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The homomorphism preservation theorem (h.p.t.), a result in classical model theory, states that
a first-order formula is preserved under homomorphisms on all structures (finite and infinite) if
and only if it is equivalent to an existential-positive formula. Answering a long-standing question
in finite model theory, we prove that the h.p.t. remains valid when restricted to finite structures
(unlike many other classical preservation theorems, including the ÃLoś-Tarski theorem and Lyn-
don’s positivity theorem). Applications of this result extend to constraint satisfaction problems
and to database theory via a correspondence between existential-positive formulas and unions
of conjunctive queries. A further result of this article strengthens the classical h.p.t.: we show
that a first-order formula is preserved under homomorphisms on all structures if and only if it is
equivalent to an existential-positive formula of equal quantifier-rank.

Categories and Subject Descriptors: F.4.1 [Mathematical Logic and Formal Languages]:
Mathematical Logic—Model Theory; H.2.3 [Database Management]: Languages—Query lan-
guages

General Terms: Theory

Additional Key Words and Phrases: Finite model theory, first-order logic, homomorphisms, preser-
vation theorems, tree-depth, quantifier-rank, conjunctive queries

1. INTRODUCTION

1.1 Preservation Theorems in Classical and Finite Model Theory

Classical model theory studies the general structures of mathematics through the
lens of first-order logic. Preservation theorems are a group of results in classical
model theory that describe relationships between syntactic and semantic properties
of first-order formulas. The ÃLoś-Tarski theorem, Lyndon’s positivity theorem and
the homomorphism preservation theorem (h.p.t., for short) are three fundamental
preservation theorems dating from the 1950s. Each of these theorems states that
a certain syntactic class of formulas (respectively: existential, positive, existential-
positive) contains, up to logical equivalence, all first-order formulas preserved under
a certain algebraic relationship between structures (the existence of a particular
kind of homomorphism).

Theorem 1.1 (ÃLoś-Tarski Theorem). A first-order formula is preserved un-
der embeddings on all structures if, and only if, it is logically equivalent to an exis-

This work was supported by an MIT Akamai Presidential Fellowship and a National Defense
Science and Engineering Graduate Fellowship and partially written during an internship at IBM’s
Almaden Research Center.
An extended abstract of this article appeared as [Rossman 2005].
Author’s address: Massachusetts Institute of Technology, Computer Science and Artificial Intelli-
gence Laboratory, 32 Vassar St., Cambridge, MA, e-mail: brossman@theory.csail.mit.edu
Permission to make digital/hard copy of all or part of this material without fee for personal
or classroom use provided that the copies are not made or distributed for profit or commercial
advantage, the ACM copyright/server notice, the title of the publication, and its date appear, and
notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to republish,
to post on servers, or to redistribute to lists requires prior specific permission and/or a fee.
c© 2008 ACM 0004-5411/2008/0100-0001 $5.00

Journal of the ACM, Vol. V, No. N, July 2008, Pages 1–54.
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tential formula.1

Theorem 1.2 (Lyndon’s Positivity Theorem). A first-order formula is
preserved under surjective homomorphisms on all structures if, and only if, it is
logically equivalent to a positive formula.

Theorem 1.3 (Homomorphism Preservation Theorem). A first-order
formula is preserved under homomorphisms on all structures if, and only if, it is
logically equivalent to an existential-positive formula.

In these statements and throughout this article, the class of “all structures” includes
both finite and infinite structures. (We assume no background in logic; all relevant
definitions are presented in §2.1. For more on classical model theory, see [Hodges
1993].)

Finite model theory is in large part the study of first-order logic on finite struc-
tures [Ebbinghaus and Flum 1996; Libkin 2004]. At first glance, finite model theory
appears to be a subfield of classical model theory; after all, finite structures are a
subclass of “all structures”. In practice, however, there is a great divide between
the finite and classical worlds. From the perspective of classical model theory, the
intrinsically interesting structures are infinite. Many key classical theorems and
techniques break down when restricted to finite structures. The compactness theo-
rem (a supremely important tool in classical model theory) is the most conspicuous
result to fail on finite structures. Other classical theorems become meaningless or
irrelevant in the finite context (for instance, the Lowenheim-Skolem theorem). Oth-
ers still are curiously inverted: whereas the set of valid first-order formulas is r.e.
(recursively enumerable) [Gödel’s completeness theorem] but not co-r.e. [Church’s
theorem], the set of first-order formulas that are valid on finite structures is co-r.e.
but not r.e. [Trakhtenbrot’s theorem]. A handful of classical theorems and tech-
niques survive the passage to the finite setting (such as Ehrenfeucht-Fräıssé games),
although not enough to bridge the gulf between the finite and classical worlds. And,
of course, a great many results are native to finite model theory, having no classical
counterpart. (For more on this taxonomy, see [Rosen 2002; Baldwin 2000; Kolaitis
1993].)

The project to classify the status of classical theorems when restricted to finite
structures has been an active line of research in finite model theory beginning with
[Gurevich 1984]. Empirically, the classical theorems which remain true on finite
structures are those whose proofs in the classical setting work just as well when
one considers only finite structures. On the other hand, the failure of compact-
ness theorem harbingers the collapse of its many corollaries (including the classical
preservation theorems, whose original proofs rely on compactness arguments). In
a survey on classical and finite model theory, Rosen [2002] wrote that “there seems
to be no example of a theorem [of classical model theory] that remains true when
relativized to finite structures but for which there are entirely different proofs for
the two cases. It would be interesting to find a theorem proved using the compact-
ness theorem that can be established using a new method over finite structures. It

1An embedding of A into B is an isomorphism from A onto an induced substructure of B. The
ÃLoś-Tarski Theorem is sometimes stated in its dual form: a first-order formula is preserved under
induced substructures if, and only if, it is logically equivalent to a universal formula.
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is known that many of the candidates for such a theorem, such as preservation and
interpolation theorems, fail in the finite.” Indeed, both the ÃLoś-Tarski theorem and
Lyndon’s positivity theorem are known to fail on finite structures.

Theorem 1.4 (ÃLoś-Tarski Fails on Finite Structures). There exists a
first-order formula that is preserved under embeddings on finite structures, but is
not equivalent in the finite to an existential formula.

Theorem 1.5 (Lyndon Fails on Finite Structures). There exists a first-
order formula that is preserved under surjective homomorphisms on finite struc-
tures, but is not equivalent in the finite to a positive formula.

Theorem 1.4 was first proved by Tait [1959] and rediscovered by Gurevich and
Shelah (see [Gurevich 1984]). Theorem 1.5 is due to Ajtai and Gurevich [1987].
In neither case is the failure on finite structures as blatant as the failure of the
compactness theorem. The counterexample of Theorem 1.5 in particular is highly
nontrivial; a simplified counterexample was later obtained by Stolboushkin [1995].
(For more on the failure of classical preservation theorems on finite structures, see
[Alechina and Gurevich 1997; Rosen and Weinstein 1995].)

Meanwhile, the status of the h.p.t. on finite structures remained an intriguing
open problem despite a number of partial solutions [Ajtai and Gurevich 1994; Atse-
rias 2005; Grädel and Rosen 1999; Rosen 1995] and an incorrect claim in [Gurevich
1990].

1.2 Main Results

We finally resolve the status of the h.p.t., showing that it remains valid when
restricted to finite structures. This is surprising since the h.p.t. seems to reside at
the intersection of the ÃLoś-Tarski and Lyndon preservation theorems, which both
fail on finite structures. A further result of this article, which we call the equirank
h.p.t., improves the classical h.p.t. in the general setting.2

Theorem 1.6 (Equirank Homomorphism Preservation Theorem). A
first-order sentence is preserved under homomorphisms on all structures if, and
only if, it is equivalent to an existential-positive sentence of equal quantifier-rank.

Theorem 1.7 (Finite Homomorphism Preservation Theorem). A first-
order sentence of quantifier-rank n is preserved under homomorphisms on finite
structures if, and only if, it is equivalent in the finite to an existential-positive
sentence of quantifier-rank ρ(n) (for some explicit function ρ : N −→ N).

These results are later restated as Theorems 4.12 and 5.16. In fact, we obtain
slightly sharper results (Theorems 4.11 and 5.15) stated more generally as inter-
polation theorems. We remark that in both of the above theorems, one direction
is straightforward: it is easy to see that every existential-positive sentence is pre-
served under homomorphisms (on finite structures). All of our effort thus goes into
proving the converse direction in these theorems.

2As a matter of convenience, we now switch from speaking about formulas to instead speaking
about sentences (i.e., formulas without free variables). There is no loss of generality; both theorems
are valid when stated more generally for formulas instead of sentences (see the discussion in §7.1).
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By the equirank h.p.t., every homomorphism-preserved first-order sentence Φ
is equivalent to an existential-positive sentence Ψ with the same quantifier-rank.
That is, there is no blow-up in quantifier-rank from Φ to Ψ. One might instead
ask, what is the length of the shortest existential-positive sentence Ψ equivalent to
Φ? A previously unpublished result of Gurevich and Shelah (which we include here
as Theorem 6.1) states that, despite the non-increase in quantifier-rank, there is
a potentially non-elementary blow-up in length from Φ to the shortest equivalent
Ψ. The same counterexample implies that the best quantifier-rank bound ρ(n) we
manage to achieve in the finite h.p.t. (Theorem 1.7) is non-elementary.

