
On the Constant-Depth Complexity of k-Clique

Benjamin Rossman
∗

Massachusetts Institute of Technology
32 Vassar St., Cambridge, MA 02139
brossman@theory.csail.mit.edu

ABSTRACT
We prove a lower bound of ω(nk/4) on the size of constant-
depth circuits solving the k-clique problem on n-vertex
graphs (for every constant k). This improves a lower bound

of ω(nk/89d2
) due to Beame where d is the circuit depth.

Our lower bound has the advantage that it does not depend
on the constant d in the exponent of n, thus breaking the
mold of the traditional size-depth tradeoff.

Our k-clique lower bound derives from a stronger result of

independent interest. Suppose fn : {0, 1}(n
2) −→ {0, 1} is a

sequence of functions computed by constant-depth circuits
of size O(nt). Let G be an Erdős-Rényi random graph with
vertex set {1, . . . , n} and independent edge probabilities n−α

where α ≤ 1
2t−1

. Let A be a uniform random k-element

subset of {1, . . . , n} (where k is any constant independent of
n) and let KA denote the clique supported on A. We prove
that fn(G) = fn(G ∪KA) asymptotically almost surely.

These results resolve a long-standing open question in
finite model theory (going back at least to Immerman in
1982). The m-variable fragment of first-order logic, denoted
by FOm, consists of the first-order sentences which involve
at most m variables. Our results imply that the bounded
variable hierarchy FO1 ⊂ FO2 ⊂ · · · ⊂ FOm ⊂ · · · is strict
in terms of expressive power on finite ordered graphs. It
was previously unknown that FO3 is less expressive than
full first-order logic on finite ordered graphs.

Categories and Subject Descriptors
F.2.2 [Theory of Computation]: Nonnumerical Algo-
rithms and Problems—Computations on discrete structures ;
F.4.1 [Mathematical Logic and Formal Languages]:
Mathematical Logic—Model theory
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1. INTRODUCTION
Constant-depth circuits have been one of the most fruit-

ful settings for complexity lower bounds. (Here we refer
to logical circuits comprised of ¬, ∧ and ∨ gates with un-
bounded fan-in.) Early results of Ajtai [1] and Furst, Saxe
and Sipser [12] proved that the parity problem (given an n-
bit string, are there an even number of 1’s?) does not have
polynomial-size constant-depth circuits. This result, often
stated as PARITY /∈ AC0, was subsequently sharpened by
Yao [28] and H̊astad [15] among others, who eventually es-
tablished that exponential-size constant-depth circuits are
required.

In this paper we consider the k-clique problem for con-
stant values of k. The k-clique problem asks, given a graph
G on n vertices (specified by a bitstring of length

�
n
2

�
), does

G contain a k-clique? Unlike the parity problem, the k-
clique problem has polynomial-size constant-depth circuits
(for every constant k). In particular, there is an obvious
depth-2 circuit consisting of

�
n
k

� ∧-gates at the bottom level
(deciding each potential k-clique) feeding into a single ∨-gate
on top. A natural question is whether there exist signifi-
cantly smaller constant-depth circuits for the k-clique prob-
lem (say, of size no(k)).

Lower bounds on the complexity of problems within AC0

traditionally involve size-depth tradeoffs. Lynch [23] in 1986
established the first size-depth tradeoff for the k-clique prob-

lem by proving a lower bound of nΩ(
√

k/d1.5) on the size of
depth-d circuits solving the k-clique problem on n-vertex

graphs. This was improved to ω(nk/89d2
) by Beame [7] in

1990 (in the context of CRCW PRAM’s). These results were
based on developments in the switching lemma technology
originally introduced by H̊astad [15] for studying the par-
ity problem. For his lower bound, Beame proved powerful
switching lemmas in the setting of random graphs (see [8]).

Size-depth tradeoffs of this sort, however, are unsatisfac-
tory inasmuch as they degrade in the exponent of n as d is
taken to be a larger constant. (This seems to be an unavoid-
able consequence of using switching lemmas in the usual
way.) For depth d =

√
k, the lower bounds of Lynch and

Beame no longer beat the trivial lower bound of
�

n
2

�
(the



number of input bits). These lower bounds thus do not rule
out the possibility that the 100-clique problem has depth-10
circuits of size O(n2).

In this paper we create a more satisfactory state of affairs
by proving a lower bound of ω(nk/4) on the size of depth-d
circuits for the k-clique problem for all constants k and d.
(In fact, our lower bound holds even for slightly increasing
d = d(n) = o(

√
log n) and perhaps moderately increasing

k = k(n) as well.) By contrast, our lower bound implies
that 100-clique does not have size O(n25) circuits of any
constant depth. Thus it may now be said that, in some
reasonable sense, no constant-depth circuits for the k-clique
problem significantly beat the naive circuits of depth 2 and
size O(nk).

Unlike traditional size-depth tradeoffs, our approach does
not involve developing sharper switching lemmas for the
problem at hand. In fact, we require nothing stronger than
H̊astad’s original switching lemma. Rather, our technique
breaks from past approaches in the innovative way that the
switching lemma is used. A key technical notion we intro-
duce is the s-bounded clique-sensitive core Tf,G

〈s〉 (A) of a set

A of vertices in a graph G with respect to a graph-function f
(see §3.1). Tf,G

〈s〉 (A) is a subset of A with certain nice prop-

erties. In particular, if we add to G the clique supported
on Tf,G

〈s〉 (A), then the value of f on the resulting graph is

no longer sensitive to the further addition of any subclique
of A up to size s. This new technical notion (which puts a
twist on the familiar concept of sensitive inputs) allows for
a novel inductive argument on circuits (Lemma 3.6). Ulti-
mately, our approach leads to an effective new way of using
the switching lemma in conjunction with a union bound over
the nodes in a circuit.

We remark that the complexity of the k-clique problem
has been studied in various models of computation besides
constant-depth circuits. In the setting of monotone circuits,
it is known that the k-clique problem (for specific increasing
k = k(n)) requires exponential size [3, 13, 26]. A super-
polynomial lower bound was even proved for circuits with a
bounded number of negation gates [5]. Lower bounds have
also been investigated in the context of branching programs
and decision trees [27].

Of course, the greatest hope is eventually for a lower
bound of nΩ(k) on the size of circuits of arbitrary depth
for the k-clique problem. Such a result would imply NP *
P/poly and hence P 6= NP.

Organization of the Paper.
In the rest of this section, we state our main results and

discuss some interesting corollaries in logic. §2 fixes some
notation and covers the preliminaries on graphs, random
graphs and circuits. In §3 we present the technique behind
our lower bound and prove weaker versions of our main theo-
rems (modulo some technical lemmas). In §4 we prove those
technical lemmas (concerning the sensitivity of randomly re-
stricted AC0-computable functions). In §5 we prove our
main theorems using the technique developed in §3. We
state some conclusions and raise some open questions in §6.

1.1 Main Results

Theorem 1.1. Suppose fn : {0, 1}(n
2) −→ {0, 1} is a se-

quence of functions computed by constant-depth circuits of
size O(nt) where t > 1/2. For any constants k ∈ N and

0 < α ≤ 1
2t−1

, let G = ER(n, n−α) be an Erdős-Rényi ran-
dom graph and let A be a uniform random set of k vertices of
G. Then fn(G) = fn(G∪KA) asymptotically almost surely.

