inequalities following Definition 5.6 of χ) are es-
sentially built into Definition 8.2 of χ̄:

χ̄∅({()}) ≤ 0 and χ̄A(A) ≤ 1 if A is atomic and |A| = 1,(base case)

χ̄A(A′) ≤ χ̄A(A) if A′ ⊆ A,(monotonicity)

χ̄A(A1 ∪ A2) ≤ χ̄A(A1) + χ̄A(A2) for all A1,A2,(sub-additivity)

χ̄{A,B}(A ./ B) ≤ max{χ̄A(A), χ̄B(B)} if A ∈P small
A , B ∈P small

B .(join rule)

The essential difference between χ and χ̄ is that χ allows arbitrary joins, while χ̄ only allows joins
as prescribed by the given union tree. Viewed as a minimum construction cost (see Remark 5.9), this
means that χ̄ has more highly constrained rules of construction compared with χ. Consequently,
χGA(A) ≤ χ̄A(A) for every union tree A and A ∈PG. Note that this inequality goes in the wrong
direction for the purpose of proving a lower bound on χ. In §9 we give a different inequality between
χ and χ̄ in the right direction.

26

Theorem 8.3 (Lower Bound for χ̄). For every union tree A and pathset A ∈PA,

χ̄A(A) ≥ ñ(1/4.41) log(`A)+∆A · δ(A).

The game plan for the rest of the paper is as follows: in §9 we derive our lower bound for χ
(Theorem 5.8) from Thereom 8.3. In §10 we establish some important properties of χ̄. Finally, in
§11 we give the proof of Theorem 8.3.

Remark 8.4 (Dual Characterization of χ̄). Similar to the dual characterization of χ mentioned in
Remark 5.7, χ̄ has a dual characterization as the unique pointwise maximal function from {(A,A) :
A is a union tree and A ∈PA} to R which satisfies inequalities (base case), (monotonicity), (sub-
additivity) and (join rule). This fact is established by a straightforward induction on union trees
(omitted here since we don’t actually use this dual characterization in our lower bound).

This dual characterization suggests an obvious “direct method” for proving a lower bound on
χ̄: find an explicit function from pairs (A,A) to R and show that this function satisfies inequalities
(base case), (monotonicity), (sub-additivity) and (join rule). This is analogous to the “direct
method” of proving a formula size lower bound via a complexity measure, defined as a function
M from {Boolean functions on n variables} to R satisfying inequalities M(f ∧ g) ≤M(f) +M(g)
and M(f ∨ g) ≤M(f) +M(g) in addition to base case inequalities M(f) ≤ 0 if f is constant and
M(f) ≤ 1 if f is a coordinate function (see [10]).

Using the direct method, we were only able to prove lower bounds on χ̄ for a few restricted
classes union trees (see Appendix B). For general union trees, we could not prove a lower bound
along the lines of Theorem 8.3 using the direct method. We still do not know of any explicit function
which satisfies (base case), (monotonicity), (sub-additivity) and (join rule) and maps (A, [n]Pk) to
nΩ(log k) for all union trees A with graph Pk. A priori, it is not even clear whether any such nice
explicit function exists.6

The proof of Theorem 8.3 which we present in §11 does not proceed via the direct method.
In particular, neither the function ñ(1/4.41) log(`A)+∆A ·δ(A) nor ñΦA ·δ(A) (defined in §11.1) satisfies
inequality (join rule). Rather, our proof involves a more subtle induction on union trees.

9 From χ to χ̄

In this section, we prove:

Reduction 9.1. Theorem 8.3 (lower bound on χ̄) =⇒ Theorem 5.8 (lower bound on χ).

The following definition of strict union tree is only needed in this section. Rather than A,B,C,
we write α, β, γ for this special class of union trees.

Definition 9.2. A union tree α is strict if Gα′′ ⊂ Gα′ for all α′′ ≺ α′ � α. For a pattern graph G,
let Strict(G) denote the set of strict union trees α with graph G.

It is important that the number of strict union trees with a given pattern graph is bounded
(though doubly exponential in |EG|).

6A natural approach is to consider functions of the form ncA · ν(A) where cA is a constant depending only on

A and ν : PA → R is a monotone sub-additive function, such as δ or µS or πS or any norm on R[n]VA
(viewing

PA
∼= {0, 1}[n]

VA
as a subset of R[n]VA

). For such functions, one only needs to show (join rule). The (base case) can
be handled by appropriate scaling.

27

Lemma 9.3. For every pattern graph G with r edges, there are only 2O(2r) strict union trees with
graph G.

Proof. Denote by s(r) the number of strict union trees supported on any fixed set of r edges. Note
that |Strict(G)| depends only on |EG| and that s(r) is an increasing function of r. We have s(1) = 1
and, for r ≥ 2,

s(r) =
∑

I,J⊂[r] : I∪J=[r]

s(|I|)s(|J |) ≤ 3rs(r − 1)2

for all r ≥ 2. Therefore,

s(r) ≤
r∏
i=1

3i2
(r−i)

= 32r
∑r
i=1 i2

−i
= 2O(2r).

We now give the main lemma needed for Reduction 9.1.

Lemma 9.4. For every pattern graph G and pathset A ∈PG, there is an indexed family {A(α)}α∈Strict(G)

of sub-pathsets A(α) ⊆ A such that

A =
⋃

α∈Strict(G)

A(α) and ∀α ∈ Strict(G), χ̄α(A(α)) ≤ χG(A).

Proof. By induction on |EG|. The lemma is trivial if |EG| ≤ 1 (since in this case |Strict(G)| = 1).
For the induction step, suppose G is a pattern graph with ≥ 2 edges. By Definition 5.6 of χ, there
exists a sequence (Hi,Ki,Bi, Ci)i with

Hi,Ki ⊂ G, Hi ∪Ki = G, Bi ∈P small
Hi , Ci ∈P small

Ki

such that
A ⊆

⋃
i

Bi ./ Ci and χG(A) =
∑
i

max{χHi(Bi), χKi(Ci)}.

For each α = {β, γ} ∈ Strict(G), define A(α) inductively by

A(α) := A ∩
⋃

i :Hi=Gβ ,Ki=Gγ

B(β)
i ./ C(γ)

i .

First, we show that A =
⋃
α∈Strict(G)A(α). The inclusion ⊇ is obvious. For the inclusion ⊆,

consider any x ∈ A. Then x belongs to Bi ./ Ci for some i. This means that xVHi ∈ Bi and
xVKi ∈ Ci. By the induction hypothesis, there exist β ∈ Strict(Hi) and γ ∈ Strict(Ki) such that

xVHi ∈ B
(β)
i and xVKi ∈ C

(γ)
i . Let α = {β, γ} and note that α ∈ Strict(G). Since x ∈ B(β)

i ./ C(γ)
i ,

it follows that x ∈ A(α), proving the inclusion ⊆.
Finally, for all α ∈ Strict(G), we show χ̄α(A(α)) ≤ χG(A) as follows:

χ̄α(A(α)) ≤ χ̄α(
⋃

i :Hi=Gβ ,Ki=Gγ

B(β)
i ./ C(γ)

i) (monotonicity)

≤
∑

i :Hi=Gβ ,Ki=Gγ

χ̄α(B(β)
i ./ C(γ)

i) (sub-additivity)

28

Noting that B(β)
i and C(γ)

i are small (since B(β)
i ⊆ Bi ∈P small

Hi
and C(γ)

i ⊆ Ci ∈P small
Ki

), we continue:

≤
∑

i :Hi=Gβ ,Ki=Gγ

max{χ̄β(B(β)
i), χ̄γ(C(γ)

i)} (join rule)

≤
∑

i :Hi=Gβ ,Ki=Gγ

max{χHi(Bi), χKi(Ci)} (ind. hyp.)

≤ χG(A).

The next corollary follows directly from Lemma 9.4.