1.3 Combinatorial Perspective

Both our main theorems have purely combinatorial interpretations. In fact, pretty
much the entire technical development of the article takes place within a combina-
torial framework (without reference to logic). From the combinatorial perspective,
we are interested in three equivalence relations on structures (see §2 for precise
definitions).

homomorphic equivalence (A À B)
There exist homomorphisms A → B and B → A.

n-homomorphic equivalence (A Àn B)

(combinatorial) C → A ⇐⇒ C → B for all finite structures C of tree-depth n.

(logical) A and B satisfy the same existential-positive sentences of
quantifier-rank n.

n-back-and-forth equivalence (A ≡n B)

(combinatorial) There exists an n-back-and-forth system of partial isomor-
phisms between A and B.

(logical) A and B satisfy the same first-order sentences of quantifier-
rank n.

While the notions of homomorphic equivalence and n-back-and-forth equivalence
have a long history, n-homomorphic equivalence appears to be a new concept. Intu-
itively, n-homomorphic equivalence approximates homomorphic equivalence “up to
tree-depth n”. In a similar fashion, n-back-and-forth equivalence approximates iso-
morphism. Indeed, on finite structures, equivalences À0,À1, À2, . . . converge to
À (in the sense that A Àn B for all n if and only if A À B), while ≡0,≡1,≡2, . . .
converge to isomorphism. By contrast, on infinite structures,

⋂
n∈NÀn is coarser

than À, while
⋂

n∈N≡n (called elementary equivalence in model theory) is coarser
than isomorphism.

We now state the combinatorial versions of our two main results. These are the
theorems we directly prove; their logical counterparts, Theorems 1.6 and 1.7, are
in fact obtained as corollaries.

Theorem 1.8 (Equirank H.P.T., Combinatorial Version). For all
structures A and B such that A Àn B, there exist structures A′ and B′ such that
A À A′ ≡n B′ À B.
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Theorem 1.9 (Finite H.P.T., Combinatorial Version). For all finite
structures A and B such that A Àρ(n) B, there exist finite structures A′ and B′

such that A À A′ ≡n B′ À B.

1.4 Related Work and Connections to Computer Science

Prior to this article, the h.p.t. was known to hold on finite structures in various
special cases. Rosen [1995] proved that a first-order formula in the ∀∗∃∗∀∗ prefix
class is preserved under homomorphisms on finite structures if, and only if, it is
equivalent in the finite to an existential-positive formula. Grädel and Rosen [1999]
proved the finite h.p.t. for first-order formulas involving only two distinct variables.
Ajtai and Gurevich [1994] showed that if a class of finite structures is definable both
by a first-order sentence and by a Datalog expression, then it is also definable
by an existential-positive sentence. Although originally proved by very different
means, this result follows immediately from the finite h.p.t., since all Datalog
expressions are preserved under homomorphisms.

The field of constraint satisfaction problems provides another example of a con-
sequence of the finite h.p.t. that was originally proved by a different technique. For
a finite structure B, let CSP(B) denote the class of finite structures A that have
a homomorphism to B. The membership problem for the class CSP(B) is known
as the constraint satisfaction problem with template B. Atserias [2005] proved that
if CSP(B) is definable by a first-order sentence, then the complementary class
co-CSP(B) (of finite structures with no homomorphism to B) is definable by an
existential-positive sentence. This result follows immediately from the finite h.p.t.,
since for every template B, the class co-CSP(B) is closed under homomorphisms.
A nice corollary of this result is that a constraint satisfaction problem CSP(B) is
first-order definable if, and only if, it has finite duality, meaning there exist finitely
many “forbidden” structures F1, . . . ,Fm such that A → B ⇐⇒ ∧m

i=1 Fi 6→ A for
all A.

We now mention a few results related to the finite h.p.t., but which do not directly
follow from it. Feder and Vardi [2003] proved homomorphism preservation theorems
on finite structures for various non-first-order logics including ∃Lω, SNP and 2SNP.
In a different vein, Atserias, Dawar and Kolaitis [2006] showed that the h.p.t. holds
on certain restricted classes of finite structures. Specifically, if K is a class of finite
structures whose cores either have bounded degree or exclude a minor, then the
h.p.t. holds when restricted to K. That is, a first-order formula is preserved under
homomorphisms on K if and only if it is equivalent on K to an existential-positive
formula. The basic approach of Atserias, Dawar and Kolaitis, building on [Ajtai
and Gurevich 1994], involves a completely different combinatorial framework. (To
summarize the difference: they study the minimal models of an existential-positive
sentence, while we study the hom-minimal models; see Definition 2.15.)

Numerous applications of finite model theory are found in computer science
[Grädel et al. 2007]. A primary motivation for studying the validity of the h.p.t.
on finite structures comes from the theory of relational databases. Indeed, many
questions arising in the database context have been fruitfully studied using tech-
niques from finite model theory. Finite relational structures have been a popular
model for databases ever since [Codd 1970]. Several popular query languages cor-
respond to sublogics or extensions of first-order logic. To take a pertinent example,
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unions of conjunctive queries (also called select-project-join-union queries and said
to be the most common database queries in practice [Abiteboul et al. 1995]) are
semantically equivalent to existential-positive formulas. The status of the h.p.t. on
finite structures may thus be cast as a question about database query languages
(cp. [Atserias et al. 2006]).

1.5 Overview of the Article

Section 2 covers the basics of structures and homomorphisms, including the impor-
tant notion of tree-depth. This section also includes a concise review of first-order
logic with emphasis on the properties of primitive-positive and existential-positive
formulas. In particular, we describe a correspondence, originally due to Chandra
and Merlin [1977], between primitive-positive sentences (up to logical equivalence)
and finite structures (up to homomorphic equivalence).

In section 3, we introduce notions of n-homomorphism and n-cores, which ap-
proximate the familiar notions of homomorphism and cores “up to tree-depth n”.
We prove a number of lemmas about the lattice of n-homomorphic equivalence
classes. (An equivalent logical theory of n-existential-positive types was developed
in [Rossman 2005], a preliminary version of this article.)

Our main results, the equirank and finite homomorphism preservation theorems,
are proved in sections 4 and 5. For the proof of the equirank h.p.t., we define
a structural property of n-extendability (called n-existential-positive saturation in
[Rossman 2005]) and a technique for constructing infinite n-extendable co-retracts
of any structure. This proof serves as a blueprint and a warm-up for the more
intricate proof of the finite h.p.t., in which we relax the n-extendability property
in order to “finitize” the previous construction.

Section 6 addresses the question: given a homomorphism-preserved first-order
sentence Φ of length n, how long is the shortest existential-positive sentence Ψ
equivalent to Φ? We present a previously unpublished result of Gurevich and Shelah
that for certain Φ, the length of Ψ is a non-elementary function of n. This result
was announced in [Gurevich 1990], but a proof has before never appeared in print.
The same example of Gurevich and Shelah also establishes that the quantifier-rank
bound ρ(n) in the finite h.p.t. is non-elementary.

We conclude in section 7 by stating some corollaries of our main results, docu-
menting the failure on finite structures of the homomorphism interpolation theorem
(a generalization of the h.p.t.) and raising a few open questions.

2. PRELIMINARIES

In §2.1 we present the basic definitions of structures and homomorphisms and first-
order logic that are needed to understand the statements of our main results (and
the other theorems mentioned in the introduction). Following these basic defi-
nitions, we consider in §2.2 the category of structures and homomorphisms over
a set X. In §2.3 we define the Gaifman graph of a structure and introduce the
key notion of tree-depth. We then review in §2.4 the definitions and basic prop-
erties of retractions and cores. This leads into a brief discussion in §2.5 of the
homomorphism lattice. We then describe in §2.6 a fundamental correspondence
between existential-positive sentences and antichains in the homomorphism lattice.
We conclude this section in by defining n-back-and-forth equivalence of structures
Journal of the ACM, Vol. V, No. N, July 2008.
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and giving a characterization in terms of systems partial isomorphisms §2.7.
Most lemmas in this section are stated without proof and should be considered

easy exercises. References are given where results are not well-known folklore.

2.1 Basic Definitions

2.1.1 Structures. A (relational) structure is an object A = 〈A, RA
1 , . . . , RA

m〉
where A is a nonempty set, m is a natural number, R1, . . . , Rm are abstract relation
symbols with associated arities k1, . . . , km (nonnegative integers), and each RA

i is a
ki-ary relation on A (i.e., a subset of Aki). The set A is called the universe of A and
may in general be infinite. The sequence of relation symbols R1, . . . , Rm together
with corresponding arities k1, . . . , km comprise the vocabulary of A. Relation RA

i

is called the interpretation of relation symbol Ri in A. The size of A refers to
the cardinality of A and is sometimes denoted by |A|. We will generally consider
structures with a common vocabulary, which we denote by σ. We emphasize that
σ consists of finitely many relation symbols.3 We consistently employ boldface
letters A,B,C, . . . for structures and italic letters A,B,C, . . . for the corresponding
universes.