This result directly implies our k-clique lower bound.

Theorem 1.2. For every constant k, the k-clique problem
on n-vertex graphs requires constant-depth circuits of size
ω(nk/4).

In fact, Theorem 1.1 implies the even stronger assertion
that for all ` > k, no constant-depth circuits of size O(nk/4)
distinguish between the class of graphs which contain an
`-clique and the class of graphs which contain no k-clique.

1.2 Corollaries in Logic
Our k-clique lower bound has some nice corollaries in logic

(finite model theory [18, 22]), which answer long-standing
open questions, via the well-known descriptive complexity
characterization of first-order logic in terms of the circuit
class AC0 [6, 11, 21].

The m-variable fragment of first-order logic, denoted by
FOm, consists of the first-order sentences which involve at
most m variables. (Sentences of FOm may contain more
than m quantifiers, as variables may be reused.) For exam-
ple, the following sentence (in the language of simple graphs
with a symmetric binary relation ∼ denoting adjacency) ex-
presses “diameter is at most 4” using only 3 variables:

∀x∀y∃z �∃y (x ∼ y) ∧ (y ∼ z)
� ∧ �∃x (z ∼ x) ∧ (x ∼ y)

�
.

More generally, 3 variables suffice to express “diameter is at
most d” for every constant d. Bounded variable fragments
FOm (and their infinitary counterparts Lm

∞,ω) are important
objects of study in both finite and classical model theory
(see [14, 18]). The chain of m-variable fragments FO1 ⊂
FO2 ⊂ · · · ⊂ FOm ⊂ · · · is known as the bounded (or finite)
variable hierarchy. On finite graphs without a linear order,
this hierarchy is strict in terms of expressive power for the
simplest of reasons: the sentence “there exist at least m
vertices” is expressible in FOm but not in FOm−1.

Here, however, we are concerned with first-order logic on
finite ordered graphs (where sentences may speak of order <
as well as adjacency ∼ among elements). Exploiting order,
we are now able to express “there exist at least m vertices”
for every m using only 3 variables (similar to the diameter
example above). Perhaps, then, every first-order sentence is
equivalent on finite ordered graphs to a sentence with only 3
variables? It far from obvious how one might express “there
exists a 4-clique” using only 3 variables. On the other hand,
it is unclear how to prove that 3 variable do not suffice for the
task. (Ehrenfeucht-Fräıssé games, the standard method for
arguing inexpressibility in fragments of first-order logic, are
greatly complicated by the presence of a linear order.) In-
deed, it was (until now) an open problem whether, in terms
of expressive power on finite ordered graphs, the bounded
variable hierarchy is strict, or whether perhaps it collapses
down to FO3. (It is long known that FO2 is weaker than
FO3.) This intriguing question was raised as early as 1982
by Immerman [16]. A survey article by Dawar [10] devoted
to this very question was published in 2005. (Concerning
some variations on this question: Poizat [25] showed that
3 variables suffice to express all first-order properties of fi-
nite colored linear orders, while Dawar [10] showed that the



hierarchy of m-variable existential sentences is expressively
strict on finite ordered graphs.)

Our k-clique lower bound finally resolves the status of the
bounded variable hierarchy on finite ordered graphs. The
bridge between constant-depth circuits and bounded vari-
able fragments of first-order logic is the following well-known
result from descriptive complexity theory (discovered by var-
ious authors [6, 11] and recently refined [21]).

Proposition 1.3. For every m-variable first-order sen-
tence Φ in the language of ordered graphs, there exist
constant-depth circuits Cn, n ∈ N, of size O(nm) on

�
n
2

�
inputs such that Cn evaluates Φ on ordered graphs of size n.

Theorem 1.2 and Proposition 1.3 directly imply:

Corollary 1.4. No sentence in FObk/4c expresses the
existence of a k-clique on finite ordered graphs.

(In fact, Corollary 1.4 holds not just for the class of finite
ordered graphs, but for classes of finite graphs with arbi-
trary numerical predicates; see the full paper.) Since one
can express the existence of an m-clique in FOm, namely by
the sentence ∃x1 . . . ∃xm

V
i<j(xi 6= xj) ∧ (xi ∼ xj), we get:

Corollary 1.5. The bounded variable hierarchy in non-
collapsing in terms of expressive power on finite ordered
graphs.

Immerman [personal communication] has pointed out that
Corollary 1.5 in fact implies strictness of the bounded vari-
able hierarchy. Immerman’s observation is that the expres-
sive collapse of FOm+1 to FOm on finite ordered graphs
would imply the collapse of FOm+2 to FOm+2 and hence
the full expressive collapse of FO to FOm. The proof of this
fact (included in the full paper) uses a clever Ehrenfeucht-
Fräıssé game argument.

Proposition 1.6 (Immerman). If FOm and FOm+1

are equally expressive on finite ordered graphs, then so are
FOm+1 and FOm+2.

Corollary 1.5 and Proposition 1.6 together yield:

Corollary 1.7. The bounded variable hierarchy is strict
in terms of expressive power on finite ordered graphs.

2. PRELIMINARIES

Basic Notation.
For a positive integer n, let [n] denote the set {1, . . . , n}.

Letters A, B, C, D are reserved for subsets of [n]. For a
set X and k ∈ N, let

�
X
k

�
= {Y ⊆ X : |Y | = k} and�

X
≤k

�
=
Sk

j=0

�
X
j

�
. The abbreviation “a.a.s.” stands for “as-

ymptotically almost surely (as n → ∞)”. Logarithms have
base 2 unless otherwise indicated.

Graphs.
Graphs are by default finite simple graphs. Formally, a

graph G is a pair (VG, EG) where VG is a nonempty finite set
and EG is a subset of

�
VG
2

�
. The quantity minH⊆G |VH |/|EH |

(where H ranges over induced subgraphs of G) is denoted by
thres(G) and called the threshold exponent of G (Lemma 2.1
examples why); we set thres(G) = ∞ in the event that

|EG| = ∅. For example, if Kk is the complete graph on
k vertices, then thres(Kk) = 2

k−1
.

The class of graphs with vertex set [n] is denoted by Gn.

We identify Gn with the set {0, 1}(n
2), particularly when

viewing graphs as inputs to circuits. For a set A ⊆ [n],
we denote by KA the clique supported on A (i.e., the com-
plete graph with VKA = A and EKA =

�
A
2

�
). For graphs

G ∈ Gn, we will often consider the union graph G∪KA (i.e.,
G plus a clique on A).

Random Graphs.
A random graph is a probability distribution on Gn (or a

sequence of such distributions for each n). For q ∈ [0, 1],
we denote by ER(n, q) the Erdős-Rényi random graph with

vertex set [n] in which each potential edge in
�
[n]
2

�
is indepen-

dently included with probability q. We write G ∈ ER(n, q)
to express that G is a random graph with distribution
ER(n, q). We are mainly interested in Erdős-Rényi random
graphs with edge probability q = n−α for constant values of
α > 0 (see [4] for background).

Given two graphs G and H, the number of induced sub-
graphs of G isomorphic to H is denoted by sub(G, H). For a
fixed graph H, taking G = ER(n, n−α), the following lemma
(proved using Janson’s inequality [19]) gives an asymptotic
bound on the lower tail of the random variable sub(G, H) as
n →∞; we remark that stronger results are available. Note
that sub(G, H) has expectation approximately n|VH |−α|EH |,
which is > 1 iff α < thres(H).