Corollary 9.5. For every pattern graph G and pathset A ∈ PG, there is a strict union tree α ∈
Strict(G) and a sub-pathset A′ ⊆ A such that χ̄α(A′) ≤ χG(A) and δ(A) ≤ |Strict(G)| · δ(A′).

We conclude this section with the proof of Reduction 9.1.

Proof of Reduction 9.1. Assume Theorem 8.3 and consider arbitrary A ∈ PPk . By Corollary 9.5,
there exist α ∈ Strict(Pk) and A′ ⊆ A such that χα(A′) ≤ χPk(A) and δ(A) ≤ |Strict(Pk)| ·δ(A′) ≤
2O(2k) · δ(A′) (Lemma 9.3). We now have

χPk(A) ≥ χα(A′) ≥ ñ(1/4.41) log(`α)+∆α · δ(A′) (Theorem 8.3)

≥ ñ(1/4.41) log(k)+1

2O(2k)
· δ(A)

≥ n(1/4.41) log k

2O(2k)
· δ(A) (as ñ = n1−ε = n1−(1/ log k)).

This shows that Theorem 5.8 holds, which completes the proof of the reduction.

10 Projection and Restriction

In this section we establish two key properties of χ̄: it is monotone decreasing with respect to
projections to sub-union trees (Lemma 10.2) and restriction to unions of components (Lemma
10.6). We also introduce an operation on union trees A	B (Definition 10.7), read as “A restricted
away from B”. This notation will be extremely convenient in §11.

10.1 χ̄ Decreases Under Projection

Claim 10.1. For every non-atomic union tree {A,B} and pathset C ∈P{A,B}, we have χ̄A(projA(C)) ≤
χ̄{A,B}(C).

Proof. By Definition 8.2(iii) of χ̄{A,B}(C), there is a sequence (Ai,Bi)i such that

Ai ∈P small
A , Bi ∈P small

B , C ⊆
⋃
i

Ai ./ Bi and χ̄{A,B}(C) =
∑
i

max{χ̄A(Ai), χ̄B(Bi)}.

Note that projA(C) ⊆ projA(
⋃
iAi ./ Bi) ⊆

⋃
iAi. By monotonicity and sub-additivity of χ̄A, it

follows that

χ̄A(projA(C)) ≤ χ̄A(
⋃
i

Ai) ≤
∑
i

χ̄A(Ai) ≤ χ̄{A,B}(C).

29

Lemma 10.2 (χ̄ decreases under projections). For every union tree A and pathset A ∈ PA and
sub-union tree A′ � A, χ̄A′(projA′(A)) ≤ χ̄A(A).

Proof. Induction using Claim 10.1 and the observation that projS′(A) = projS′(projS(A)) for all
S′ ⊆ S ⊆ VA.

10.2 χ̄ Decreases Under Restriction

For a union tree A and a pathset A ∈ PA, Lemma 10.2 concerns projections of A of the form
projA′(A) where A′ is a sub-union tree of A. The restrictions of A that we consider next are not
restrictions of the form A|zA′ where z ∈ [n]VA\VA′ . Note that A|zA′ ⊆ projA′(A), so we already have
χ̄A′(A|zA′) ≤ χ̄A(A) by Lemma 10.2 and monotonicity of χ̄A′ .

Rather than restrictions over sub-union trees, we instead consider restrictions of the form A|zS
where z ∈ [n]VA\S and S ⊆ VA is a union of components of GA. We define an operation of
restriction on union trees; the restriction A�S is a union tree with VA�S = S. Even though A�S is
not necessarily a sub-union tree of A, we will show that χ̄A�S(A|zS) ≤ χ̄A(A).

Definition 10.3 (Restriction of Union Trees).

(i) For all S ⊆ Vk, let S denote the complement Vk \ S of S in Vk.

(ii) For a union tree A, we say that S is A-respecting if VA ∩ S is a union of components of GA.

Note that S is A-respecting ⇐⇒ S is A-respecting ⇐⇒ every leaf in A is labeled by an edge
vivi+1 ∈ Ek such that {vi, vi+1} ⊆ S or {vi, vi+1} ⊆ S. Also note that if S is {A,B}-respecting,
then it is both A-respecting and B-respecting and {A,B}�S = {A�S,B�S}.

(iii) If S is A-respecting, we denote by A�S the union tree obtained from A by pruning all leaves
labeled by edges whose endpoints are not contained in S. This pruning operation does not
simplify the pattern above the leaves (i.e. there is no propagation or change in the tree
structure of the pattern.)

For example, if A is the union tree {{v1v2, v5v6}, {v2v3, v6v7}} and S is the A-respecting set
{v1, v2, v3}, then A�S = {v1v2, v2v3}. Note that A�S = {v1v2, v2v3} also when S is the A-
respecting set {v1, v2, v3, v4}; in general, A�S = A�(VA ∩ S). Also note that A�S is not a
sub-union tree of A in this example.

Recall our convention concerning notation A|zS (see Definition 4.3): for every union tree A and

pathset A ∈PA and S ⊆ Vk and z ∈ [n]S , the pathset A|zS ∈PA�S is defined by A|zS := A|z′VA∩S =

{y ∈ [n]VA∩S : yz′ ∈ A} where z′ = zVA\S .

Lemma 10.4 (Smallness is preserved under restriction). For every union tree A and small pathset

A ∈P small
A and A-respecting S ⊆ Vk and z ∈ [n]S, we have A|zS ∈P small

A�S .

Proof. Immediate from Definition 5.3 of small pathsets.

Remark 10.5. Smallness is preserved under joins (Lemma 5.5) and restrictions to union of com-
ponents (Lemma 10.4). However, smallness is not preserved under projection to unions of compo-
nents. A counterexample is the union tree A = {v1v2, v3v4} and pathset A = {x ∈ [n]VA : x1 =
x3 and x2 = x4} ∈P small

A . Letting A′ be the atomic sub-union tree v1v2 of A, we have πA′(A) = 1,
hence projA′(A) /∈P small

A′ .

30

Lemma 10.6 (χ̄ decreases under restrictions). For every union tree A and pathset A ∈ PA and

A-respecting S ⊆ Vk and z ∈ [n]S, we have χ̄A�S(A|zS) ≤ χ̄A(A).

Proof. By induction on union trees. The lemma is trivial for empty and atomic union trees. For
the induction step, consider a non-atomic union tree {A,B} and assume the lemma holds for A and

B. Let C ∈P{A,B}, let S be a {A,B}-respecting subset of Vk, and let z ∈ [n]S . By Def. 8.2(iii) of
χ̄{A,B}(C), there is a sequence (Ai,Bi)i such that

Ai ∈P small
A , Bi ∈P small

B , C ⊆
⋃
i

Ai ./ Bi and χ̄{A,B}(C) =
∑
i

max{χ̄A(Ai), χ̄B(Bi)}.

By Lemma 10.4, Ai|zS ∈P small
A�S and Bi|zS ∈P small

B�S . We now have

χ̄{A,B}�S(C|zS) ≤ χ̄{A,B}�S
(⋃

i

(Ai ./ Bi)|zS
)

(monotonicity)

≤
∑
i

χ̄{A,B}�S((Ai ./ Bi)|zS) (sub-additivity)

=
∑
i

χ̄{A�S,B�S}(Ai|zS ./ Bi|zS)

≤
∑
i

max{χ̄A�S(Ai|zS), χ̄B�S(Bi|zS)} (join rule)

≤
∑
i

max{χ̄A(Ai), χ̄B(Bi)} (ind. hyp.)

= χ̄{A,B}(C).

10.3 The Operation A	B

We introduce an operation A	B on union trees (“A restricted away from B”).

Definition 10.7. For union trees A and B, we write A	B for the union tree A�S where S ⊆ VA
consists of the components of GA which do not intersect VB.

For example, if A = {{v1v2, v4v5}, {v2v3, v5v6}} (so GA is the union of paths v1v2v3 and v4v5v6)
and B = {v6v7}, then A	B = {v1v2, v2v3}.

Lemma 10.8. For all union trees C = {A,B} and A′ � A and B′ � B,

∆C ≤ ∆A′ + ∆B′	A′ + ∆C	{A′,B′}.