A structure B is a substructure of A (in symbols: B ⊆ A) if B ⊆ A and RB ⊆ RA

for every relation symbol R in σ. It is an induced substructure of A if RB is the
restriction of RA to B (i.e., RB = RA ∩Bk where k is the arity of R) for every R
in σ. For a subset X ⊆ A, we denote by A|X the (unique) induced substructure of
A with universe X.

2.1.2 Homomorphisms. Let A = 〈A, RA
1 , . . . , RA

m〉 and B = 〈B, RB
1 , . . . , RB

m〉
be structures (in the same vocabulary). A homomorphism from A to B is a
function h : A −→ B such that h(RA

i ) ⊆ RB
i (i.e., if (a1, . . . , aki) ∈ RA

i then
(h(a1), . . . , h(aki)) ∈ RB

i ) for every Ri.

2.1.3 First-order logic. We quickly review the basics of first-order logic. (First-
order) formulas (in the vocabulary σ) are built up from atomic formulas using
negation, conjunction, disjunction and existential and universal quantification:

x = y, Rx1 . . . xk atomic formulas,
¬φ, φ ∧ ψ, φ ∨ ψ negation, conjunction, disjunction,
∃x φ, ∀x φ existential and universal quantification.

Here x, y and x1, . . . , xk are variables, R is a k-ary relation symbol in σ, and φ and ψ
are formulas. We assume familiarity with the concept of free and bound variables, as
well as the semantics of first-order logic (i.e., what it means for a formula to be true
in (satisfied by) a structure for a given assignment of free variables). As a matter of
notation, formulas are often written out followed by an ordered list of free variables,
in the style of φ(x1, . . . , xk). For a structure A and tuple ~a ∈ Ak, the notation
A |= φ(~a) asserts that the formula φ(~x) is true in A with variables x1, . . . , xk taking
values a1, . . . , ak. Formulas with no free variables are called sentences. Structures
which satisfy a given sentence are called models of that sentence. If φ is a sentence,

3In the usual parlance, σ is a finite relational vocabulary. In general, vocabularies may contain
infinitely many symbols, including constant symbols and function symbols in addition to relation
symbols. In §7.1, we discuss how our results extend to structures in more general vocabularies.
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we respectively denote by Mod(φ) and Modfin(φ) the classes of models and finite
models of φ.

The quantifier-count of a formula φ is the total number of quantifiers in φ. The
quantifier-rank of φ is the maximum nesting depth of quantifiers in φ. These quan-
tities are denoted by qcount(φ) and qrank(φ), respectively. Quantifier-rank is ob-
viously at most quantifier-count and often strictly less. For example, the formula
(∀x (∃y Rxy)∧ (∃z Rzx))∨ (∃x Rxx) has quantifier-rank 2 and quantifier-count 4.

Remark 2.1. It should be obvious that we do not insist that formulas be ex-
pressed in prenex form, that is, with all quantifiers up front followed by a proposi-
tional (quantifier-free) formula. This is an important qualification, as the notion of
quantifier-rank is sensitive to the fact that quantifiers may be interlaced with con-
junctions and disjunction. The standard procedure for transforming a first-order
formula into an equivalent prenex formula preserves quantifier-count but potentially
increases quantifier-rank.

Two formulas φ(x1, . . . , xk) and ψ(x1, . . . , xk) with the same free variables are
said to be logically equivalent [in the finite] if for all [finite] structures A and B
and tuples ~a ∈ Ak and ~b ∈ Bk, it holds that A |= φ(a1, . . . , ak) if and only if
B |= φ(b1, . . . , bk). If φ and ψ are sentences, this condition is equivalent to the
statement that Mod[fin](φ) = Mod[fin](ψ).

A formula φ(x1, . . . , xk) is preserved under homomorphisms [on finite structures]
if for all [finite] structures A and B and tuples ~a ∈ Ak such that A |= φ(a1, . . . , ak)
and h : A → B is a homomorphism, it holds that B |= φ(h(a1), . . . , h(ak)).

Remark 2.2. Logically equivalent formulas are clearly also logically equivalent
in the finite. Similarly, a formula which is preserved under homomorphisms is also
preserved under homomorphisms on finite structures. In neither case, however, is
the converse true. (One can cook up counterexamples by tinkering with axioms
of infinity, that is, first-order sentences with infinite models but without any finite
model.)

Four classes of formulas important to this article are primitive-positive,
existential-positive, positive, and existential formulas. Primitive-positive formulas
are built out of atomic formulas using only conjunction and existential quantifi-
cation. (In the context of relational databases, these formulas define conjunctive
queries.) Existential-positive formulas are built up from atomic formulas using dis-
junction in addition to conjunction and existential quantification. (The database
analogue are unions of conjunctive queries, also known as select-project-join-union
queries.) Positive formulas are first-order formulas without negations. Existential
formulas are formulas in which every existential quantifier falls inside the scope of
an even number of negations, while every universal quantifier falls inside the scope
of an odd number of negations. Equivalently, a formula is existential if no univer-
sal quantifiers remain once all negations are pushed down to the level of atomic
formulas (via rules such as ¬∃φ Ã ∀¬φ and ¬(φ ∨ ψ) Ã ¬φ ∧ ¬ψ and ¬¬φ Ã φ).

We have now defined all of the concepts appearing in the statements of our
two homomorphism preservation theorems (as well as the ÃLoś-Tarski theorem and
Lyndon’s positivity theorem). In the remainder of this section, we present further
background definitions and lemmas pertaining to the proofs of these theorems.
Journal of the ACM, Vol. V, No. N, July 2008.
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But first, we remark that one direction of the if-and-only-if statement is trivial in
both the equirank and finite homomorphism preservation theorems (as well as the
classical h.p.t.).

Lemma 2.3. Every existential-positive formula is preserved under homomor-
phisms [on finite structures].

2.2 Structures and Homomorphisms over a Set X

Let X be an arbitrary set. We call a structure A whose universe contains X (i.e.,
X ⊆ A) a structure over X. For structures A and B over X, a homomorphism
from A to B over X is a homomorphism from A to B which fixes X pointwise.
We write A →X B if there exists a homomorphism from A to B over X. We say
that A and B are homomorphically equivalent over X and we write A ÀX B if
both A →X B and B →X A. We say that A and B are isomorphic over X and
we write A ∼=X B if there exist homomorphisms f : A →X B and g : B →X A
such that g ◦ f = idA and f ◦ g = idB ; in this case, we call f and g isomorphisms
over X.

The coproduct of A and B in the category of structures and homomorphisms
over X is called the X-sum of A and B and denoted by A⊕X B. Formally, this
is the structure with universe X t (A \X) t (B \X) whose relations are inherited
from A and B via the natural inclusion maps A ↪→ X t (A \X) t (B \X) ←↩ B.
We view ⊕X as an associative and commutative operation and we view A and
B as substructures of A ⊕X B, even if this is a slight fiction.4 The coproduct of
an indexed family (Ai)i∈I of structures over X and the coproduct of a set A of
structures over X are defined in the obvious way by extension and are respectively
denoted by

⊕

i∈I

X Ai and
⊕

X A .

The product of A and B in the category of structures and homomorphisms over
X is denoted by A⊗X B. Informally, this is the structure with universe A×B in
which the set ∆X = {(x, x) : x ∈ X} (the “diagonal over X”) is identified with X
itself; formally, A ⊗X B has universe X t ((A × B) \∆X). Relations in A ⊗X B
are defined by

RA⊗XB = {((a1, b1), . . . , (ak, bk)) ∈ (A×B)k : (a1, . . . , ak) ∈ RA, (b1, . . . , bk) ∈ RB}.
In the special case where X = ∅, we simply write A → B and A ⊕B and A ⊗B
instead of A →∅ B and A⊕∅ B and A⊗∅ B. In particular, A⊕B is the familiar
disjoint union of structures.

Every structure over X is clearly also a structure over W for every W ⊆ X.
Parts (1) and (2) of the next lemma extends this observation.

Lemma 2.4. Let A,B,C be structures over a set X and let W ⊆ X.

(1 ) A →X B =⇒ A →W B

4The situation is similar with the set-theoretic disjoint union t. For sets P and Q, the disjoint
union P tQ is formally the set P ∪ {{P, {P, q}} : q ∈ Q} (according to one common definition).
While t is neither truly commutative nor associative and Q is not generally a subset of P t Q,
with a modicum of care one may harmlessly pretend that t is both commutative and associate
and Q is an actual subset of P tQ (identified with {{P, {P, q}} : q ∈ Q}).
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(2 ) (A⊕W B) →W (A⊕X B)
(3 ) A →X C and B →X C ⇐⇒ (A⊕X B) →X C
(4 ) C →X A and C →X B ⇐⇒ C →X (A⊗X B)

Proof. Statement (1) amounts to the (obvious) claim that any homomorphism
which fixes X pointwise also fixes W pointwise. For statement (2), we define a
function h : W t (A \W )t (B \W ) −→ X t (A \X)t (B \X) by patching the map
W ↪→ X (i.e., the identity map on W ) together with natural embeddings A\W

∼=−→
(X \W )t (A\X) ↪→ X t (A\X) and B \W

∼=−→ (X \W )t (B \X) ↪→ X t (B \X).
One can check that h is a homomorphism from A ⊕W B to A ⊕X B over W .
Statements (3) and (4) are standard facts about the coproduct and product.