Lemma 2.1 ([20]). For every graph H and α > 0, the
following asymptotic bounds hold for random graphs G ∈
ER(n, n−α) as n grows to infinity.

1. If α > thres(H) then

Pr
�
sub(G, H) > 0

�
= exp(−nΩ(1)).

2. If α < thres(H) then for all ε > 0,

Pr
�
sub(G, H) < n|VH |−α|EH |−ε� = exp(−nΩ(1)).

Circuits.
A circuit on n inputs (resp.

�
n
2

�
inputs) is an acyclic di-

rected graph C in which sources, called input nodes, are la-
beled by elements of [n] (resp.

�
[n]
2

�
) and non-source nodes,

called gates, are labeled by elements of {¬,∧,∨}. Gates la-
beled ¬ are required to have fan-in (in-degree) 1, while ∧
and ∨ gates have unrestricted fan-in. A subset of nodes in C
(by default: the sinks in C) are designated as output nodes.
The size and depth of C are respectively the number of gates
it contains and the maximum number of gates on a path
from an input node to an output node. The value of a cir-
cuit C on an input string x ∈ {0, 1}n (resp. an input graph
G ∈ Gn) is denoted by C(x) (resp. C(G)). If C has m output
nodes, then C(x) is an element of {0, 1}m. Thus, a circuit
on n inputs (resp.

�
n
2

�
inputs) and m outputs computes a

function from {0, 1}n (resp. Gn) to {0, 1}m.

AC0.
(Non-uniform) AC0 is the class of languages L ⊆ {0, 1}∗

decided by a sequence of circuits (one for each input size n)
of constant depth and size polynomial in n.



3. OUR TECHNIQUE
In this section we prove weaker versions of our main theo-

rems (with slightly inferior parameters) modulo some techni-
cal lemmas on random restrictions (which we tackle later on
in §4). This section illustrates our lower-bound technique in
a somewhat simplified form. We eventually prove our main
theorems in §5 using the technique introduced here.

3.1 s-Bounded Clique Sensitivity
We define a technical notion: the clique-sensitive core of

a set of vertices in a given graph with respect to a given
graph-function. This is closely related to the familiar notion
of sensitive vertices of a graph-function (as we will see in
§4.1). We also introduce the a more novel notion: the s-
bounded clique-sensitive core (for a parameter s ∈ N). This
notion plays a central role in our technique.

Definition 3.1. Let f be a graph-function with domain
Gn (and arbitrary range) and let G ∈ Gn. For all A ⊆ [n]

and s ∈ N, sets Tf,G(A) and Tf,G
〈s〉 (A) are defined by

Tf,G(A) =

(
a ∈ A :

there exists B ⊆ A such that

f(G ∪KB) 6= f(G ∪KB\{a})

)
,

Tf,G
〈s〉 (A) =

[
B⊆A : |B|≤s

Tf,G(B).

The set Tf,G(A) (resp. Tf,G
〈s〉 (A)) is called the (resp. s-

bounded) clique-sensitive core of A under f in G. We say
that A is fully clique-sensitive under f in G if Tf,G(A) = A.

Intuitively, Tf,G(A) (resp. Tf,G
〈s〉 (A)) is the set of vertices

a ∈ A such that the graph-function f , when evaluated on
G plus different subcliques of A (resp. of size ≤ s), is sensi-
tive to the inclusion of a in the added subclique. A simple
example serves to illustrate this definition.

Example 3.2. Let cliquek : Gn −→ {0, 1} be the function
defined by cliquek(G) = 1 ⇐⇒ G contains a k-clique. Let
Gemp denote the empty graph in Gn (with no edges). For all
A ⊆ [n] and s ∈ N, we have

Tcliquek,Gemp(A) =

(
A if |A| ≥ k,

∅ otherwise,

Tcliquek,Gemp
〈s〉 (A) =

(
A if |A| ≥ k and s ≥ k,

∅ otherwise.

Some elementary properties of operators Tf,G and Tf,G
〈s〉

are stated below.

(i) Tf,G
〈s〉 (A) ⊆ Tf,G(A) ⊆ A for all sets A.

(ii) Tf,G and Tf,G
〈s〉 are monotone. That is, A ⊆ B implies

Tf,G(A) ⊆ Tf,G(B) and Tf,G
〈s〉 (A) ⊆ Tf,G

〈s〉 (B).

(iii) If f : Gn −→ {0, 1}m where f1, . . . , fm : Gn −→
{0, 1} are the individual coordinate-functions of f ,

then Tf,G(A) =
Sm

i=1 T
fi,G(A) and Tf,G

〈s〉 (A) =Sm
i=1 T

fi,G
〈s〉 (A).

(iv) If sets A and B are both fully clique-sensitive under f
in G, then so is their union A ∪B.

The next three lemmas give some additional properties of
operators Tf,G and Tf,G

〈s〉 .

Lemma 3.3. Let T = Tf,G
〈s〉 (A) and suppose B is a set such

that T ⊆ B ⊆ A and |B| ≤ s. Then f(G∪KT ) = f(G∪KB).

Proof. Let b1, . . . , bm enumerate the set B \ T . For all
i ∈ {1, . . . , m}, we have

f(G ∪KT∪{b1,...,bi}) = f(G ∪KT∪{b1,...,bi−1}).

(Otherwise, we would have bi ∈ Tf,G(B) ⊆ T .) It follows
immediately that f(G ∪KT ) = f(G ∪KB).

It is of course possible that |Tf,G
〈s〉 (A)| > s, in which case

the statement of Lemma 3.3 is vacuous.

Lemma 3.4. The set Tf,G
〈s〉 (A) is the union of all fully

clique-sensitive subsets of A of size at most s. That is,

Tf,G
〈s〉 (A) =

S�
B ⊆ A : Tf,G(B) = B and |B| ≤ s

	
.

Proof. The inclusion ⊇ is fairly obvious. To prove the
opposite inclusion, we must find, for each a ∈ Tf,G

〈s〉 (A), a

fully-clique sensitive subset B ⊆ A of size≤ s which contains
a. Because a ∈ Tf,G

〈s〉 (A) we know there exists some subset

B ⊆ A such that f(G ∪KB) 6= f(G ∪KB\{a}) and |B| ≤ s.
Take any minimal B satisfying these conditions. To show
that B is fully clique-sensitive, we assume that there exists
b ∈ B \ Tf,G(B) and derive a contradiction. First, we note
that f(G∪KB\{b}) = f(G∪KB\{a,b}) by the minimality of

our choice of B. However, the fact that b /∈ Tf,G(B) implies

f(G ∪KB) = f(G ∪KB\{b}),

f(G ∪KB\{a}) = f(G ∪KB\{a,b}).

But these three equalities imply f(G∪KB) = f(G∪KB\{a}),
contradicting our choice of B. Therefore, B is fully clique-
sensitive. After noting that B contains a (since otherwise we
again reach the contradiction f(G∪KB) = f(G∪KB\{a})),
we are done.

Lemma 3.5.

1. Tf,G
〈s〉 (A) is nonempty if, and only if, A has a fully

clique-sensitive subset B of size 2 ≤ |B| ≤ s.