Proof. This follows from the observation that each component of GC contains at least one vertex
in GA′ , GB′	A′ or GC	{A′,B′}, and each component in any of these three graphs is contained in a
component of GC .

Lemma 10.9. For all union trees C = {A,B} and A′ � A and B′ � B and pathsets A ∈PA and
B ∈PB,

δ(A ./ B) ≤ πA′(A) · µB′	A′(projB′(B)) · µC	{A′,B′}(A ./ B).

31

Proof. By Lemma 4.6,

δ(A ./ B) ≤ πA′(A) · µVB′\VA′ (projB′(B)) · µVC\(VA′∪VB′)(A ./ B).

Since VB′	A′ ⊆ VB′ \ VA′ and VC	{A′,B′} ⊆ VC \ (VA′ ∪ VB′), by Lemma 4.4,

µVB′\VA′ (projB′(B)) ≤ µB′	A′(projB′(B)),

µVC\(VA′∪VB′)(A ./ B) ≤ µC	{A′,B′}(A ./ B).

Combining these inequalities finishes the proof.

11 Lower Bound for χ̄

In this section we prove Theorem 8.3, our lower bound for χ̄. Recall that `A denote the length of
the longest path in GA, i.e., the number of edges in the largest component of GA.

Theorem 8.3. (restated) For every union tree A and pathset A ∈PA,

χ̄A(A) ≥ ñ(1/4.41) log(`A)+∆A · δ(A).

To prove Theorem 8.3, first we define an auxiliary function Φ : {union trees} → R. We then
prove two lemmas: χ̄A(A) ≥ ñΦAδ(A) (Lemma 11.2) and ΦA ≥ 1

4.41 log(`A) + ∆A (Lemma 11.4).

11.1 Definition of ΦA

Definition 11.1. Let Φ : {union trees} → R be the unique minimal function such that the following
hold:

• ΦA = 0 if A is empty, and ΦA = 2 if A is atomic,

• for every non-atomic union tree C = {A,B} and sub-union trees A′ � A and B′ � B,

(†)CA′,B ΦC ≥ ΦA′ + ∆B	A′ + ∆C	{A′,B},

(‡)CA′,B′ ΦC ≥
1

2

(
ΦA′ + ΦB′	A′ + ∆C + ∆C	{A′,B′}

)
.

We refer to (†) and (‡) as the “one-sided” and “balanced” inequalities. Note that since {A,B} and
{B,A} are considered to be the same union tree, we also have the reverse inequalities (†)CB′,A and

(‡)CB′,A′ . For better readability, we sometimes write ΦA instead of Φ(A).

Some remarks on this definition:

• Minimality of Φ among functions satisfying these inequalities means that for every non-atomic
union tree C = {A,B}, at least one of the four inequalities (†)CA′,B, (†)CB′,A, (‡)CA′,B′ , (‡)CB′,A′
is tight (i.e. holds with equality) for some A′ � A and B′ � B.

• Note that Φ is monotone decreasing with respect to sub-union trees, that is, ΦA′ ≤ ΦA for
all A′ � A (by inequalities (†)).

32

• Φ increases by means of the contribution of ∆’s: if we remove the ∆’s from (†)CA′,B and

(‡)CA′,B′ (replacing these inequalities by ΦC ≥ ΦA′ and ΦC ≥ 1
2(ΦA′ + ΦB′) respectively), then

we would have ΦA = 2 for every nonempty union tree A. Intuitively, in the attempt to lower
bound ΦA, the objective of the game is to pick up as many ∆’s as possible.

• For the union trees Ak and Bk defined in Appendix A, we have ΦAk ≥ ΦAdk/4e + 1 by (†)
and ΦBk ≥ ΦBd(k−1)/2e + 1

2 by (‡) for all k ≥ 4. It follows that ΦAk ≥ 1
2 log k − O(1) and

ΦBk ≥ 1
2 log k −O(1).

11.2 Showing χ̄A(A) ≥ ñΦAδ(A)

We now prove the most important lemma in the overall proof of Theorem 8.3. Lemma 11.2 accounts
for the definition of ΦA (essentially ΦA is the maximum function for which the argument of Lemma
11.2 is valid). The two cases (†) and (‡) in the proof are inspired by the special cases proved in
Appendix B.

Lemma 11.2. For every union tree A and pathset A ∈PA, χ̄A(A) ≥ ñΦ(A)δ(A).

Proof. We argue by induction on union trees. The base case where A is empty or atomic is trivial.
For the induction step, consider a non-atomic union tree C = {A,B} and assume the lemma holds
for all smaller union trees.

We claim that it suffices to show that

(12) ñΦ(C)δ(A ./ B) ≤ max{χ̄A(A), χ̄B(B)}

for all A ∈ P small
A , B ∈ P small

B . To see that this suffices, consider any C ∈ PC . By Definition 8.2
of pathset complexity, there exists a covering C ⊆

⋃
iAi ./ Bi by joins of small pathsets Ai and Bi

such that χ̄C(C) =
∑

i χ̄A(Ai) + χ̄B(Bi). Note that

δ(C) ≤ δ(
⋃
i

Ai ./ Bi) ≤
∑
i

δ(Ai ./ Bi).

Assuming (12) holds for all Ai and Bi, we have

ñΦ(C)δ(C) ≤
∑
i

ñΦ(C)δ(Ai ./ Bi) ≤
∑
i

max{χ̄A(Ai), χ̄B(Bi)} = χ̄C(C).

We now turn to proving inequality (12). Fix small pathsets A ∈P small
A and B ∈P small

B . Note
that A ./ B ∈ P small

C by Lemma 5.5. Recall that at least one of the four inequalities (†)CA′,B,

(‡)CA′,B′ , (†)CB′,A, (‡)CB′,A′ is tight for some A′ � A and B′ � B. By symmetry of the argument, we
consider only the first two possibilities without loss of generality .

Case (†) (one-sided induction case): Assume that there exists A′ � A such that (†)CA′,B is
tight, that is,

(13) ΦC = ΦA′ + ∆B	A′ + ∆C	{A′,B}.

By Lemma 10.9, we have

δ(A ./ B) ≤ πA′(A) · µB	A′(B) · µC	{A′,B}(A ./ B).

33

Since B is B-small and A ./ B is C-small, we have

µB	A′(B) ≤ ñ−∆(B	A′) and µC	{A′,B}(A ./ B) ≤ ñ−∆(C	{A′,B}).

Combining these inequalities (and substituting δ(projA′(A)) for πA′(A)), we have

(14) δ(A ./ B) ≤ ñ−∆(B	A′)−∆(C	{A′,B})δ(projA′(A)).

Using the fact that χ̄ decreases under projections, together with the induction hypothesis, we have

ñΦ(C)δ(A ./ B) = ñΦ(A′)+∆(B	A′)+∆(C	{A′,B})δ(A ./ B) (by (13))

≤ ñΦ(A′)δ(projA′(A)) (by (14))

≤ χ̄A′(projA′(A)) (ind. hyp.)

≤ χ̄A(A) (Lemma 10.2)

≤ max{χ̄A(A), χ̄B(B)}.

Therefore, (12) holds in this case.

Case (‡) (balanced induction case): Assume that there exist A′ � A and B′ � B such that
(‡)CA′,B′ is tight, that is,

(15) ΦC =
1

2

(
ΦA′ + ΦB′	A′ + ∆C + ∆C	{A′,B′}

)
.

By Lemma 10.9, we have

δ(A ./ B) ≤ πA′(A) · µB′	A′(projB′(B)) · µC	{A′,B′}(A ./ B).

By definition of µB′	A′ , there exists z ∈ [n]VB
′\VB′	A′ such that

µB′	A′(projB′(B)) = δ(projB′(B)|zB′	A′).

C-smallness of A ./ B implies both

δ(A ./ B) ≤ ñ−∆(C) and µC	{A′,B′}(A ./ B) ≤ ñ−∆(C	{A′,B′}).