There are many similar observations that one might make such as, for instance,
the fact that if A →X B and B →Y C then A →X∩Y C. We have included in
Lemma 2.4 only those facts which we will explicitly need later on.

Notation 2.5. We generalize the homomorphism-over-a-set notation→X in order
to assert the existence of homomorphisms satisfying certain other constraints. For
structures A and B and tuples ~a ∈ Ak and ~b ∈ Bk, notation (A,~a) →X (B,~b)
asserts that there exists a homomorphism h : A →X B such that h(ai) = bi for
all i ∈ {1, . . . , k}. If π is a one-to-one partial function from A to B, then notation
A →π B asserts the existence of a homomorphism from A to B which extends π.
We write A Àπ B if both A →π B and B →π−1 A.

2.3 Gaifman Graphs and Tree-Depth

Unless otherwise stated, graphs are simple graphs (i.e., undirected and without self-
loops). A finite rooted forest is a disjoint union of finitely many finite rooted trees.
For vertices v and w in a finite rooted forest F , we write v 99K w if v is the parent
of w. The height of F is number of vertices in the longest path from a root to a leaf.
The closure F of F is a graph having the same vertex set as F , in which vertices v
and w are adjacent if, and only if, one of the pairs (v, w) and (w, v) belongs to the
transitive closure of 99K (i.e., v 6= w and v and w are ancestors in F).

As defined in Nešetřil and de Mendez [2006], the tree-depth td(G) of a finite
graph G is the minimal height of a finite rooted forest whose closure contains G as
a subgraph. Tree-depth has several combinatorial equivalents, including minimum
elimination tree height and vertex ranking number [Deogun et al. 1994; Nešetřil and
de Mendez 2007].) An inductive form of this definition (Lemma 2.2 of [Nešetřil and
de Mendez 2006]) is given by:

td(G) =





1 if G has a single vertex,

1 + min
vertex v of G

td(G \ v) if G is connected and has multiple vertices,

max
component G′ of G

td(G′) if G is disconnected.

Here G \ v denotes the graph obtained from G by removing vertex v and all edges
incident to v.

Remark 2.6. We do not define tree-depth for infinite graphs, since present pur-
poses do not require it. We mention, however, that there is a natural definition
Journal of the ACM, Vol. V, No. N, July 2008.



Homomorphism Preservation Theorems · 11

of tree-depth for certain infinite graphs. This definition uses transfinite induction
with inf instead of min and sup instead of max above (cp. [Nešetřil and Shelah
2003]).

Examples 2.7. We give some examples of tree-depth of finite graphs.

(a) The “kite” graph pictured below has tree-depth 3.

(b) The complete graph on n vertices has tree-depth n.

(c) The path on n vertices has tree-depth blog2 nc+ 1.

(d) Tree-depth is related to tree-width via the following inequality (from [Nešetřil
and de Mendez 2007]):

tw(G) + 1 ≤ td(G) ≤ tw(G) log2 |G|.

The Gaifman graph G(A) of a structure A is the graph with vertex set A in which
two elements are adjacent if, and only if, they appear together in some tuple in a
relation of A. The Gaifman graph captures precisely the “metric” information in a
structures (concerning distance and connectivity among elements and subsets). For
a proper subset X ⊂ A, let G(A) \X denote the induced subgraph of G(A) with
vertex set A \X. (Do not confuse G(A) \X with G(A \X), that is, the Gaifman
graph of the induced substructure of A with universe A \ X. For vocabularies σ
containing relation symbols of arity ≥ 3, these two graphs can be different.)

The tree-depth tdX(A) of a finite structure A over a subset X ⊆ A is defined

tdX(A) =

{
0 if X = A,

td(G(A) \X) if X ⊂ A.

(Just as we do not define tree-depth of infinite graphs, neither do we define tdX(A)
when A is an infinite structure.) The next lemma, which follows directly from
definitions, lists some basic properties of tree-depth of finite structures.

Lemma 2.8 (Properties of Tree-Depth). Let A and B be finite structures
over X.

(1 ) tdX(A⊕X B) = max{tdX(A), tdX(B)}
(2 ) B ⊆ A =⇒ tdX(B) ≤ tdX(A)

(3 ) tdX(A) ≤ tdX∪Y (A) + |Y | for all Y ⊆ A.

(4 ) If X 6= A and G(A)\X is connected, then tdX(A) = 1+ min
y∈A\X

tdX∪{y}(A).

We remark that Lemma 2.8(1,4), together with the assertion that tdX(A) = 0 if
A = X, completely axiomatizes tree-depth.
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2.4 Retractions and Cores

Let B be a substructure of A. A homomorphism from A to B is a retraction if
it restricts to the identity map on B. That is, a retraction is a homomorphism
A →B B. As an alternative to the notation A →B B, we write A retr−−→ B to assert
the existence of a retraction from A to B. In the event that A retr−−→ B, we call B
a retract of A, we call A a co-retract of B, and we call the inclusion map B ↪→ A
(i.e., the identity map on B) a co-retraction from B to A. Note that retracts are
always induced substructures, that is, A retr−−→ B implies A|B = B. The next lemma
lists some basic facts about retractions.

Lemma 2.9 (Properties of Retractions).

(1 ) A retr−−→ B retr−−→ C =⇒ A retr−−→ C

(2 ) (A⊕X B) retr−−→ A ⇐⇒ B →X A

(3 )
⊕

i∈I

A Bi
retr−−→ A ⇐⇒

∧

i∈I

(
Bi

retr−−→ A
)

(4 )
∧

n∈N

(
An+1

retr−−→ An

)
=⇒

⋃

n∈N
An

retr−−→ A0

In statement (4),
⋃

n∈NAn is the union of the chain of co-retracts A0
retr←−− A1

retr←−−
A2

retr←−− · · · , that is, the structure with universe
⋃

n∈NAn in which relation symbol
R has the interpretation

⋃
n∈NRAn .

Another key notion in this article is that of a core over a set X. A structure A
over X is a core over X if every homomorphism A →X A is an automorphism (i.e.,
an isomorphism from A onto itself). The following lemma gives a useful character-
ization of finite cores and associates a unique core with every finite structure.

Lemma 2.10. Let A be a finite structure and let X ⊆ A.

(1 ) A is a core over X if, and only if, it has no proper retract over X (i.e., for
every retract B of A, either A = B or X * B).

(2 ) A has a retract which is a core over X. Moreover, if A retr−−→ B1 and A retr−−→ B2

where B1 and B2 are both cores over X, then B1
∼=X B2.

The notion of cores has a long history in the context of graph theory, where
Lemma 2.10 originated (see [Hell and Nešetřil 1992]).

2.5 Canonical Cores and the Homomorphism Lattice

For every finite set X, we fix a class CX of finite cores over X containing exactly
one representative from each ∼=X -equivalence class of finite structures.5 Since CX

contains only finite structures, each unique up to ∼=X , it follows that CX is a
countably infinite set. We call members of CX canonical cores over X.

Lemma 2.11. For every finite structure A and X ⊆ A, there exists a unique C ∈
CX such that A ÀX C. Moreover, tdX(C) ≤ tdX(A) and every homomorphism
h : C →X A is injective and satisfies A retr−−→ h(C).

5One can avoid using the axiom of choice here by appealing to the lexicographic order on graphs
whose vertex set is an initial segment of N.
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The structure C in Lemma 2.11 is called the (canonical) core of A over X and
denoted by CoreX(A). In the special case where X = ∅, we write C instead of C∅
and Core(A) instead of Core∅(A).

The relation →X of homomorphism over X partially orders the set CX of canon-
ical cores over X. (This is tantamount to the assertion that →X quasi-orders the
ÀX -equivalence classes of finite structures over X.) Moreover, the poset (CX ,→X)
is easily seen to be a lattice: Lemma 2.4(3,4), together with the observation that
both A ⊕X B and A ⊗X B are finite whenever A and B are finite, implies that
CoreX(C1⊕X C2) and CoreX(C1⊗X C2) are respectively the least upper bound
and greatest lower bound of canonical cores C1,C2 ∈ CX .

The poset (CX ,→X) is known as the homomorphism lattice. The homomorphism
lattice is a well-studied object in combinatorics with a large literature on its maxi-
mal antichains, gaps, density properties, and so forth (see [Hell and Nešetřil 2004]
for an overview).

2.6 Primitive-Positive and Existential-Positive Formulas

It is intuitively obvious that every existential-positive formula can be expressed as
a finite disjunction of primitive-positive formulas. Indeed, there is a purely syntac-
tic procedure for extracting primitive-positive disjuncts out of a given existential-
positive formula ψ: simply apply rules φ1 ∧ (φ2 ∨ φ3) Ã (φ1 ∧ φ2) ∨ (φ1 ∧ φ3) and
∃x (φ1 ∨ φ2) Ã (∃x φ1)∨ (∃x φ2), etc., to all subformulas of ψ. In every such rule,
the quantifier-count (resp. quantifier-rank) of the lefthand formula is at least the
quantifier-count (resp. quantifier-rank) of each disjunct in the righthand formula.
This observation leads to the following lemma.