2. |Tf,G
〈s〉 (A)| > s if, and only if, A has fully clique-

sensitive subsets B and C of size ≤ s such that
|B ∪ C| ≥ s + 1.

3. If |Tf,G
〈s〉 (A)| > s, then A has a fully clique-sensitive

subset D of size s + 1 ≤ |D| ≤ 2s.

Proof. Implications (⇐=) in both (1) and (2) are easy.
We prove the implications (=⇒) in statements (1)–(3). Let
A1, . . . , Am, m ∈ N, enumerate the nonempty fully clique-
sensitive subsets of A of size ≤ s. By Lemma 3.4, Tf,G

〈s〉 (A) =

A1 ∪ · · · ∪Am.
Suppose that Tf,G

〈s〉 (A) is nonempty, that is, m ≥ 1. Let

B = A1. We claim that |B| ≥ 2. Toward a contradiction,
assume |B| < 2. Then (since B 6= ∅) B = {b} and hence
Tf,G({b}) = {b} for some b ∈ A. By definition of Tf,G,
there exists C ⊆ {b} such that f(G∪KC) 6= f(G∪KC\{b}).
Clearly it must be that C = {b}. But then f(G ∪K{b}) 6=
f(G∪K∅), which is absurd since K{b} (the clique supported



on the single vertex b) has no edges and hence G ∪K{b} =
G∪K∅ = G. We conclude that |B| ≥ 2, proving implication
(=⇒) of statement (1).

Now suppose that |Tf,G
〈s〉 (A)| > s. Let ` ∈ {1, . . . , m} be

the least index such that |A1 ∪ · · · ∪A`| > s, noting that ` is
well-defined since |A1∪· · ·∪Am| > s. Let B = A1∪· · ·∪A`−1

and C = A`. Clearly |B|, |C| ≤ s and |B ∪ C| ≥ s + 1.
The set B is fully clique-sensitive (by observation (iv), as it
is a union of fully clique-sensitive sets A1, . . . , A`−1), as is
the set C. This proves implication (=⇒) of statement (2).
Statement (3) follows by taking D = B ∪ C.

3.2 Circuit Lemma
Let C be a single-output circuit with

�
n
2

�
inputs. For all

nodes ν in C, we denote by Cν the single-output subcircuit
of C with output ν. We denote by C•ν the circuit Cν in
which not only ν but also all of its children are designated
as outputs. Thus C and Cν compute functions Gn −→ {0, 1},
while C•ν computes a function Gn −→ {0, 1}fan-in(ν)+1.

Lemma 3.6 (Circuit Lemma). Let G ∈ Gn and A ⊆
[n] and s ≥ 1. Suppose that TC,G

〈s〉 (A) = ∅ and
��TC•ν ,G

〈s〉 (A)
�� ≤ s

for all nodes ν in C. Then C(G) = C(G ∪KA).

Proof. To streamline notation, let T (ν) = TCν ,G
〈s〉 (A) and

T •(ν) = TC•ν ,G

〈s〉 (A) for all nodes ν in C. Note that

T •(ν) = T (ν) ∪Schildren µ of ν T (µ)

by observation (iii) in §3.1. We prove the following claim.

Claim 3.7. For all nodes ν in C,

Cν(G ∪KT •(ν)) = Cν(G ∪KA).

Proof of Claim. The proof is by induction on the
depth of ν. The claim is trivial when ν is an input node.
Indeed, if ν is an input node corresponding to a potential
edge e ∈ �[n]

2

�
, then (since s ≥ 1) T •(ν) is {e} if e ⊆ A and ∅

if e * A. It follows that Cν (the indicator function for edge
e) has the same value on graphs G∪KT •(ν) and G∪KA, as
the edge e is either present in both graphs or absent from
both graphs.

For the induction step, let ν be an non-input node and
assume that Cµ(G ∪KT •(µ)) = Cµ(G ∪KA) for all children
µ of ν. Consider now a particular child µ of ν. Since T (µ) ⊆
T •(ν) ⊆ A and |T •(ν)| ≤ s, Lemma 3.3 implies

Cµ(G ∪KT (µ)) = Cµ(G ∪KT •(ν)).

Invoking Lemma 3.3 a second time, since T (µ) ⊆ T •(µ) ⊆ A
and |T •(µ)| ≤ s,

Cµ(G ∪KT (µ)) = Cµ(G ∪KT •(µ)).

By the induction hypothesis,

Cµ(G ∪KT •(µ)) = Cµ(G ∪KA).

Therefore, Cµ(G∪KT •(ν)) = Cµ(G∪KA). Because the value
of Cν on any input graph is determined by the values of Cµ

on the various children µ of ν, we conclude that Cν(G ∪
KT •(ν)) = Cν(G ∪KA). Claim

Let νout be the output node of C (so that Cνout = C).
To complete the proof of the lemma, we simply apply the

claim to νout. Thus C(G ∪ KT •(νout)) = C(G ∪ KA). But
C(G ∪ KT (νout)) = C(G ∪ KT •(νout)) by Lemma 3.3 (since
T (νout) ⊆ T •(νout) ⊆ A and |T •(νout)| ≤ s) and T (νout) =

TC,G
〈s〉 (A) = ∅ by assumption. Hence G∪KT (νout) = G∪K∅ =

G. We conclude that C(G) = C(G ∪KA). Lemma

3.3 Proofs of (Almost) Main Theorems
In this section we prove versions of our main results, The-

orems 1.1 and 1.2, with slightly inferior parameters. Theo-
rems 1.1 and 1.2 (stated in the introduction) will be proved
in §5 using an argument similar to the one present here. The
advantage of first proving weaker results is a moderate gain
in the simplicity of the argument (making things easier the
second time around).

Lemma 3.8 (Main Technical Lemma). Suppose f =
(fn)n∈N is an AC0-computable sequence of functions fn :

{0, 1}(n
2) −→ {0, 1}nβ

for some constant β ≥ 0. Let α > 0
and k ∈ N. Then for a random graph G ∈ ER(n, n−α) and

a uniform random set A ∈ �[n]
k

�
,

Pr
�
Tf,G(A) = A

�
= nα(k

2)+(β−1)k+o(1).

We prove this lemma at the end of §4.1 after developing
the technical preliminaries concerning random restrictions.

Corollary 3.9. Take f, β, α, k, G, A as in Lemma 3.8.

1. Pr
�
Tf,G
〈s〉 (A) 6= ∅� = nmax

�
α+2(β−1), α(s

2)+s(β−1)
�
+o(1),

2. Pr
�|Tf,G

〈s〉 (A)| > s
�

= nmax
�

α(s+1
2 )+(β−1)(s+1), α(2s

2 )+2s(β−1)
�
+o(1).

Proof. We prove statement (2); the proof of (1) is simi-
lar.

Pr
G∈ER(n,n−α), A∈([n]

k )

�|Tf,G
〈s〉 (A)| > s

�
≤ Pr

G∈ER(n,n−α), A∈([n]
k )

" _
B⊆A : s<|B|≤2s

Tf,G(B) = B

#
(by Lemma 3.5(3))

≤
2sX

r=s+1

 
k

r

!
Pr

G∈ER(n,n−α), B∈([n]
r )

�
Tf,G(B) = B

�
(union bound)

=

2sX
r=s+1

 
k

r

!
nα(r

2)+(β−1)r+o(1) (by Lemma 3.8)

= nmax
�

α(s+1
2 )+(β−1)(s+1), α(2s

2 )+2s(β−1)
�
+o(1).