Taking square roots and combining these inequalities, we have

(16) δ(A ./ B) ≤
√
ñ−∆(C)−∆(C	{A′,B′}) · πA′(A) · δ(projB′(B)|zB′	A′).

Using the fact that χ̄ decreases under projections and restrictions (Lemmas 10.2 and 10.6),
together with the induction hypothesis, we have

ñΦ(A′)πA′(A) = ñΦ(A′)δ(projA′(A)) ≤ χ̄A′(projA′(A)) (ind. hyp.)(17)

≤ χ̄A(A) (Lemma 10.2)

and also

ñΦ(B′	A′)δ(projB′(B)|zB′	A′) ≤ χ̄B′	A′(projB′(B)|zB′	A′) (ind. hyp.)(18)

≤ χ̄B′(projB′(B)) (Lemma 10.6)

≤ χ̄B(B) (Lemma 10.2).

34

We now finish the proof using the inequality of arithmetic and geometric means (AM-GM
inequality):

ñΦ(C)δ(A ./ B) =
√
ñΦ(A′)+Φ(B′	A′)+∆(C)+∆(C	{A′,B′}) · δ(A ./ B) (by (15))

≤
√
ñΦ(A′)+Φ(B′	A′) · πA′(A) · δ(projB′(B)|zB′	A′) (by (16))

≤ 1

2

(
ñΦ(A′)πA′(A) + ñΦ(B′	A′)δ(projB′(B)|zB′	A′)

)
(AM-GM ineq.)

≤ 1

2

(
χ̄A(A) + χ̄B(B)

)
(by (17), (18))

≤ max{χ̄A(A), χ̄B(B)}.

Therefore, (12) holds in this case also, which concludes the proof.

11.3 Showing ΦA ≥ 1
4.41

log(`A) + ∆A

We now complete the proof of Theorem 8.3 by proving Lemma 11.4 (ΦA ≥ 1
4.41 log(`A) + ∆A for

all union trees A). We require one preliminary lemma.

Lemma 11.3. For every union tree A and A-respecting S ⊆ Vk, we have ΦA ≥ ΦA�S + ∆A�S.

Proof. We argue by induction on union trees. The lemma is trivial when A is empty or atomic. For
the induction step, consider any non-atomic union tree C = {A,B} and assume the lemma holds
for all smaller union trees.

Let S be any C-respecting subset of Vk. Note that S is C ′-respecting for any C ′ � C. Also note
that C�S = {A�S,B�S} and that every sub-union tree of A�S has the form A′�S where A′ � A
(and similarly for B�S). We will also use the fact that (A′	B′)�S = (A′�S)	(B′�S) for all A′ � A
and B′ � B.

From the definition of ΦC�S , it follows that at least one the four inequalities

(†)C�SA′�S,B�S , (‡)C�SA′�S,B′�S , (†)C�SB′�S,A�S , (‡)C�SB′�S,A′�S

is tight for some A′ � A and B′ � B. Once again, without loss of generality, we consider just the
first two possibilities.

First, consider the case that there exists A′ � A for which (†)C�SA′�S,B�S is tight, that is,

(19) ΦC�S = ΦA′�S + ∆(B	A′)�S + ∆(C	{A′,B})�S .

In this case, we have

ΦC ≥ ΦA′ + ∆B	A′ + ∆C	{A′,B} (by (†)CA′,B)

≥ ΦA′ + ∆B	A′ + ∆C	{A′,B}

+∆C�S −∆A′�S −∆(B	A′)�S −∆(C	{A′,B})�S (Lemma 10.8)

= ΦA′ −∆A′�S + ∆(B	A′)�S + ∆(C	{A′,B})�S + ∆C�S

≥ ΦA′�S + ∆(B	A′)�S + ∆(C	{A′,B})�S + ∆C�S (ind. hyp.)

= ΦC�S + ∆C�S (by (19)).

35

Finally, consider the alternative that there exist A′ � A and B′ � B for which (‡)C�SA′�S,B′�S is
tight, that is,

(20) ΦC�S =
1

2

(
ΦA′�S + Φ(B′	A′)�S + ∆C�S + ∆(C	{A′,B′})�S

)
.

In this case, we have

ΦC ≥ 1
2

(
ΦA′ + ΦB′	A′ + ∆C + ∆C	{A′,B′}

)
(by (‡)CA′,B′)

≥ 1
2

(
ΦA′ + ΦB′	A′ + (∆C�S + ∆C�S) + ∆C	{A′,B′}

)
+

1
2

(
∆C�S −∆A′�S −∆(B′	A′)�S −∆(C	{A′,B′})�S

)
(Lemma 10.8)

= 1
2

(
ΦA′ −∆A′�S + ΦB′	A′ −∆(B′	A′)�S + ∆C�S + ∆(C	{A′,B′})�S

)
+ ∆C�S

≥ 1
2

(
ΦA′�S + Φ(B′	A′)�S + ∆C�S + ∆(C	{A′,B′})�S

)
+ ∆C�S (ind. hyp.)

= ΦC�S + ∆C�S (by (20)).

Having shown ΦC ≥ ΦC�S + ∆C�S in both cases, we are done.

Lemma 11.4. For every union tree A, ΦA ≥ 1
c log(`A) + ∆A where c = 2 log(

√
13 + 1) ≤ 4.41.

An earlier version of this article had the constant c = 6 in Lemma 11.4. An anonymous referee
pointed out an optimization in the proof which gives the better constant c. (We remark that the
best possible constant c in this lemma is ≥ 2 by Proposition 5.11 and Corollary A.3.)

Proof. Here c is chosen such that 1
2 −

1
2c/2
− 1

2c−1 = 1
2c−2 .

We argue by induction on union trees. The base case where A is empty or atomic is trivial.
For the induction step, let A be a non-atomic union tree and assume the lemma holds for all
smaller union trees. We will consider a sequence of cases. In each case, after showing that ΦA ≥
1
c log(`A)+∆A under a given hypothesis, we will proceed assuming the negation of that hypothesis.
The sequences of cases is summarized at the end of the proof.

First, consider the case that GA is disconnected (i.e. ∆A ≥ 2). Let S be the largest component
of GA. We have

ΦA ≥ ΦA�S + ∆A�S (Lemma 11.3)

≥ 1
c log(`A�S) + ∆A�S + ∆A�S (ind. hyp.)

= 1
c log(`A) + ∆A.

This proves the lemma in the case where GA is disconnected.
Therefore, we proceed under the assumption that GA is connected (i.e. ∆A = 1). Without loss

of generality, we assume that GA = Pk (i.e. `A = k). Our goal is to show that

ΦA ≥ 1
c log(k) + 1.

Consider the case that there exists a sub-union tree A′ � A such that |EA′ | ≥ 1
2c−1k and

∆A′ ≥ 2. Note that `A′ ≥ |EA′ |/∆A′ (i.e. the number of edges in the largest component of GA′ is
at least the number of edges in GA′ divided by the number of components in GA′). We have

ΦA ≥ ΦA′ ≥ 1
c log(`A′) + ∆A′ (ind. hyp.)

≥ 1
c log(k)− c−1

c −
1
c log(∆A′) + ∆A′ (`A′ ≥ |EA′ |/∆A′ ≥ 1

2c−1k∆A′)

≥ 1
c log(k)− c−1

c −
1
c log(2) + 2 (∆A′ ≥ 2 and x− 1

c log x increasing for x ≥ 2)

= 1
c log(k) + 1.

36

This proves the lemma in this case.
Therefore, we proceed under the following assumption:

(~) for all A′ � A, if |EA′ | ≥ 1
2c−1k then ∆A′ = 1.

Going forward, the following notation will be convenient: for a proper sub-union tree B ≺ A, let B↑

denote the parent of B in A, and let B∼ denote the sibling of B in A. Note that B↑ = {B,B∼} � A.
By walking down the union tree A, we can proper sub-union trees B,Z ≺ A such that

v0 ∈ VB, vk ∈ VZ , |EB|, |EZ | < 1
2c/2

k, |EB↑ |, |EZ↑ | ≥ 1
2c/2

k.