Lemma 2.12. Every existential-positive formula ψ is logically equivalent to a
finite disjunction θ1∨· · ·∨θm of primitive-positive formulas θi such that qcount(ψ) ≥
maxi qcount(θi) and qrank(ψ) ≥ maxi qrank(θi).

We now turn our attention to a fundamental one-to-one correspondence between
primitive-positive sentences (up to logical equivalence) and finite structures (up to
homomorphic equivalence), attributed to Chandra and Merlin [1977] in the context
of relational databases and conjunctive queries (see also [Kolaitis and Vardi 2000]).
This correspondence extends to a bijection between existential-positive sentences
(up to logical equivalence) and finite antichains in the homomorphism lattice. An
important feature of this correspondence, which seems to have been previously
overlooked or underemphasized, is the tight relationship between quantifier-rank
and tree-depth. The next few lemmas formally define this correspondence, thereby
translating from the logical framework of implication and logical equivalence to the
combinatorial framework of homomorphisms and homomorphic equivalence.

Lemma 2.13. For every primitive-positive sentence θ, there is a finite structure
Aθ of size qcount(θ) and tree-depth qrank(θ) such that Aθ → B ⇐⇒ B |= θ for all
structures B.

Proof. Without loss of generality, we may assume that no variable in θ is quan-
tified more than once (by appropriately renaming variables) and that θ contains
no equality subformula x = y (these subformulas can be eliminated by purely
syntactic means in a manner that preserves both quantifier-count and quantifier-
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rank). Suppose x1, . . . , xm are the distinct variable symbols occurring in θ. We
define the structure Aθ as follows. The universe Aθ is the set {x1, . . . , xm}.
For each relation symbol R of arity k, the tuple (xi1 , . . . , xik

) belongs to RAθ

if and only if Rxi1 . . . xik
occurs as a subformula of θ. One can check that

B |= θ ⇐⇒ Aθ → B for all structures B. Since obviously |Aθ| = qcount(θ),
it remains to show that td(Aθ) = qrank(θ). To that end, consider the “directed
arc” relation on Aθ defined by xi 99K99K xj if, and only if, the quantification ∃xj

lies within the scope of quantification ∃xi in θ. For example, if θ is the sen-
tence (∃x1(∃x2Rx1x2) ∧ (∃x3Rx3x1)) ∧ (∃x4Rx4x4), we have arcs x1 99K99K x2 and
x1 99K99K x3. The relation 99K99K describes a rooted forest F on the set Aθ (namely,
99K99K is the “ancestor of” relation on F , that is, the transitive closure of “par-
ent of” relation 99K). Clearly, G(Aθ) is a subgraph of the closure F . Therefore,
td(Aθ) ≤ height(F) = qrank(θ).

Lemma 2.14. For every finite structure A, there is a primitive-positive sentence
θA with quantifier-count |A| and quantifier-rank td(A) such that A → B ⇐⇒ B |=
θA for all structures B.

Proof. Suppose a1, . . . , am enumerate the elements of A and let x1, . . . , xm be
a corresponding sequence of variable symbols. By definition of tree-depth, there
exists a rooted forest F of height td(A) such that G(A) is a subgraph of F . We
will inductively define primitive-positive formulas θi for all i ∈ {1, . . . , m}. For
every i such that ai is a leaf in F , let θi be the conjunction of all atomic formulas
Rxj1 . . . xjk

where R is a k-ary relation symbols and (aj1 , . . . , ajk
) ∈ RA such that

elements aj1 , . . . , ajk
all lie in the unique branch of F containing the leaf ai. For

every i such that ai is not a leaf, let θi be the formula ∃xi ψi where ψi is the
conjunction of formulas θj for all j such that ai 99K aj (i.e., aj is a child of ai)
in F . Note that θi is a sentence for all i such that ai is a root in F . Let θA

be the conjunction of sentences θi for all roots ai. One can check that θA has
the desired properties, that is, qcount(θA) = |A| and qrank(θA) = td(A) and
A → B ⇐⇒ B |= θA for all structures B.

The operators θ 7−→ Aθ and A 7−→ θA described by Lemmas 2.13 and 2.14 are
easily seen to preserve quasi-orders ` (logical implication) and→ (homomorphism).
That is, for all primitive-positive sentences θ1, θ2 and finite structures A1,A2, we
have θ1 ` θ2 ⇐⇒ Aθ1 → Aθ2 and A1 → A2 ⇐⇒ θA1 ` θA2 . Taking cores,
we obtain an order-preserving bijection between the homomorphism lattice (C ,→)
and the set of logical-equivalence classes of primitive-positive sentences partially
ordered by `.

The following definition and proposition characterize existential-positive sen-
tences in terms of certain finite models.

Definition 2.15. A structure M is an hom-minimal model of an existential-
positive sentence ψ if

• M |= ψ and
• (A |= ψ and A → M) =⇒ M → A for all structures A.

Proposition 2.16. Suppose M is a finite hom-minimal model of an existential-
positive sentence ψ. Then qcount(ψ) ≥ |Core(M)| and qrank(ψ) ≥ td(Core(M)).
Journal of the ACM, Vol. V, No. N, July 2008.
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Proof. By Lemma 2.12, ψ is logically equivalent to a finite disjunction θ1 ∨
· · · ∨ θm of primitive-positive sentences θi such that qcount(ψ) ≥ maxi qcount(θi)
and qrank(ψ) ≥ maxi qrank(θi). By Lemma 2.13, there exist finite structures
A1, . . . ,Am such that |Ai| ≤ qcount(θi) and td(Ai) ≤ qrank(θi) and Ai → B ⇐⇒
B |= θi for all structures B. Note that Ai |= ψ since Ai |= θi (as Ai → Ai) for
all i. Since M |= ψ, there exists j ∈ {1, . . . , m} such that M |= θj and hence
Aj → M. As M is hom-minimal with respect to ψ, it follows that M → Aj , that
is, Aj À M. Since Aj and M are homomorphically equivalent finite structures,
they have isomorphic cores Core(Aj) ∼= Core(M). Recall that |Core(Aj)| ≤ |Aj |
and td(Core(Aj)) ≤ td(Aj) by Lemma 2.11. Therefore, we have

|Core(M)| = |Core(Aj)| ≤ |Aj | ≤ qcount(θi) ≤ qcount(ψ),
td(Core(M)) = td(Core(Aj)) ≤ td(Aj) ≤ qrank(θi) ≤ qrank(ψ).

Notice that any two hom-minimal models M and N of an existential-positive
sentence ψ are either homomorphically equivalent (M À N) or homomorphically
incomparable (M 6→ N and N 6→ M). Consequently, the set {Core(M) : M
is a finite hom-minimal model of ψ} is an antichain in the homomorphism lattice
(C ,→) (in fact, a finite antichain). This antichain completely characterizes ψ up to
logical equivalence (in fact, there is a bijection between finite antichains in (C ,→)
and existential-positive sentences up to logical equivalence).

2.7 Back-and-Forth Equivalence

For structures A,B and n ∈ N, we write A ≡n B and say that A and B are
n-back-and-forth equivalent if they satisfy exactly the same first-order sentences of
quantifier-rank n. The sequence of equivalence relations ≡0,≡1,≡2, . . . , each one a
refinement of the previous, measures the extent to which A and B look alike from
the perspective of first-order logic.

Remark 2.17. Another name for ≡n is elementary equivalence up to quantifier-
rank n. (Our nonstandard choice of terminology “n-back-and-forth equivalence”
refers to the combinatorial characterization of ≡n in terms of n-back-and-forth sys-
tems of partial isomorphisms, soon to be defined.) Structures A and B are said to
be elementarily equivalent if A ≡n B for all n ∈ N, that is, if no first-order sentence
(of any quantifier-rank) distinguishes between A and B. Elementary equivalence
is a rather subtle equivalence relation on infinite structures: classical model theory
attempts to understand (count, parameterize, classify, etc.) the often very rich col-
lection of non-isomorphic structures within a single elementary equivalence class.
On finite structures, the story is much simpler: elementary equivalence entails iso-
morphism. In fact, any two finite structures A and B are isomorphic if, and only
if, A ≡min(|A|,|B|)+1 B.

Remark 2.18. It is well-known folklore that there are only finitely many ≡n-
equivalence classes of structures for each n (although the exact number depends on
the finite relational vocabulary σ). This is closely related to the fact that there are
only finitely many first-order sentences of quantifier-rank n up to logical equivalence.

There are a number of useful combinatorial characterizations of ≡n. One popular
characterization is via Ehrenfeucht-Fräıssé games. We prefer working with the (es-
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sentially identical) concept of an n-back-and-forth system of partial isomorphisms,
due to Fräıssé. Recall that a partial isomorphism from A to B is a partial function
π from A to B which restricts to an isomorphism from A|Dom(π) to B|Range(π).

Definition 2.19. An n-back-and-forth system on structures A and B is a sequence
∅ 6= Π0 ⊆ Π1 ⊆ · · · ⊆ Πn of sets Πi of partial isomorphisms from A to B such that
for all i ∈ {1, . . . , n} and π ∈ Πi−1,

(forth) ∀a ∈ A ∃πa ∈ Πi such that πa extends π and a ∈ Dom(πa),
(back) ∀b ∈ B ∃πb ∈ Πi such that πb extends π and b ∈ Range(πb).