The beauty of this corollary is that k (the size of A) does
not appear in these upper bounds outside of the o(1) term.
We now prove a weaker version of Theorem 1.1 (with t > 2/3
instead of t > 1/2 and α ≤ 4

9t−3
instead of α ≤ 1

2t−1
).

Theorem 3.10. Suppose f = (fn)n∈N is a sequence of

functions fn : {0, 1}(n
2) −→ {0, 1} computed by circuits of

depth O(1) and size O(nt) for constant t > 1/2. Let G =
ER(n, n−α) be an Erdős-Rényi random graph and let A be a

uniform random set in
�
[n]
k

�
for any constants 0 < α ≤ 4

9t−3

and k ∈ N. Then fn(G) = fn(G∪KA) asymptotically almost
surely as n →∞.



Proof. Let s = b3t/2c. By a routine calculation,

max
�
α− 2, α

�
s
2

�− s
�

< 0,

max
�
α
�

s+1
2

�− (s + 1), α
�
2s
2

�− 2s
�

< −t.

So (by continuity) there exists β > 0 such that

max
�
α
�

s+1
2

�
+ (β − 1)(s + 1), α

�
2s
2

�
+ 2s(β − 1)

�
< −t.

Let C = (Cn)n∈N be a sequence of circuits computing f
in depth O(1) and size O(nt). Without loss of generality,
we can assume that all nodes of C have fan-in nβ . This
assumption only increases the depth of C by a factor of dt/βe
without even doubling its size.

For all nodes ν in C, let C•ν be (as defined at the beginning
of §3.2) the subcircuit of C in which ν and all its children
as designated as outputs nodes. So C•ν computes a function

Gn −→ {0, 1}nβ+1 in depth O(1) and size O(nt). Therefore,
by Corollary 3.9(2),

Pr
���TC•ν ,G

〈s〉 (A)
�� > s

�
= nmax

�
α(s+1

2 )+(β−1)(s+1), α(2s
2 )+2s(β−1)

�
+o(1)

= n−t−Ω(1).

Taking a union bound over all nodes ν in C,

Pr
�W

ν

��TC•ν ,G

〈s〉 (A)
�� > s

�
= O(nt) · n−t−Ω(1) = n−Ω(1).

In addition, by Corollary 3.9(1) we have

Pr
�
TC,G
〈s〉 (A) 6= ∅� = nmax

�
α+2, α(s

2)+s
�
+o(1) = n−Ω(1).

Therefore, it holds asymptotically almost surely that

TC,G
〈s〉 (A) = ∅ and

��TC•ν ,G

〈s〉 (A)
�� ≤ s for all nodes ν in C. The

Circuit Lemma (Lemma 3.6) now gives the desired result
that a.a.s. C(G) = C(G∪KA) (i.e., fn(G) = fn(G∪KA)).

The following theorem is a weaker version of Theorem 1.2
(with ω(n2k/9) instead of ω(nk/4)).

Theorem 3.11. For every constant k, the k-clique prob-
lem on n-vertex graphs requires constant-depth circuits of
size ω(n2k/9).

Proof. The lower bound of ω(n2k/9) is certainly trivial
for k ≤ 2, so we assume that k ≥ 3. Let C = (Cn)n∈N
be a sequence of circuits on

�
n
2

�
inputs of depth O(1) and

size O(nt) for some constant t = 2k
9

(> 2
3
). Let α = 4

9t−3

and note that α = 2
k−1.5

> 2
k−1

= thres(Kk). For ran-

dom G ∈ ER(n, n−α) and A ∈ �[n]
k

�
, Theorem 3.10 tells us

that asymptotically almost surely C(G) = C(G ∪ KA). By
Lemma 2.1(1), G almost surely contains no k-clique. On
the other hand, G ∪ KA contains a k-clique (with proba-
bility 1). It follows that C does not define the property of
containing a k-clique (for sufficiently large n). Therefore,
the k-clique problem does not have constant-depth circuits
of size O(n2k/9).

4. RANDOM RESTRICTIONS AND AC 0

In this section we prove some technical results concerning
the sensitivity of AC0 functions when hit with random re-
strictions. The endgoal of this section is a proof of the main
technical lemma from §3 (Lemma 3.8). We begin with some
standard definitions.

Definition 4.1 (Sensitive Inputs). Let I be a set

(we mainly consider I = [n] or
�
[n]
2

�
) and let f be a function

with domain {0, 1}I (and arbitrary range). The set S(f) of
sensitive inputs of f consists of all i ∈ I for which there
exist x, y ∈ {0, 1}I such that f(x) 6= f(y) and xj = yj for
all j ∈ I \ {i}.

Definition 4.2 (Restriction). A restriction on I is
a function % : I −→ {0, 1, ?}. Intuitively % fixes a certain
subset of input bits (assigning either 0 or 1) which leaving
other input bits unrestricted (by assigning ?). A restriction
% thus may be applied to a function f with domain {0, 1}I ,

resulting in a function fd% with domain {0, 1}%−1(?). The

value of fd% on an element y ∈ {0, 1}%−1(?) is defined by
(fd%)(y) = f(x) where x ∈ {0, 1}I satisfies x(i) = %(i) if
i ∈ %−1({0, 1}) and x(i) = y(i) if i ∈ %−1(?).

We now consider a particular family of random restrictions
(also studied in [7, 8]).

Definition 4.3. For a finite index set I and p, q ∈ [0, 1],
let Rp,q

I denote the random restriction % : I −→ {0, 1, ?}
where values %(i) are i.i.d. such that

Pr[%(i) = ?] = p,

Pr[%(i) = 1] = (1− p)q,

Pr[%(i) = 0] = (1− p)(1− q).

As a matter of notation, we write Rp,q
n for Rp,q

[n] in the case

I = [n].

Our first lemma concerning random restrictions is proved
by a standard application of the H̊astad Switching Lemma.
The proof is included in the full paper, but omitted here
since results similar to Lemma 4.4 are found elsewhere in
the literature (e.g., in proofs of PARITY /∈ AC0 [4, 15]).

Lemma 4.4. Suppose functions fn : {0, 1}n −→ {0, 1},
n ∈ N, are computed by circuits of constant depth d and
size O(nt). Then for every (small) δ > 0 and (large) ` > 0,
there is a constant c = c(d, t, δ, `) such that

Pr

% ∈ Rn−δ,1/2
n

�|S(fd%)| > c
�

= O(1/n`).

In plain language, Lemma 4.4 says that with high proba-
bility (i.e., failing with probability as small an inverse poly-
nomial in n as one desires), an AC0-computable function
will depend on only constant many bits after being hit with
a random restriction which fixes (i.e., assigns either 0 or 1 to)
all but a fractional power of n input bits. Besides the having
PARITY /∈ AC0 as an immediate corollary, Lemma 4.4 also
implies that the average sensitivity of AC0 functions is no(1)

(though better is known [9]).
The next lemma extends Lemma 4.4 to biased random re-

strictions. We remark that the proof of Lemma 4.5, below,
does not rely on biased versions of the H̊astad Switching
Lemma (e.g., Beame’s Inbalanced Switching Lemma from
[8]). Instead, we use a simple gadget (an ∧-gate) to boot-
strap from Lemma 4.4.