Fix any choice of such B and Z. Note that GB↑ and GZ↑ are connected by (~). In particular,
GB↑ is a path of length |EB↑ | with initial endpoint v0, and GZ↑ is a path of length |EZ↑ | with final
endpoint vk.

Consider the case that B↑ and Z↑ are vertex-disjoint. Note that 1
2c/2

k ≥ 1
2c−1k, so the as-

sumption (~) implies that B↑ and Z↑ are connected and `B↑ , `Z↑ ≥ 1
2c/2

k. Let Y denote the least

common ancestor of B↑ and Z↑ in A. We have

ΦA ≥ ΦY ≥ 1
2

(
ΦB↑ + ΦZ↑	B↑ + ∆Y + ∆Y	{B↑,Z↑}

)
(by (‡)YB↑,Z↑)

≥ 1
2

(
ΦB↑ + ΦZ↑

)
+ 1

2 (∆Y ≥ 1 and Z↑ 	B↑ = Z↑)

≥ 1
2

(
1
c log(`B↑) + ∆B↑ + 1

c log(`Z↑) + ∆Z↑
)

+ 1
2 (ind. hyp.)

≥ 1
2

(
1
c log(1

2c/2
k) + 1 + 1

c log(1
2c/2

k) + 1
)

+ 1
2

= 1
c log(k) + 1.

Therefore, we proceed under the assumption that B↑ and Z↑ are not vertex-disjoint. It follows
that `B↑ ≥ k/2 or `Z↑ ≥ k/2. Without loss of generality, we assume that `B↑ ≥ k/2. (We now
forget about Z and Z↑.)

Before continuing, let’s take stock of the assumptions we have made so far:

GA = Pk, (~), B � A, v0 ∈ VB, |EB| < 1
2c−1k, |EB↑ | = `B↑ ≥ k/2.

Going forward, we will define vertices vr, vs, vt where 0 < r < s < t ≤ k. The following illustration
might be helpful for what follows:

37

0 s tr k

A

B↑

B

B∼

C

C↑

C∼

D

k/2

A

C

C↑

C∼

D

B↑

B B∼

We first define vr ∈ B and vt ∈ B∼ as follows: Let {v0, . . . , vr} be the component of GB
containing v0. (That is, the component of v0 in GB is a path whose initial vertex is v0; let vr be
the final vertex in this path.) Let vt be the vertex in VB∼ with maximal index t (i.e. farthest away
from v0).

Note that EB contains edges vivi+1 for all i ∈ {0, . . . , r − 1} ∪ {t, . . . , dk/2e − 1}. (In the
event that t < k/2, since GB↑ = GB ∪ GB∼ is a path of length ≥ k/2 and GB∼ does not contain
vertices vt+1, . . . , vdk/2e, it follows that GB contains all edges between vt and vdk/2e.) Therefore,

r + (k/2)− t ≤ |EB| < 1
2c/2

k. It follows that

t− r > (1
2 −

1
2c/2

)k.

Next, note that |EB∼ | ≥ |EB↑ | − |EB| ≥ (1
2 −

1
2c/2

)k > 1
2c−1k. We now walk down B∼ to find a

proper sub-union tree C ≺ B∼ such that

vt ∈ VC , |EC | < 1
2c−1k, |EC↑ | ≥ 1

2c−1k.

Fix any choice of such C. Note that GC↑ is connected by (~).
Consider the case that |EC↑ | < (1

2 −
1

2c/2
)k. Since GC↑ is connected and vt ∈ VC↑ and t − r >

(1
2 −

1
2c/2

)k, it follows that VC↑ ∩ {v0, . . . , vr} = ∅ and hence ∆B	C↑ ≥ 1. We have

ΦA ≥ ΦB↑ ≥ ΦC↑ + ∆B	C↑ + ∆B↑	{B,C↑} (by (†)B↑C↑,B)

≥ ΦC↑ + 1

≥ 1
c log(`C↑) + ∆C↑ + 1 (ind. hyp.)

≥ 1
c log(1

2c−1k) + 2

> 1
c log(k) + 1.

38

Therefore, we proceed under the assumption that |EC↑ | ≥ (1
2 −

1
2c/2

)k. Since EC↑ = EC ∪EC∼ ,
we have

|EC∼ | ≥ |EC↑ | − |EC | > (1
2 −

1
2c/2
− 1

2c−1)k = 1
2c−2k.

We now define vertex vs ∈ VC . Since vt is the vertex of GB∼ with maximal index, it follows
that vtvt+1 /∈ EB∼ and hence vtvt+1 /∈ EC (since C ≺ B∼). Therefore, the component of GC
containing vt is a path with final vertex vt; let vs be the initial vertex in this path. That is,
{vs, . . . , vt} is the component of GC which contains vt. Recall that t − r > (1

2 −
1

2c/2
)k and note

that t− s ≤ |EC | < 1
2c−1k. Therefore,

s− r = (t− r)− (t− s) > (1
2 −

1
2c/2
− 1

2c−1)k = 1
2c−2k.

We now claim that there exists a proper sub-union tree D ≺ C∼ such that

1
2c−1k ≤ |ED| < 1

2c−2k.

To see this, note that there exists a chain of sub-union trees C∼ = D0 � D1 � · · · � Dj such that

Dj is atomic and Di−1 = D↑i and |EDi | ≥ |ED∼i | for all i ∈ {1, . . . , j}. Since |ED0 | > 1
2c−2k and

|EDj | = 1 and |EDi−1 | ≤ |EDi |+ |ED∼i | ≤ 2|EDi |, it must be the case that there exists i ∈ {1, . . . , j}
such that 1

2c−1k ≤ |EDi | < 1
2c−2k.

Since |ED| ≥ 1
2c−1k, (~) implies that GD is connected. Since |ED| < 1

2c−2k and s − r > 1
2c−2k,

it follows that VD cannot contain both vr and vs. We are now down to our final two cases: either
vr /∈ VD or vs /∈ VD.

First, suppose that vr /∈ VD. We have ∆B	D ≥ 1 and hence

ΦA ≥ ΦB↑ ≥ ΦD + ∆B	D + ∆B↑	{B,D} (by (†)B↑D,B)

≥ ΦD + 1

≥ 1
c log(`D) + ∆D + 1 (ind. hyp.)

≥ 1
c log(1

2c−1k) + 2

> 1
c log(k) + 1.

Finally, we are left with the alternative that vs /∈ VD. In this case ∆C	D ≥ 1 and hence (substituting
C for B in the above), we have

ΦA ≥ ΦC↑ ≥ ΦD + ∆C	D + ∆C↑	{C,D} ≥ ΦD + 1 > 1
c log(k) + 1.

We have now covered all cases. In summary, we considered cases in the following sequence:

1. ∆A ≥ 2 else assume wlog GA = Pk,

2. ∃A′ ≺ A with ∆A′ ≥ 2 and `A′ ≥ 1
2c−1k else assume (~),

3. B↑ and Z↑ are vertex-disjoint else assume wlog |EB↑ | ≥ k/2,

4. |EC↑ | < (1
2 −

1
2c/2

)k else assume |EC↑ | ≥ (1
2 −

1
2c/2

)k,

5. vr /∈ VD or vs /∈ VD.

Since ΦA ≥ 1
c log(`A) + ∆A in each case, the proof is complete.

As we have now proved Lemmas 11.2 and 11.4, this completes the proof of Theorem 8.3 and
hence also of Theorem 2.1.

39

12 Conclusion

We proved the first super-polynomial separation in the power of bounded-depth Boolean formulas
vs. circuits via technique based on the notion of pathset complexity. A natural question for future
research is whether the pathset complexity technique can be used to derive lower bounds for distance
k(n) connectivity in other models of computation. In a subsequent work of the author [19], pathset
complexity was used to prove the first average-case lower bounds under product distributions against
the class monotone-NC1 of polynomial-size monotone formulas.