We now state the key lemma characterizing ≡n in terms of this definition. Proof
of this fundamental lemma can be found in any (finite) model theory text.

Lemma 2.20. Structures A and B are n-back-and-forth equivalent if, and only
if, there exists an n-back-and-forth system on A and B.

Remark 2.21. Extending ≡n to a relation between structures with distinguished
tuples (of the same arity), a simple inductive characterization emerges:

• (A,~a) ≡0 (B,~b) if and only if ~a 7−→ ~b is a legitimate partial isomorphism from
A to B;

• for n ≥ 1, (A,~a) ≡n (B,~b) if and only if ∀α ∈ A ∃β ∈ B (A,~aα) ≡n−1 (B,~bβ)
and ∀β ∈ B ∃α ∈ A (A,~aα) ≡n−1 (B,~bβ).

3. BOUNDED TREE-DEPTH

In this section, we take a fresh look at the concepts of homomorphisms and cores
from the perspective of structures with bounded tree-depth. For every natural
number n, we define a relation of n-homomorphism between structures which ap-
proximates the usual relation of homomorphism “up to tree-depth n”. This leads
to the notion of the n-core of a structure over a set. We then introduce the property
of n-freeness of sets Y and Z over a set X in a structure A. This property is the
bounded tree-depth analogue of Y and Z being separated by X in the Gaifman
graph G(A).

Proviso 3.1. In this section and throughout the rest of this article, X, Y, Z, . . .
will always be finite sets (in particular, finite subsets of structures A,B,C, . . . even
when these structures are infinite). Whenever we mention A,B,C, . . . , X, Y, Z, . . .
in the same breath, it is assumed that X, Y, Z, . . . lie inside the intersection of
universes A,B,C, . . . . For instance, the statement (A⊕X B) → (C⊕Y D) includes
the assumption that (X ∪ Y ) ⊆ (A ∩B ∩ C ∩D).

3.1 n-Homomorphism

Definition 3.2. Let A and B be structures over a set X and let n ∈ N. We write
A →n

X B and say that A is n-homomorphic to B over X if C →X A =⇒ C →X B
for all finite structures C of tree-depth at most n over X. We write A Àn

X B
and say that A and B are n-homomorphically equivalent over X if both A →n

X B
and B →n

X A. As usual, we write A →n B (resp. A Àn B) if A →n
∅ B (resp.

A Àn
∅ B).
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For use later on (in §4 and §5), we provide a special notation for the gener-
alized concepts of n-homomorphism relative to a partial isomorphism π, as well
as n-homomorphism over X between structures with distinguished k-tuples (cp.
Notation 2.5).

Notation 3.3. Let π be a partial isomorphism from A to B with domain X ⊆ A.
We write A →n

π B if C →X A =⇒ C →π B for all finite structures C of tree-depth
at most n over X. We write A Àn

π B if both A →n
π B and B →n

π−1 A. For tuples
~a ∈ Ak and ~b ∈ Bk, we write (A,~a) →n

X (B,~b) if (C,~c) →X (A,~a) =⇒ (C,~c) →X

(B,~b) for all finite structures C and tuples ~c ∈ Ck such that C has tree-depth
at most n over X ∪ {c1, . . . , ck}. For example, if π is the identity function on X
and ~x is a tuple whose coordinates enumerate the elements of X, then the three
expressions A →n

X B and A →n
π B and (A, ~x) →n (B, ~x) have the same meaning.

Each of these notations will be convenient at different times.

All lemmas in this section which involve the notion of n-homomorphism over
a set (→n

X) generalize in straightforward manner to statements in terms of n-
homomorphism relative to a partial isomorphism (→n

π). As a matter of taste, we
prefer dealing with homomorphisms over sets rather than relative to partial isomor-
phisms. However, in a few cases where the partial-isomorphism version of a result is
explicitly needed, both versions are presented (with the partial-isomorphism version
stated as a corollary).

Before turning to the main lemma of this subsection, we point out a few basic
properties of the n-homomorphism relation →n

X . First, →n
X is transitive. In fact,

just like →X , the relation →n
X is a quasi-order on structures. Clearly, A →X B

implies A →n
X B for all n. Just as clearly, A →n

X B implies A →n′
X′ B for all

n′ ≤ n and X ′ ⊆ X. Only slightly less obvious is the fact that A →n
X B if, and

only if, C →X A =⇒ C →X B for all finite structures C of tree-depth at most n
over X such that G(C) \X is connected.

The following lemma, which we will invoke repeatedly throughout this article,
says that →n

X behaves essentially just like →X with respect to X-sums. (It is an
easy exercise to check that Lemma 3.4 remains valid if →n

X is replaced by →X .)

Lemma 3.4. Let A1,A2,B1,B2 be structures over X.

(1 ) If A1 →n
X B1 and A2 →n

X B2, then (A1 ⊕X A2) →n
X (B1 ⊕X B2).

(2 ) If A1 →n
X1

B1 and A2 →n
X2

B2, then

(A1 ⊕X1∩X2 A2) →n
X1∪X2

(B1 ⊕X1∩X2 B2).

(3 ) If A →n
X B, then (A⊕X B) Àn

B B.

Proof. For a set W , we denote by ∅∅∅W the “empty” structure with universe W
(in which all relation symbols are interpreted as the empty set). In our proof of
statement (1), below, we will use the following general fact: for every homomor-
phism f : A →X B, there exist a structure C and homomorphisms g : A →X C
and h : C →X B such that tdX(C) ≤ tdX(A) and f = h ◦ g and h−1(X) = X.
To see this, define function g : A → A by letting g(a) = f(a) if f(a) ∈ X and
letting g(a) = a otherwise. Now let C = g(A) be the image of A under g (so
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clearly g is a homomorphism A →X C) and let h = f ¹ C. While C is not neces-
sarily a substructure of A, it does holds that X ⊆ C and C|C\X ⊆ A|A\X , from
which it follows that tdX(C) ≤ tdX(A). Finally, it is easy to check that h is a
homomorphism C →X B and h−1(X) = X.

(1) Assume that A1 →n
X B1 and A2 →n

X B2. Let C be a finite structure such
that tdX(C) ≤ n and C →X (A1⊕X A2). We must show that C →X (B1⊕X B2).
By the aforementioned general fact, there exist a structure D and homomorphisms
C →X D and h : D →X (A1 ⊕X A2) such that tdX(D) ≤ n and h−1(X) = X.
We will show that D →X (B1 ⊕X B2), thus proving C →X (B1 ⊕X B2). We
first decompose D as a finite X-sum D = D1 ⊕X · · · ⊕X Dm such that graphs
G(Di) \X are connected for all i ∈ {1, . . . , m} (such a decomposition exists for all
finite structures over X). The fact that G(Di) \X is connected and h−1(X) = X
implies that h(Di) ⊆ A1 or h(Di) ⊆ A2 (hence Di →X A1 or Di →X A2). Note
that tdX(Di) ≤ n since Di ⊆ D. As A1 →n

X B1 and A2 →n
X B2, it follows

that Di →X B1 or Di →X B2. Either way, we have Di →X (B1 ⊕X B2) for
i = 1, . . . ,m. Therefore, D →X (B1 ⊕X B2), as required.

(2) Assume A1 →n
X1

B1 and A2 →n
X2

B2. Let Y1 = X2 \X1 and Y2 = X1 \X2,
and let Ai ⊕∅∅∅Yi (resp. Bi ⊕∅∅∅Yi) denote the disjoint union of Ai (resp. Bi) and
the empty structure ∅∅∅Yi with universe Yi. Clearly, we have (Ai ⊕∅∅∅Yi) →n

X1∪X2

(Bi ⊕∅∅∅Yi) for i = 1, 2. Therefore, by part (1),

((A1 ⊕∅∅∅Y1)⊕X1∪X2 (A2 ⊕∅∅∅Y2)) →n
X1∪X2

((B1 ⊕∅∅∅Y1)⊕X1∪X2 (B2 ⊕∅∅∅Y2)).

The result now follows, as

((A1 ⊕∅∅∅Y1)⊕X1∪X2 (A2 ⊕∅∅∅Y2)) ∼=X1∪X2 (A1 ⊕X1∩X2 A2),
((B1 ⊕∅∅∅Y1)⊕X1∪X2 (B2 ⊕∅∅∅Y2)) ∼=X1∪X2 (B1 ⊕X1∩X2 B2).

(3) Assume A →n
X B. Let B′ ∼=X B, that is, let B′ be a structure over X which

is isomorphic over X to B. Let A1 = A and B1 = B′ and A2 = B2 = B and
X1 = X and X2 = B. Note that A1 →X1 B1 and A2 →X2 B2 and X1 ∩X2 = X
and X1 ∪ X2 = B (since X ⊆ B). By part (2), we have A ⊕X B →n

B B′ ⊕X B.
Combining this observation with the obvious homomorphisms B′⊕X B →B B and
B →B A⊕X B, we conclude that A⊕X B Àn

B B.