Lemma 4.5. Suppose functions fn : {0, 1}n −→ {0, 1},
n ∈ N, are computed by circuits of constant depth d and



size O(nt). Then for all α, δ > 0 and ` > 0, there is a
constant c = c(d, t, α, δ, `) such that

Pr

% ∈ Rn−(α+δ),n−α

n

�|S(fd%)| > c
�

= O(1/n`).

Proof sketch. Let m = bα log2 nc and consider the
function g : {0, 1}n×m −→ {0, 1}n which maps y ∈
{0, 1}n×m to the element x ∈ {0, 1}n where x(i) =V

j∈[m] y(i, j).

Let % : [n]×[m] −→ {0, 1, ?} be a random restriction under

R(nm)−δ,1/2
n×m . We lift % to a restriction e% : [n] −→ {0, 1, ?}

defined by

e%(i) =

8><>:0 if ∃j ∈ [m], %(i, j) = 0,

1 if ∀j ∈ [m], %(i, j) = 1,

? otherwise.e% is clearly a random restriction under Rp,q
n for some p =

p(n) and q = q(n) in [0, 1]. By a straightforward calculation,
logn(p) ∼ −(α + δ) and logn(q) ∼ −α.

Since f and g are both AC0-computable, so is their com-
position f ◦ g : {0, 1}n×m −→ {0, 1}. Therefore, by Lemma
4.4 there is a constant c such that Pr

�|S((f ◦ g)d%)| > c
�

=

O(1/n`). Note that

S(fde%) =
�
i : ∃j (i, j) ∈ S((f ◦ g)d%)

	
.

It follows that |S(fde%)| ≤ |S((f ◦ g)d%)|. As required, this
proves Pr

�|S(fde%)| > c
�

= O(1/n`).
This argument, however, fails to prove the precise state-

ment of the lemma, since p and q are not exactly equal to
n−(α+δ) and n−α. This is a minor issue to get around. The
resolution involves redoing the proof sketched here with a
few additional parameters (see full paper).

4.1 Random Graph-Restrictions
We now shift our focus from random restrictions [n] −→

{0, 1, ?} to random graph-restrictions
�
[n]
2

� −→ {0, 1, ?}.
Definition 4.6 (Sensitive Vertices). Suppose f is

a graph-function with domain Gn (and arbitrary range) and

let % :
�
[n]
2

� −→ {0, 1, ?} be a graph-restriction. The set

S(fd%) of sensitive inputs of fd% is a subset of
�
[n]
2

�
(i.e.,

the potential edges of a graph in Gn). We call elements of
S(fd%) sensitive edges of the restricted function fd% (rather
than sensitive inputs). We define the set V(fd%) ⊆ [n] by

V(fd%) =
�
i ∈ [n] : ∃j ∈ [n] {i, j} ∈ S(fd%)

	
.

We call elements of V(fd%) sensitive vertices of fd%. That
is, sensitive vertices are simply the endpoints of sensitive
edges.

Notice that |V(fd%)| ≤ 2|S(fd%)| since each sensitive edge
of fd% contributes two sensitive vertices (with possible over-
lap).

Definition 4.7. For every graph H and q ∈ [0, 1] and
n ≥ |VH |, let GRq

n(H) denote the random graph-restriction

% :
�
[n]
2

� −→ {0, 1, ?} defined as follows. First, a one-to-one
function w : VH −→ [n] is chosen uniformly at random. For

all edges {i, j} ∈ EH , the element {w(i), w(j)} ∈ �[n]
2

�
is

mapped under % to ?. All remaining e ∈ �[n]
2

� \ w(EH) are
then independently mapped under % to 1 with probability q
and to 0 with probability 1− q.

We now prove the main result of this section. We then
derive Lemma 3.8 (the main technical lemma of §3.3) as a
corollary.

Proposition 4.8. Suppose f : Gn −→ {0, 1}nβ

is AC0-
computable where β ≥ 0. Let H be any graph and let 0 <
α < thres(H). Then

Pr
% ∈ GRn−α

n (H)

�|V(fd%)| = |VH |
�

= nα|EH |+(β−1)|VH |+o(1).

We conveniently pretend that nβ is always an integer. To
be correct, every instance of nβ in the following proof should
be replaced with dnβe.

Proof. Fix ε > 0 and let

δ = min

�
ε

2|EH | ,
thres(H)− α

2

�
. (1)

We also pick a random restriction ξ :
�
[n]
2

� −→ {0, 1, ?} from

the distribution Rn−(α+δ),n−α

(n
2)

.

Let f1, . . . , fnβ : {0, 1}n −→ {0, 1} be the individual
coordinate-functions of f . By Lemma 4.5 (noting that
δ > 0 and taking ` = |VH |), there is a constant c such

that Pr
�|S(fjdξ)| > c

�
= O(1/n|VH |) for all j ∈ [nβ ].

Let X1 stand for the event that |V(fdξ)| ≤ 2cnβ . Our first
order of business is to bound the probability of ¬X1.

Pr[¬X1] ≤ Pr
�|S(fdξ)| > cnβ� (2)

(since |V(fdξ)| ≤ 2|S(fdξ)|)
≤ Pr

�W
j∈[nβ ] |S(fjdξ)| > c

�
(since S(fdξ) =

S
j∈[nβ ] S(fjdξ))

≤ nβ ·O(1/n|VH |) (union bound)

= O(1/n(1−β)|VH |).

Let Gξ be the graph with vertex set VGξ = [n] and edge

set EGξ = ξ−1(?). Note that Gξ is a random graph with

distribution ER(n, n−(α+δ)).

Let X2 denote the event that sub(Gξ, H) ≥ n|VH |−α|EH |−ε.
We have α+δ < thres(H) and δ|EH | ≤ ε/2 by definition (1)
of δ. We now bound the probability of ¬X2.

Pr[¬X2] = Pr
�
sub(Gξ, H) < n|VH |−α|EH |−ε� (3)

= Pr
G∈ER(n,n−(α+δ))

�
sub(G, H) < n|VH |−α|EH |−ε�

≤ Pr
G∈ER(n,n−(α+δ))

�
sub(G, H) < n|VH |−(α+δ)|EH |−ε

2
�

= exp(−nΩ(1)) (by Lemma 2.1(2)).

In the (very likely) event that X1 and X2 both hold, we
proceed to pick a random graph H ′ and a random graph-
restriction % as follows. First we choose H ′ uniformly at
random from among the induced subgraphs of Gξ isomorphic
to H (noting that X2 =⇒ sub(Gξ, H) > 0). Having chosen

H ′, we then pick a random-graph restriction % :
�
[n]
2

� −→
{0, 1, ?} subject to

• %−1(?) = EH′ (with probability 1),

• %(e) = ξ(e) (with probability 1) for all e ∈ ξ−1({0, 1}),
• Pr[%(e) = 1] = n−α independently for all e ∈ ξ−1(?) \

EH′ .



At this point, some observations are in order.

(i) Conditioned on X1 and X2 (so that % is well-defined),

% has distribution GRn−α

n (H).