We remark that the results in this paper also extend to the average-case setting. Let p(n) =
Θ(n−(k+1)/k) be the exact threshold function such that

P
G=G(n,p)

[G ∈ stconn(k(n))] = 1/2

where G(n, p) is the Erdős-Rényi random graph with edge probability p(n). Our proof of Theorem
2.1 is easily adapted to give the same n(1/4.41) log k−O(1) lower bound for bounded-depth formulas F
which satisfy

P
G=G(n,p)

[F (G) = 1 ⇐⇒ G ∈ stconn(k(n))] ≥ 1/2 + ε

for any constant ε > 0. Using the idea behind Proposition 5.11, we can construct formulas F of
size n(1/2) log k+O(1) and depth O(log k) which solve stconn(k(n)) in a strong average-case sense:

P
G=G(n,p)

[F (G) = 1 ⇐⇒ G ∈ stconn(k(n))] ≥ 1− exp(−nΩ(1)).

It would be interesting to close the gap between 1
4.41 log k and 1

2 log k in these upper and lower
bounds.

A Key Examples

We introduce two key examples of union trees, denoted Ak and Bk, and present upper bounds for
χ̄ with respect to these union trees. In the next section, we prove lower bounds for two classes of
union trees which generalize Ak and Bk. The arguments in these special cases show up in the two
cases (†) and (‡) of our main lower bound (Theorem 8.3).

Notation A.1. Recall Notation 5.12 for s-shifted pattern graphs G.s and pathsets A.s. For a
union tree A and integer s, we define the s-shifted union tree A.s analogously by replacing each
label vivi+1 with the label vi+svi+s+1.

Definition A.2 (Union Trees Ak and Bk). We define union trees Ak and Bk for all k ≥ 1 by
the following induction. Let A1 = B1 := the atomic union tree labeled by v0v1. For k ≥ 2, let
Ak := {Aj , A

.j
k−j} where j = dk/2e, and let Bk := {Bk−1, B

.1
k−1}. For example, the explicit pictures

of A8 and B4 are:

A8

v0v1 v1v2 v2v3 v3v4 v4v5 v5v6 v6v7 v7v8

B4

v0v1 v1v2 v1v2 v2v3 v1v2 v2v3 v2v3 v3v4

40

Intuitively, the union treeAk corresponds to the recursive doubling algorithm for distconn(k, n).
Note that we have essentially already encountered this union tree in the proof of Proposition 5.11
(our upper bound for χPk). In fact, this proof shows:

Corollary A.3. For all A ∈PAk , χ̄Ak(A) ≤ O(n(1/2)dlog ke+2).

The union tree Bk has a different nature than Ak. Whereas sub-union trees Aj and A.jk−j of Ak
overlap at only a single vertex vj , sub-union trees Bk−1 and B.1

k−1 of Bk overlap to the maximum
possible extent. Despite this difference, it turns out that there is also a reasonable upper bound
for χ̄Bk .

Proposition A.4. For all B ∈PBk , χ̄Bk(B) ≤ nln k+1.

Proof. We present a similar argument to the proof of Proposition 5.11. For all k ≥ 1, define
Bk ∈PBk by

Bk := {x ∈ [n]Vk : x0, . . . , xk ≤ n1−1/(k+1)}.

We have Bk−1 ./ B.1k−1 = {x ∈ [n]Vk : x0, . . . , xk ≤ n1−1/k}. For all 1 ≤ t0, . . . , tk ≤ n1/k(k+1), let

Copyt0,...,tk(Bk−1 ./ B.1k−1) :=
{
x ∈ [n]Vk : ti − 1 <

xi

n1−1/k
≤ ti for all 0 ≤ i ≤ k

}
.

Note that
Bk =

⋃
1≤t0,...,tk≤n1/k(k+1)

Copyt0,...,tk(Bk−1 ./ B.1k−1).

Using (sub-additivity) and (join rule), together with the invariance of χ̄ under coordinate-wise
permutations of [n] and under shifts, we have

χ̄Bk(Bk) ≤ n1/kχ̄Bk−1
(Bk−1).

This recurrence, together with the base case χ̄B1(B1) = n, implies

χ̄Bk(Bk) ≤ n1+(1/2)+···+(1/k) ≤ nln k+1.

Noting that [n]Vk is covered by n copies of Bk, we have χ̄Bk([n]Vk) ≤ nln k+1. The proposition then
follows using (monotonicity).

In Appendix B we prove matching lower bounds for χ̄Ak and χ̄Bk . In fact, these lower bounds
apply to two classes of union trees which include Ak and Bk. While the upper bounds for χ̄Ak and
χ̄Bk are quite similar, our lower bound arguments are significantly different. The arguments in these
two special cases—a “one-sided” induction for χ̄Ak and a “balanced” induction using the AM-GM
inequality for χ̄Bk—show up in the two cases (†) and (‡) of our general lower bound (Theorem 8.3).
For this reason, the reader might find the results in Appendix B to be a helpful warm-up.

Remark A.5. The pathsets Ak and Bk which show up in the proofs of our upper bounds are of a
particularly simple form: they are rectangular subsets of [n]Vk . In Appendix C we discuss a notion
of rectangular pathset complexity χ̄rect. Proving lower bounds for χ̄rect turns our to be much easier
than for χ̄. We present an example (the “palindrome pathset”) which illustrates the difficulty in
attempting to generalize this easier lower bound to the non-rectangular setting.

41

B Lower Bound for χ̄: Special Cases

We prove easier special cases of our lower bound for χ̄ with respect to two classes of union trees
which include the key examples Ak and Bk introduced in §A. Although the results of this appendix
are not used in the main body of the paper, the arguments in the proof show up in the two cases
(†) and (‡) of our general lower bound.

Definition B.1.

(i) For a union tree A,

— let Vends(A) ⊆ VA denote the set of endpoints in GA (i.e. vertices of in-degree or out-degree
zero), and let Vinterior(A) := VA \ Vends(A) denote the set of interior vertices in GA,

— let I(A) denote the set of intervals in GA (i.e. nonempty subsets of VA which are connected
in GA).

Note that `A = max
I∈I(A)

|I| − 1 and ∆A = |Vends(A)| / 2.

(ii) The classes of end-joining and fully connected union trees are defined as follows:

— A is end-joining if no edge of Pk labels more than one leaf of A (equivalently, EA1∩EA2 = ∅
for all non-atomic sub-union trees {A1, A2} � A),

— A is fully connected if GA′ is connected (i.e. ∆A′ = 1) for all sub-union trees A′ � A.

Note that union trees Ak and Bk are both fully connected, while only Ak is end-joining (for
k ≥ 3).

(iii) Functions ψA, ξA : PA → R are defined as follows:

— for end-joining union trees A,

ψA(A) := ñ
1
2

(
log(`A)+∆A

)√
Ez∈[n]Vends(A)

[
δ(A|zVinterior(A))

2
]
,

— for fully connected union trees A,

ξA(A) := max
I∈I(A)

ñ
1
4

(
log(|I|+1)+|I∩Vends(A)|

)
· πI(A).

For non-end-joining union trees A, we set ψA(A) := 0, and for non-fully connected union trees
A, we set ξA(A) := 0.

Proposition B.2. Both ψ and ξ are lower bounds on pathset complexity. That is, for every union
tree A and pathset A ∈PA, we have ψA(A) ≤ χ̄A(A) and ξA(A) ≤ χ̄A(A). In particular,

χ̄Ak([n]Vk) ≥ ψAk([n]Vk) ≥ ñ
1
2

(log(k)+1) ≥ n
1
2

log k,

χ̄Bk([n]Vk) ≥ ξBk([n]Vk) ≥ ñ
1
4

(log(k+1)+2) ≥ n
1
4

log k.