For future reference (specifically in the proof of Lemma 5.12), we state with-
out proof the analogue of Lemma 3.4(2) for n-homomorphism relative to a partial
isomorphism (see Notation 3.3).

Corollary 3.5. Suppose π is a partial isomorphism from a structure A =
A1⊕X A2 to structure B = B1⊕Y B2 such that X ⊆ Dom(π) and π(X) = Y . For
i = 1, 2, let π ¹ Ai denote the restriction of π to Dom(π) ∩ Ai. If A1 →n

π¹A1
B1

and A2 →n
π¹A2

B2, then A →n
π B. Moreover, if A1 Àn

π¹A1
B1 and A2 Àn

π¹A2
B2,

then A Àn
π B.

In light of a connection (to be discussed in §3.4) between Àn-equivalence classes
of structures and existential-positive theories up to quantifier-rank n, Lemma 3.4
and Corollary 3.5 can be viewed as “composition theorems” in the spirit of the
Feferman-Vaught theorem from classical model theory [Feferman and Vaught 1959].
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3.2 n-Cores

Definition 3.6. For every finite set X and natural number n, we denote by C n
X

the set of finite canonical cores over X with tree-depth at most n over X. That is,
C n

X = {C ∈ CX : tdX(C) ≤ n}. Members of C n
X are called n-cores over X.

A few observations are in order. First and most obvious, CX is the union of sets
C n

X over all n ∈ N. Second, we have A →n
X B if, and only if, C →X A =⇒ C →X B

for every C ∈ C n
X . Third, →X coincides with →n

X on the class C n
X . That is,

C1 →X C2 ⇐⇒ C1 →n
X C2 for all C1,C2 ∈ C n

X . Fourth, →X is clearly a partial
order on C n

X , since C n
X is a subset of the homomorphism lattice (CX ,→X). So what

about the poset (C n
X ,→X)? Is it also a lattice?

Lemma 3.7. (C n
X ,→X) is an upper semilattice. That is, every two structures in

C n
X have a least upper bound (l.u.b.) with respect to →X . Moreover, the l.u.b. of

two structures in (C n
X ,→X) coincides with their l.u.b. in the lattice (CX ,→X).

Proof. Consider any C1,C2 ∈ C n
X . Recall from §2.4 that CoreX(C1⊕X C2) is

the l.u.b. of CoreX(C1) (= C1) and CoreX(C2) (= C2) in the homomorphism lat-
tice (CX ,→). Therefore, it suffices to show that CoreX(C1⊕X C2) has tree-depth
≤ n over X, that is, CoreX(C1 ⊕X C2) ∈ C n

X . This follows from Lemma 2.8(1,2)
as

tdX(CoreX(C1 ⊕X C1)) ≤ tdX(C1 ⊕X C1) = max{tdX(C1), tdX(C1)} ≤ n,

where the first inequality is by Lemma 2.11.

Remark 3.8. (C n
X ,→X) is in fact a lattice (not just an upper semilattice). How-

ever, it fails to be a sublattice of (CX ,→X) since the greatest lower bound (g.l.b.)
of two structures in C n

X does not always coincide with their g.l.b. in CX . We give
an example of this phenomenon when n = 2 and X = ∅. In the example, the vo-
cabulary σ consists of binary relations R1, R2, R3, R4. Structures C1 and C2 and
their product C1 ⊗ C2 are depicted below on the left. Ordered pairs of elements
belonging to the relations R1, R2, R3, R3 are indicated by arrows; each line style
corresponds to one of the four relations.

C1 ×C2C1

C2
D

C1 and C2 are easily seen to be cores of tree-depth 2 (over ∅). Their product C1⊗C2

is not a core; however, Core(C1 ⊗C2) is isomorphic to the motley 4-cycle inside
C1 ⊗ C2 (i.e., what remains after removing the five isolated elements). We have
seen that Core(C1⊗C2) is the g.l.b. of Core(C1) (= C1) and Core(C2) (= C2) in
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the homomorphism lattice (CX ,→X) (see §2.4). However, Core(C1⊗C2) has tree-
depth 3 and thus cannot be the g.l.b. of C1 and C2 in (C 2

X ,→X). That structure
is D, pictured above on the right. (D is what we call the 2-core of C1 ⊗C2, to be
defined shortly.)

The next proposition gives a key finiteness property of bounded tree-depth struc-
tures. (Here is one place where the assumption that σ is a finite relational vocab-
ulary is crucial. Proposition 3.9 is false for vocabularies which contain infinitely
many relation symbols.)

Proposition 3.9. Up to ÀX , there are only finitely many finite structures over
X with tree-depth ≤ n over X. Equivalently, there are only finitely many canonical
cores over X of tree-depth ≤ n over X (i.e., C n

X is a finite set).

In a graph-theoretic context, Proposition 3.9 is proved as Corollary 3.4 of [Nešetřil
and de Mendez 2006]. The proof for relational structures is essentially the same.
By a straightforward induction, one can show that |C n

X | ≤ 22...2κ

(a tower of expo-
nentials of height n+1) where log2 κ =

∑
R∈σ(|X|+n)arity(R); here κ is the number

of σ-structures with universe X t{1, . . . , n}. (Proposition 3.9 may also be deduced
from the folklore theorem that there are only finite many first-order sentences of
quantifier-rank n up to logical equivalence; see Remark 2.18.)

The fact that (C n
X ,→X) is finite means it is complete as an upper semilattice,

that is, every subset of C n
X has a least upper bound. This leads to the notion of

the n-core of a (finite or infinite) structure over a finite subset of its universe.

Definition 3.10 (n-Core). For a structure A and a finite set X ⊆ A, the n-core
Coren

X(A) of A over X is the least upper bound of {C ∈ C n
X : C →X A} in

(C n
X ,→X).

We emphasize that Coren
X(A) is defined for all structures A (so long as X ⊆ A

is a finite set). This is in contrast to CoreX(A), which is defined only for finite
structures A.

We point out two useful characterizations of Coren
X(A), both easy exercises. On

one hand, we have the explicit expression

Coren
X(A) = CoreX(

⊕
X{C ∈ C n

X : C →X A}).
Alternatively, one can check that Coren

X(A) is the unique C ∈ C n
X such that

A Àn
X C.

The following lemma underscores the utility of the operator Coren
X(·): it allows

us to answer questions about →n
X by answering questions about →X (a relationship

between structures for which there is a simple explicit existential witness, namely
a homomorphism fixing X pointwise).

Lemma 3.11. A →n
X B if, and only if, Coren

X(A) →X B.

Proof. Let D be the set {C ∈ C n
X : C →X A}, so in particular Coren

X(A) =
CoreX(

⊕
XD). We have A →n

X B ⇐⇒ ∧
C∈D(C →X B) by virtue of our earlier

observation that A →n
X B if, and only if, C →X A =⇒ C →X B for all C ∈ C n

X .
Now notice that

∧
C∈D(C →X B) ⇐⇒ ⊕

XD →X B ⇐⇒ CoreX(
⊕

XD) →X

B ⇐⇒ Coren
X(A) →X B. Putting these statements together, we get A →n

X

B ⇐⇒ Coren
X(A) →X B as required.
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As a special case of Lemma 3.11, we have Coren
X(A) →X A. The next lemma

describes an important relationship between the parameters n and X in the defini-
tion of Coren

X(A). This lemma will come in handy at a few critical junctures later
on.

Lemma 3.12. For every structure A and finite sets X,Y ⊆ A, there is a homo-
morphism Coren

X∪Y (A) →X Coren+|Y |
X (A).

Proof. By definition of Corem
X(A), we have B →X Corem

X(A) for all m ∈ N
and all structures B such that B →X A and tdX(B) ≤ m. To prove the lemma,
we simply apply this observation with B = Coren

X∪Y (A) and m = n + |Y |, using
the fact that

tdX(Coren
X∪Y (A)) ≤ tdX∪Y (Coren

X∪Y (A)) + |Y | ≤ n + |Y |
where the first inequality is by Lemma 2.8(3).

3.3 Core-Size Bound

The core-size bound, defined below, will play an important role later on. It comes
up in the freeness lemma (Lemma 3.22), which features prominently in the proof
of the finite homomorphism preservation theorem (Theorem 5.16).

Definition 3.13 (Core-Size Bound). For all m,n ∈ N, let

βn
m = max{|C| : C ∈ C n

X such that |X| = m}.
That is, βn

m is the size of the largest n-core over a set of size m.

Since C n
X is a finite set (by Proposition 3.9) and each C ∈ C n

X is a finite structure,
we see that βn

m is a finite number. (We remark that the core-size bound, like
practically everything else in this article, depends on the finite relational vocabulary
σ.) Note that the core-size bound satisfies βn′

m′ ≤ βn
m for all n′ ≤ n and m′ ≤ m.

Even though we view βn
m as a function from N×N to N, we have chosen notation

βn
m (as opposed say to β(n,m)) for the sake of consistency with related notations

like C n
X and →n

X . In these related notations, the superscript n corresponds to tree-
depth over the subscript X. By analogy, the subscript m in βn

m stands for the size
|X| of the set X.