(ii) S(fd%) ⊆ S(fdξ) and V(fd%) ⊆ V(fdξ) by virtue of the
fact that % refines ξ (i.e., ξ(e) ∈ {0, 1} =⇒ %(e) = ξ(e)).

(iii) X1 =⇒ V(fdξ) contains ≤ �2cnβ

|VH |
�

subsets of size |VH |.

(iv) X2 =⇒ no matter what ξ is, there are ≥ n|VH |−α|EH |−ε

equally likely possibilities for the random graph H ′.

Combining these observations, we have

Pr
�|V(fd%)| = |VH |

�� X1, X2

�
= Pr

�
VH′ = V(fd%)

�� X1, X2

�
(by (ii)) ≤ Pr

�
VH′ ⊆ V(fdξ)

�� X1, X2

�
(by (iii) and (iv)) ≤

 
2cnβ

|VH |

!
/n|VH |−α|EH |−ε

= nβ|VH |+o(1)/n|VH |−α|EH |−ε

= nα|EH |+(β−1)|VH |+ε+o(1).

Putting this together with (2) and (3), we get

Pr
�|V(fd%)| = |VH |

� ≤ Pr
�|V(fd%)| = |VH |

�� X1, X2

�
+ Pr[¬X1] + Pr[¬X2]

= nα|EH |+(β−1)|VH |+ε+o(1)

+ O(n(β−1)|VH |) + exp(−nΩ(1))

= nα|EH |+(β−1)|VH |+ε+o(1).

The result follows, as this inequality holds for all ε > 0.

Finally, we conclude this section by proving our main tech-
nical lemma from §3.3.

Proof of Lemma 3.8. We assume that α <
�

2
k−1

�
, since

otherwise the lemma is trivial. Suppose f : {0, 1}(n
2) −→

{0, 1}nβ

is AC0-computable. Consider a random graph G ∈
ER(n, n−α) and a random set A ∈ �[n]

k

�
.

Let %G
A :
�
[n]
2

� −→ {0, 1, ?} be the graph-restriction which

maps e ∈ �[n]
2

�
to ? if e ∈ �A

2

�
, to 1 if e ∈ EG \

�
A
2

�
, and to 0

otherwise. So in other words, %G
A is obtained from the char-

acteristic function of the edge set EG ⊆ �
[n]
2

�
by changing

the value at every element of
�

A
2

�
to ?. Note that %G

A is a

random graph-restriction with distribution GRn−α

n (Kk). It
is easy to see that Tf,G(A) ⊆ V(fd%G

A
) ⊆ A. That is, every

a in the clique-sensitive core of A under f in G is clearly
a sensitive vertex of the restricted function fd%G

A
. Conse-

quently, Tf,G(A) = A =⇒ |V(fd%G
A

)| = k. Therefore, by

Proposition 4.8 (noting that α <
�

2
k−1

�
= thres(Kk)),

Pr
G,A

�
Tf,G(A) = A

� ≤ Pr
G,A

�|V(fd%G
A

)| = k
�

= Pr
%∈GRn−α

n (Kk)

�|V(fd%)| = k
�

= nα|EKk
|+(β−1)|VKk

|+o(1)

= nα(k
2)+(β−1)k+o(1).

5. PROOFS OF THEOREMS 1.1 AND 1.2
In this section we prove our main results, Theorems 1.1

and 1.2. Recall that in §3.3, we proved versions of these
theorems with weaker parameters (Theorems 3.10 and 3.11).
The proofs we now present follow the same basic scheme as
before. To pinpoint the difference this time around, recall
statements (2) and (3), below, of Lemma 3.5.��Tf,G

〈s〉 (A)
�� > s

(2)⇐⇒ ∃ fully clique-sensitive B, C ⊆ A with

|B|, |C| ≤ s and |B ∪ C| ≥ s + 1

(3)
=⇒ ∃ fully clique-sensitive D ⊆ A with

s + 1 ≤ |D| ≤ 2s.

In §3.3 we merely exploited statement (3) of Lemma 3.5,
specifically in the proof of Corollary 3.9(2). This time we use
the stronger statement (2) of Lemma 3.5 to derive superior
bounds (without too much added complexity).

Definition 5.1. For a, b, c ∈ N such that a ≤ min(b, c)
and b + c − a ≥ 1, let Ha,b,c denote the graph formed by
gluing together a b-clique and a c-clique over a subclique of

size a. For example, H2,3,4 is the graph .

Clearly |VHa,b,c | = b+c−a and |EHa,b,c | =
�

b
2

�
+
�

c
2

�−�a
2

�
.

Also note that every induced subgraph of Ha,b,c is a graph
Ha′,b′,c′ for some smaller a′, b′, c′.

Lemma 5.2. thres(Ha,b,c) > (1 + 1√
2
)/ max(b, c).

Proof. Let s = max(b, c). We assume s ≥ 2, since oth-
erwise thres(Ha,b,c) = ∞ (as Ha,b,c has no edges). We have

thres(Ha,b,c) = min
induced subgraphs
Ha′,b′,c′⊆Ha,b,c

|VHa′,b′,c′ |
|EHa′,b′,c′ |

≥ min
a′,b′,c′∈N:
a′≤b′,c′≤s
b′+c′−a′≥1

b′ + c′ − a′�
b′
2

�
+
�

c′
2

�− �a′
2

� .
This last quantity is clearly minimal for b′ = c′ = s. Notice
that a′ can be at most s− 1. Letting λ = s/a′, we have

thres(Ha,b,c) ≥ min
a′∈{0,...,s−1}

2s− a′

2
�

s
2

�− �a′
2

�
>

1

s
min

0≤λ≤1

2(2− λ)

2− λ2
=

�
1 +

1√
2

�
1

s
.

Definition 5.3. For s ∈ N, let Ws denote the set of
triples (a, b, c) ∈ N3 such that a ≤ min(b, c) and max(b, c) ≤
s and b + c− a ≥ s + 1.

The next lemma will play the same role in proving The-
orem 1.1 as our main technical lemma (Lemma 3.8) played
in proving the weaker Theorem 3.10.

Lemma 5.4. Suppose f = (fn)n∈N is an AC0-computable

sequence of functions fn : {0, 1}(n
2) −→ {0, 1}nβ

for some
constant β ≥ 0. Let s ∈ N and (a, b, c) ∈ Ws and 0 < α ≤
1/s. Then for a random graph G ∈ ER(n, n−α) and uniform

random sets B ∈ �[n]
b

�
and C ∈ �[n]

c

�
subject to |B ∩ C| = a,

Pr
�
Tf,G(B) = B and Tf,G(C) = C

�
= nα(

�
b
2

�
+
�

c
2

�− �a
2

�
) + (β − 1)(b + c− a) + o(1).



Proof. Consider the graph-restriction %G
B,C :

�
[n]
2

� −→
{0, 1, ?} which maps e ∈ �

[n]
2

�
to ? if e ∈ �

B
2

� ∪ �C
2

�
, to

1 if e ∈ EG \ (
�

B
2

� ∪ �C
2

�
), and to 0 otherwise. That is,

%G
B,C is obtained from the characteristic function of the edge

set EG ⊆ �
[n]
2

�
by changing the value at every element of�

B
2

�∪�C
2

�
to ?. Note that %G

B,C is a random graph-restriction

with distribution GRn−α

n (Ha,b,c).
Every element of Tf,G(B) ∪ Tf,G(C) must clearly be a

sensitive vertex with respect to the restricted graph-function
fd%G

B,C
. In particular,

Tf,G(B) ∪ Tf,G(C) ⊆ V(fd%G
B,C

) ⊆ B ∪ C.