42

Recall from Remark 8.4 the dual characterization of χ̄ as the unique coordinate-wise maximal
function from pairs (A,A) to R which satisfies inequalities (base case), (monotone), (sub-additive)
and (join rule). It is easy to see that ψ and ξ satisfy the first three of these inequalities. To prove
Proposition B.2, it suffices to show that ψ and ξ also satisfy inequality (join rule). We begin with
ψ.

Lemma B.3. For every non-atomic end-joining union tree C = {A,B} and small pathsets A ∈
P small
A and B ∈P small

B ,
ψC(A ./ B) ≤ max{ψA(A), ψB(B)}.

Proof. Without loss of generality, assume that `A ≥ `B. After making three observations, will show
that ψC(A ./ B) ≤ ψA(A).

First, note that each connected component of GC (= GA ∪GB) is the union of at most ∆A +
∆B −∆C + 1 components of GA and GB. It follows that `C ≤ (∆A + ∆B −∆C + 1) · `A.

Since C is end-joining, Vends(C) is the symmetric difference of Vends(A) and Vends(B). By the
Cauchy-Schwarz inequality,

E
c∈[n]Vends(C)

[
δ((A ./ B)|cVinterior(C))

2
]

= E
x∈[n]Vends(A)\Vends(B)

y∈[n]Vends(B)\Vends(A)

[(
E

z∈[n]Vends(A)∩Vends(B)

[
δ(A|xzVinterior(A)) · δ(B|

yz
Vinterior(B))

])2]
≤ E

x∈[n]Vends(A)\Vends(B)

z∈[n]Vends(A)∩Vends(B)

[
δ(A|xzVinterior(A))

2
]

E
y∈[n]Vends(B)\Vends(A)

z∈[n]Vends(A)∩Vends(B)

[
δ(B|yzVinterior(B))

2
]

= E
a∈[n]Vends(A)

[
δ(A|aVinterior(A))

2
]

E
b∈[n]Vends(B)

[
δ(B|bVinterior(B))

2
]
.

We next note that B-smallness of B implies

E
b∈[n]Vends(B)

[
δ(B|bVinterior(B))

2
]
≤ E

b∈[n]Vends(B)

[
δ(B|bVinterior(B))

]
= δ(B) ≤ ñ−∆B .

Putting these inequalities together, we have

ψC(A ./ B) = ñ
1
2

(
log(`C)+∆C

)√
Ec∈[n]Vends(C)

[
δ(A ./ B|cVinterior(C))

2
]

≤ ñ
1
2

(
log(`A)+log(∆A+∆B−∆C+1)+∆C−∆B

)√
Ea∈[n]Vends(A)

[
δ(A|aVinterior(A))

2
]

= ñ
1
2

(
log(∆A+∆B−∆C+1)+∆C−∆B−∆A

)
· ψA(A)

≤ ψA(A)

using the fact that log(s+1) ≤ s for every integer s ≥ 0. We get ψC(A ./ B) ≤ max{ψA(A), ψB(B)}
as required.

We next show that ξ satisfies inequality (join rule).

Lemma B.4. For every non-atomic fully connected union tree C = {A,B} and small pathsets
A ∈P small

A and B ∈P small
B ,

ξC(A ./ B) ≤ ξA(A) + ξB(B)

2
.

43

Proof. Fix I ∈ I(C) such that

ξC(A ./ B) = ñ
1
4

(
log(|I|+1)+|I∩Vends(C)|

)
πI(A ./ B).

We consider various cases depending on |I∩Vends(C)| ∈ {0, 1, 2}. The most important case is where
|I ∩ Vends(C)| = 2 (i.e. I contains both endpoints of GC). Because GC is connected, this means
that I = VC (= VA ∪ VB) and hence πI(A ./ B) = δ(A ./ B).

Within this case, the most important sub-case is where |EA|, |EB| ≥ 1
2 |EC |. In this sub-case,

we argue as follows. Without loss of generality, VC = {v0, . . . , vk} (i.e. GC is the path Pk) and
v0 ∈ VA and vk ∈ VB. Let j = bk−1

2 c and J = {v0, . . . , vj} and K = {vk−j , . . . , vk} and note that
J ∈ I(A) and K ∈ I(B). Since v0 ∈ J ∩ Vends(A) and vk ∈ K ∩ Vends(B), we have

(21) log(k+ 2) ≤ log(|J |+ 1) + |J ∩ Vends(A)| and log(k+ 2) ≤ log(|K|+ 1) + |K ∩ Vends(B)|.

Next, observe that δ(A ./ B) ≤ ñ−1 by C-smallness of A ./ B. We also have the bound
δ(A ./ B) ≤ πJ(A) · πK(B) by Lemmas 4.4 and 4.5 (since J ∩K = ∅). Taking the geometric mean
of these two inequalities, we have

δ(A ./ B) ≤ ñ−1/2
√
πJ(A) · πK(B).

Putting these pieces together, we have

ξC(A ./ B) = ñ
1
4

(
log(k+2)+2

)
δ(A ./ B)

≤ ñ
1
4

log(k+2)
√
πJ(A) · πK(B)

≤ 1

2

(
ñ

1
4

log(k+2)πJ(A) + ñ
1
4

log(k+2)πK(B)
)

(AM-GM ineq.)

≤ 1

2

(
ñ

1
4

(
log(|J |+1)+|J∩Vends(A)|

)
πJ(A) + ñ

1
4

(
log(|K|+1)+|K∩Vends(B)|

)
πK(B)

)
(by (21))

≤ 1

2

(
ξA(A) + ξB(B)

)
(ind. hyp.)

In all other cases (i.e. when |I ∩ Vends(C)| < 2 or min{|EA|, |EB|} < |EC |/2), the inequality is
proved by finding J ∈ I(A) or K ∈ I(B) such that |I∩Vends(C)| < |J∩Vends(A)| or |K ∈ Vends(B)|.
We omit the analysis of these cases, since the arguments are not relevant to our main pathset
complexity lower bound.

Having shown that ψ and ξ both satisfying (join rule), the proof of Proposition B.2 is complete.
Combining our upper and lower bounds for χ̄Ak and χ̄Bk (Corollary A.3 and Propositions A.4 and
B.2), we have

Corollary B.5. With respect to union trees Ak and Bk, the pathset complexity of the complete
Pk-pathset [n]Vk has the following bounds:

n
1
2

log k−O(1) ≤ χ̄Ak([n]Vk) ≤ kn
1
2

log k+O(1),

n
1
4

log k−O(1) ≤ χ̄Bk([n]Vk) ≤ 2knln k+O(1).

Since ΦBk = 1
2 log k − O(1) (as noted in §11.1), Theorem 8.3 gives the stronger lower bound

χ̄Bk([n]Vk) ≥ ñ(1/2) log k−O(1) = n(1/2) log k−O(1). Even after extensively studying this special case,
we were unable to narrow the gap between 1

2 log k and ln k (≈ 0.69 log k) in the exponent of n in
χ̄Bk([n]Vk).

44

C Rectangular Pathsets

A set X ⊆ [n]V is rectangular if there exist sets Si ⊆ [n], i ∈ V , such that X = {x ∈ [n]V : xi ∈ Si for
all i ∈ V }. For a pattern graphG, let RG = {A ∈PG : A is rectangular} and Rsmall

G = RG∩P small
G .

For A ∈ RG, we define rectangular pathset complexity χ̄rect
G (A) exactly like pathset complexity

χ̄G(A) (Definition 5.6) except with RG and Rsmall
G replacing PG and P small

G . Analogously, we
define χ̄rect

A (A) for union trees A. Note that χ̄A(A) ≤ χ̄rect
A (A) for all A ∈ RA.

Remark C.1. I venture to guess that χ̄A(A) = χ̄rect
A (A) for all A ∈ RA, but have no idea how to

prove this.

We have remarked that our upper bounds on χ̄Ak and χ̄Bk (Corollary A.3 and Proposition A.4)
involved only rectangular pathsets. It follows that the same upper bounds apply to χ̄rect

Ak
and χ̄rect

Bk
.