By Proposition 4.8 (noting that α ≤ 1/s < thres(Ha,b,c) by
Lemma 5.2), we have

Pr
G,B,C

�
Tf,G(B) = B and Tf,G(C) = C

�
≤ Pr

G,B,C

�|V(fd%G
B,C

)| = |B ∪ C|�
≤ Pr

%∈GRn−α
n (Ha,b,c)

�|V(fd%)| = |VHa,b,c |
�

= nα|EHa,b,c |+ (β − 1)|VHa,b,c |+ o(1)

= nα(
�

b
2

�
+
�

c
2

�− �a
2

�
) + (β − 1)(b + c− a) + o(1).

The following corollary of Lemma 5.4 directly strengthens
Corollary 3.9(2).

Corollary 5.5. Take f, β, s, α as in Lemma 5.4. Let
k be a constant (independent of n). For a random graph

G ∈ ER(n, n−α) and a uniform random set A ∈ �[n]
k

�
,

Pr
�|Tf,G

〈s〉 (A)| > s
�

= nγ+o(1)

where γ = max
(a,b,c)∈Ws

α(
�

b
2

�
+
�

c
2

�− �a
2

�
) + (β − 1)(b + c− a).

Proof. Similar to the proof of Corollary 3.9, we have

Pr
G∈ER(n,n−α), A∈([n]

k )

�|Tf,G
〈s〉 (A)| > s

�
= Pr

G∈ER(n,n−α)

A∈([n]
k )

h _
B,C∈( A

≤s):
|B∪C|>s

Tf,G(B) = B and Tf,G(C) = C
i

(by Lemma 3.5(2))

≤
X

(a,b,c)∈Ws

 
k

b + c− a

!
(b + c− a)!

a!(b− a)!(c− a)!
×

Pr
G∈ER(n,n−α)

B∈([n]
b ), C∈([n]

c ):
|B∩C|=a

�
Tf,G(B) = B and Tf,G(C) = C

�
(union bound)

=
X

(a,b,c)∈Ws

O(1)z }| { 
k

b + c− a

!
(b + c− a)!

a!(b− a)!(c− a)!
×

nα(
�

b
2

�
+
�

c
2

�− �a
2

�
) + (β − 1)(b + c− a) + o(1)

(by Lemma 5.4)

= nγ+o(1).

We are finally ready to prove our main theorems.

Proof of Theorem 1.1. Let s = d2t−1e and note that
α = 1

2t−1
≤ 1/s. By a straightforward calculation (included

in the full paper), we have

max
�
α− 2, α

�
s
2

�− s
�

< 0,

max
(a,b,c)∈Ws

α(
�

b
2

�
+
�

c
2

�− �a
2

�
)− (b + c− a) < −t.

(The maximizing (a, b, c) ∈ Ws in the second inequality is
the triple (s− 1, s, s).)

From this point forward, the argument continues exactly
as in the proof of Theorem 3.10 (but using Corollary 5.5
instead of Corollary 3.9). That is, we choose a small positive
β > 0 such that γ < −t where

γ = max
(a,b,c)∈Ws

α(
�

b
2

�
+
�

c
2

�− �a
2

�
) + (β − 1)(b + c− a).

We next choose circuits C = (Cn)n∈N with fan-in nβ which
compute functions fn in depth O(1) and size O(nt) with
fan-in nβ . For each node ν ∈ C, Corollary 5.5 gives us

Pr
���TC•ν ,G

〈s〉 (A)
�� > s

�
= nγ+o(1) = n−t−Ω(1).

So by a union bound

Pr
�W

ν

��TC•ν ,G

〈s〉 (A)
�� > s

�
= O(nt) · n−t−Ω(1) = n−Ω(1).

Also, by Corollary 3.9(1) we have

Pr
�
TC,G
〈s〉 (A) 6= ∅� = nmax

�
α+2, α(s

2)+s
�
+o(1) = n−Ω(1).

Therefore, it holds asymptotically almost surely that

TC,G
〈s〉 (A) = ∅ and

��TC•ν ,G

〈s〉 (A)
�� ≤ s for all ν ∈ C. The Cir-

cuit Lemma (Lemma 3.6) now gives the desired result that
a.a.s. C(G) = C(G ∪KA) (i.e., fn(G) = fn(G ∪KA)).

Proof of Theorem 1.2. The lower bound of ω(nk/4) is
certainly trivial for k ≤ 3, so we assume that k ≥ 4. Let
C = (Cn)n∈N be a sequence of circuits on

�
n
2

�
inputs of

depth O(1) and size O(nt) for some constant t = k
4

(> 1
2
).

Let α = 1
2t−1

and note that α = 2
k−2

> 2
k−1

= thres(Kk).

For random G ∈ ER(n, n−α) and A ∈ �[n]
k

�
, Theorem 1.1

tells us that C(G) = C(G ∪ KA) asymptotically almost
surely. By Lemma 2.1(1), G a.a.s. contains no k-clique as
α > thres(Kk) = 2

k−1
. On the other hand, G ∪ KA con-

tains a k-clique (with probability 1). It follows that C does
not define the property of containing a k-clique (for suffi-
ciently large n). Therefore, the k-clique problem does not

have constant-depth circuits of size O(nk/4).

6. CONCLUSION

Superconstant Depth.
The constant-depth assumption is really only used in one

place in this paper, namely Lemma 4.4. In fact, Lemma 4.4
(and hence all other results in this paper) actually holds
for slightly increasing circuit depth d = d(n) = o(

√
log n).

To accommodate this change, the statement of Lemma 4.4
changes from “there exists a constant c = c(d, t, δ, `)” to

“there exists a function cd,t,δ,`(n) = no(1)”. The proof of
Proposition 4.8 (the only place where Lemma 4.4 is used)

goes through unchanged when c = no(1).



Though we have not yet looked into the question, we be-
lieve that our lower bound of ω(nk/4) should also hold for
superconstant clique-size k = k(n), perhaps up to k ≤ log n
(as is the case with the lower bounds of Lynch [23] and
Beame [7] mentioned in the introduction).

Open Questions.
What is the maximal α(t) such that for all k ∈ N and

every sequence (fn)n∈N of functions fn : {0, 1}(n
2) −→ {0, 1}

computed by constant-depth circuits of size O(nt), it holds
that fn(G) = fn(G ∪ KA) asymptotically almost surely

where G ∈ ER(n, nα(t)−Ω(1)) and A is a random k-element
subset of [n]? We showed that α(t) ≥ 1

2t−1
, but it is con-

ceivable that α(t) = 2
t−1

.

What is the minimal t(k) such that the k-clique problem

has constant-depth circuits of size nt(k)+o(1)? We showed
that t(k) ≥ k/4, but it is conceivable that t(k) = k.

What is the fewest number of variables needed to define
the class of finite ordered graphs which contain a k-clique
in first-order logic? We showed that bk/4c variables are
necessary, but it is conceivable that k variables are necessary.

Finally, can our technique be used to obtain lower bound
for problems other than k-clique?
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