As for lower bounds on χ̄rect, this turns out to be significantly easier than our lower bound
for χ̄. Similar to our lower bound for fully connected union trees in Appendix B, we can lower
bound χ̄rect

G (A) for all A ∈ RG in terms of the projection densities πS(A) where S ∈ I(G) via a
function similar to ξA(A). A key difference when it comes rectangular pathsets is that πS = µS
(projection density = maximum restriction density) and hence smallness of rectangular pathsets is
preserved under projections to a union of components (cp. Remark 10.5). This fact turns out to
greatly simplify the task of proving a lower bound for χ̄rect.

The next example shows that projections of non-rectangular pathsets can be tricky. This
illustrates the difficulty in generalizing the lower bound for χ̄rect to the non-rectangular setting.

Example C.2. For k ≥ 1, let Pal2k ∈PP2k
be the “palindrome pathset”

Pal2k =
{
x ∈ [n]{v0,...,v2k} : xk−i = xk+i for all 0 ≤ i ≤ k

}
.

The palindrome pathset Pal2k has low density, while having the maximum projection over
vertices v0, . . . , vk:

δ(Pal2k) = n−k and π{v0,...,vk}(Pal2k) = 1.

It turns out that Pal2k is inexpensive to construct, given the right union tree. Let M2k be the
union tree

M2k

...

vk−1vk vkvk+1 vk−2vk−1 vk+1vk+2

vk−3vk−2 vk+2vk+3

v0v1 v2k−1v2k

It is easy to show that χ̄M2k
(Pal2k) ≤ O(n2). On the other hand, for any fully connected union

tree C with graph P2k (such as A2k or B2k), the lower bound of Appendix B implies

χ̄C(Pal2k) ≥ ξC(Pal2k) ≥ ñ
1
4

(
log(|{v0,...,vk}|+1)+|{v0,...,vk}∩Vends(A)|

)
· π{v0,...,vk}(A) = nΩ(log k).

45

Acknowledgements

This work was carried out while the author was at the National Institute of Informatics in Tokyo,
supported by the JST ERATO Kawarabayashi Large Graph Project. I am grateful to Osamu
Watanabe and Rahul Santhanam for helpful discussions, Stasys Jukna for stimulating discussions
at a time when I was stuck on the proof. Thanks also to Igor Carboni Oliveira for valuable feedback
on an early draft of this paper. Finally and not least, I thank the anonymous referees for their close
reading and many suggested improvements, including a simplification of Claim 6.5 and optimization
of the bound in Lemma 11.4.

References

[1] Miklós Ajtai. First-order definability on finite structures. Annals of Pure and Applied Logic,
45(3):211–225, 1989.

[2] Paul Beame, Russell Impagliazzo, and Toniann Pitassi. Improved depth lower bounds for small
distance connectivity. Computational Complexity, 7(4):325–345, 1998.

[3] Stephen Bellantoni, Toniann Pitassi, and Alasdair Urquhart. Approximation and small-depth
frege proofs. SIAM Journal on Computing, 21(6):1161–1179, 1992.

[4] Xi Chen, Igor Oliveira, Rocco A. Servedio, and Li-Yang Tan. Near-optimal small-depth lower
bounds for small distance connectivity. In Proc. 48th ACM Symposium on Theory of Comput-
ing, pages 612–625, 2016.

[5] Jeff Edmonds, Chung Keung Poon, and Dimitris Achlioptas. Tight lower bounds for st-
connectivity on the NNJAG model. SIAM Journal on Computing, 28(6):2257–2284, 1999.

[6] Merrick L. Furst, James B. Saxe, and Michael Sipser. Parity, circuits, and the polynomial-time
hierarchy. Mathematical Systems Theory, 17:13–27, 1984.

[7] Johan H̊astad. Computational limitations of small-depth circuits. MIT press, 1987.

[8] Johan H̊astad. The shrinkage exponent of de Morgan formulas is 2. SIAM Journal on Com-
puting, 27(1):48–64, 1998.

[9] Svante Janson. Poisson approximation for large deviations. Random Structures & Algorithms,
1(2):221–229, 1990.

[10] Stasys Jukna. Boolean Function Complexity: Advances and Frontiers, volume 27. Springer-
Verlag Berlin Heidelberg, 2012.

[11] Mauricio Karchmer and Avi Wigderson. Monotone circuits for connectivity require super-
logarithmic depth. SIAM Journal on Discrete Mathematics, 3(2):255–265, 1990.

[12] Mrinal Kumar and Shubhangi Saraf. On the power of homogeneous depth 4 arithmetic circuits.
SIAM Journal on Computing, 46(1):336–387, 2017.

[13] Noam Nisan and Avi Wigderson. Lower bounds on arithmetic circuits via partial derivatives.
Computational Complexity, 6(3):217–234, 1996.

46

[14] Aaron Potechin. Bounds on monotone switching networks for directed connectivity. In Foun-
dations of Computer Science (FOCS), 2010 51st Annual IEEE Symposium on, pages 553–562.
IEEE, 2010.

[15] Ran Raz and Avi Wigderson. Probabilistic communication complexity of boolean relations. In
Foundations of Computer Science, 1989., 30th Annual Symposium on, pages 562–567. IEEE,
1989.

[16] Omer Reingold. Undirected connectivity in log-space. Journal of the ACM (JACM), 55(4):17,
2008.

[17] John Riordan and Claude E Shannon. The number of two-terminal series-parallel networks.
J. Math. Phys, 21(2):83–93, 1942.

[18] Benjamin Rossman. On the constant-depth complexity of k-clique. In Proceedings of the 40th
Annual ACM Symposium on Theory of Computing, pages 721–730. ACM, 2008.

[19] Benjamin Rossman. Correlation bounds against monotone NC1. In Proc. 30th Annual Com-
putational Complexity Conference, pages 392–411, 2015.

[20] Benjamin Rossman. The average sensitivity of bounded-depth formulas. Computational Com-
plexity, 27(2):209–223, 2018.

[21] Benjamin Rossman and Srikanth Srinivasan. Separation of AC0[⊕] formulas and circuits. In
LIPIcs-Leibniz International Proceedings in Informatics, volume 80. Schloss Dagstuhl-Leibniz-
Zentrum fuer Informatik, 2017.

[22] Petr Savickỳ and Alan R Woods. The number of boolean functions computed by formulas of
a given size. Random Structures & Algorithms, 13(3-4):349–382, 1998.

[23] Walter J Savitch. Relationships between nondeterministic and deterministic tape complexities.
Journal of computer and system sciences, 4(2):177–192, 1970.

[24] Eli Shamir and Marc Snir. On the depth complexity of formulas. Mathematical Systems
Theory, 13(1):301–322, 1979.

[25] PM Spira. On time-hardware complexity tradeoffs for boolean functions. In Proceedings of the
4th Hawaii Symposium on System Sciences, pages 525–527, 1971.

[26] Prasoon Tiwari and Martin Tompa. A direct version of Shamir and Snir’s lower bounds on
monotone circuit depth. Information Processing Letters, 49(5):243–248, 1994.

[27] Avi Wigderson. The complexity of graph connectivity. In Proceedings of the 17th International
Symposium on Mathematical Foundations of Computer Science, pages 112–132. Springer-
Verlag, 1992.

47

	1 Introduction
	2 Our Results
	3 Proof Overview
	4 Preliminaries
	5 Pathset Complexity
	6 From Formulas to Pathset Complexity
	6.1 Inputs of F
	6.2 Gates of F
	6.3 Output of F
	6.4 Reduction to Pathset Complexity

	7 Small Pathsets from Random Restrictions
	7.1 Proof of Lemma 7.3

	8 Union Trees
	9 From to
	10 Projection and Restriction
	10.1 Decreases Under Projection
	10.2 Decreases Under Restriction
	10.3 The Operation A B

	11 Lower Bound for
	11.1 Definition of A
	11.2 Showing A(A) A (A)
	11.3 Showing A 14.41log(A) + A

	12 Conclusion
	A Key Examples
	B Lower Bound for : Special Cases
	C Rectangular Pathsets