3.4 Logical Characterization of n-Homomorphism

We now link up the notions of n-homomorphism and existential-positive definability
via the correspondence described in §2.6 between primitive-positive sentences (up
to logical equivalence) and finite structures (up to homomorphic equivalence).

Lemma 3.14. A →n B if, and only if, A |= θ =⇒ B |= θ for every primitive-
positive sentence θ of quantifier-rank n.

Proof. (=⇒) Assume A →n B and suppose θ is a primitive-positive sentence of
quantifier-rank n such that A |= θ. By Lemma 2.13, there exists a finite structure
C (called in Aθ in Lemma 2.13) such that td(C) ≤ n and C → D ⇐⇒ D |= θ for
all structures D. Since A |= θ, we have C → A. By definition of →n, it follows
that C → B. Therefore, B |= θ.

Journal of the ACM, Vol. V, No. N, July 2008.



22 · Benjamin Rossman

(⇐=) Assume that A |= θ =⇒ B |= θ for every primitive-positive sentence θ
of quantifier-rank n. Suppose C is a finite structure of tree-depth ≤ n such that
C → A. By Lemma 2.14, there exists a primitive-positive sentence θC such that
qrank(θC) ≤ n and D |= θC ⇐⇒ C → D for all D. Since C → A, we have A |= θC.
As qrank(θC) ≤ n, we have B |= θC and hence C → B. Since C → A =⇒ C → B
for all finite C of tree-depth ≤ n, we conclude that A →n B.

The next two lemmas rely on the fact that there are only finitely many Àn-
equivalence classes by Proposition 3.9.

Lemma 3.15. For any class P of [finite] structures, statements (i)–(iii) are
equivalent:

(i) P is definable by an existential-positive sentence of quantifier-rank n [on finite
structures],

(ii) P is closed under →n [on finite structures],
(iii) P is closed under → as well as closed under Àn [on finite structures].

Since we will not use this lemma, we leave its proof as an exercise. Instead, we
prove a closely related lemma, which we will explicitly use later on.

Lemma 3.16. Let P and Q be classes of [finite] structures. Suppose that for
all [finite] structures A and B, if A ∈ P and A →n B then B ∈ Q. Then
there exists an existential-positive sentence Ψ of quantifier-rank at most n such
that P ⊆ Mod[fin](Ψ) ⊆ Q.

In logical terms, we say that Ψ is an “interpolant” between P and Q.

Proof. Let P be the set of n-cores of structures in P, that is, P = {Coren(A) :
A ∈ P}. Since P is a subset of C n, which is finite by Proposition 3.9, P is
clearly also finite. Let C1, . . . ,Cm enumerate the members of P. By Lemma 2.14,
there exist primitive-positive sentences θ1, . . . , θm such that qrank(θi) ≤ td(Ci)
and Ci → D ⇐⇒ D |= θi for all structures D. Let Ψ be the finite disjunction
θ1 ∨ · · · ∨ θm. Note that Ψ is an existential-positive sentence of quantifier-rank
maxm

i=1 qrank(θi) = maxm
i=1 td(Ci) ≤ n.

Consider any A ∈ P. We have Coren(A) ∈ P and hence Coren(A) = Ci

for some i ∈ {1, . . . , m}. Since Coren(A) → A (by Lemma 3.11), it follows that
Ci → A and thus A |= θi and consequently A |= Ψ. Therefore, P ⊆ Mod[fin](Ψ).

Now consider any B ∈ Mod[fin](Ψ). There exists i ∈ {1, . . . ,m} such that B |= θi

and thus Ci → B. It follows that Coren(A) → B for some A ∈ P. By Lemma 3.11,
we have A →n B. Therefore, B ∈ Q and so Mod[fin](Ψ) ⊆ Q.

3.5 Freeness

We define a relationship of freeness between two sets Y and Z over a third set
X in a structure A. Intuitively, freeness captures the notion of separation (in the
graph-theoretic sense) from the standpoint of homomorphisms. (Recall that two
sets U and V are separated in a graph G if there is no path in G between U and V .)
We also define a relationship of n-freeness, which is the natural bounded tree-depth
analogue of freeness. A heads up to the reader: the results of this section are not
used in the proof of the equirank h.p.t. in §4, but will play an essential role when
we prove the finite h.p.t. in §5.
Journal of the ACM, Vol. V, No. N, July 2008.



Homomorphism Preservation Theorems · 23

Definition 3.17. Let A be a structure and let X, Y, Z ⊆ A such that Y ∩Z ⊆ X.
We say that Y and Z are:

separated over X if sets Y \X and Z \X are separated in the graph G(A) \X;
free over X if A →Y ∪Z B for all B such that A →X∪Y B and A →X∪Z B;

n-free over X if A →n
Y ∪Z B for all B such that A →n

X∪Y B and A →n
X∪Z B.

The statement that Y and Z are free (resp. n-free) over X is expressed via notation
Y ⊥⊥⊥X Z (resp. Y ⊥⊥⊥n

X Z).

A little later on, we will give some examples to help the reader internalize this
definition. But first, let us prove a few preliminary lemmas.

Notation 3.18. Let (A, Y ) ⊕X (A, Z) denote the structure A ⊕X A (viewed as
a structure over X ∪ Y ∪ Z) in which the set Y \X is identified with its lefthand
copy and Z \ X is identified with its righthand copy, as illustrated below (in the
simple case where X, Y, Z are disjoint).

A

X

Y Z

(A, Y ) ⊕X (A, Z)

X

Y

Z

Notice that sets Y and Z are separated over X in the structure (A, Y )⊕X (A, Z).
Also note that there is an obvious homomorphism (A, Y ) ⊕X (A, Z) →X∪Y ∪Z A.
(In the picture above, this homomorphism can be visualized as folding the lefthand
side of A⊕X A onto the righthand side.)

The following lemma characterizes freeness and n-freeness via the existence of
certain homomorphisms. In the statements of Lemmas 3.19 and 3.20 below, we
assume that X,Y, Z are subsets of a structure A such that Y ∩ Z ⊆ X.

Lemma 3.19. Sets Y and Z are free over X in A if, and only if, there exists a
homomorphism A →Y ∪Z (A, Y ) ⊕X (A, Z). They are n-free over X in A if, and
only if, A →n

Y ∪Z (A, Y )⊕X (A, Z).

Proof. We will prove the statement for n-freeness; the argument for freeness is
similar (and simpler). Assume Y ⊥⊥⊥n

X Z in A. The natural lefthand and righthand
inclusion maps are homomorphisms A →X∪Y (A, Y ) ⊕X (A, Z) and A →X∪Z

(A, Y )⊕X (A, Z). Since →X∪Y implies →n
X∪Y and →X∪Z implies →n

X∪Z , we have
A →n

X∪Y (A, Y ) ⊕X (A, Z) and A →n
X∪Z (A, Y ) ⊕X (A, Z). Therefore, we have

A →n
Y ∪Z (A, Y )⊕X (A, Z) by n-freeness of Y and Z over X in A.

In the other direction, assume A →n
Y ∪Z (A, Y ) ⊕X (A, Z). Suppose B is a

structure such that A →n
X∪Y B and A →n

X∪Z B. Applying Lemma 3.4(2) with
A1 = A2 = A and B1 = B2 = B and X1 = X ∪ Y and X2 = X ∪ Z, we get

(A, Y )⊕X (A, Z) →n
X∪Y ∪Z (B, Y )⊕X (B, Z).
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Since (B, Y )⊕X (B, Z) →X∪Y ∪Z B (as noted earlier), we have A →n
Y ∪Z B (since

the composition of relations A →n
Y ∪Z · →n

X∪Y ∪Z · →X∪Y ∪Z B implies the relation
→n

Y ∪Z). We have thus shown Y ⊥⊥⊥n
X Z in A, as required.

The next lemma describes the basic relationships among separation, freeness and
n-freeness.

Lemma 3.20 (Properties of Separation, Freeness and n-Freeness).

(1 ) If Y and Z are separated over X in A, then they are free over X. If Y and Z
are free over X, then they are n-free over X for every n ∈ N.

(2 ) If Y and Z are separated (resp. free, n-free) over X in A, then they are sepa-
rated (resp. free, n-free) over every set X ′ such that X ⊆ X ′ ⊆ A.

(3 ) If Y and Z are free (resp. n-free) over X in A, then they are free (resp. n-free)
over X in every structure A′ such that A ÀX∪Y ∪Z A′ (resp. A Àn

X∪Y ∪Z A′).
(4 ) If Y and Z are free (resp. n-free) over X in A, then they are free (resp. n-free)

over X in every co-retract of A.

Proof. The various parts of this lemma follow almost directly from definitions
(with help from Lemma 3.19).

(1) If Y and Z are separated over X in A, we can find a homomorphism
A →X∪Y ∪Z (A, Y ) ⊕X (A, Z), which by Lemma 3.19 proves that Y ⊥⊥⊥X Z in
A. The statement that free implies n-free follows from the fact that A →Y ∪Z

(A, Y )⊕X (A, Z) implies A →n
Y ∪Z (A, Y )⊕X (A, Z).

(2) In the case of separation, the statement is obvious. In the case of n-freeness,
suppose Y ⊥⊥⊥n

X Z in A and X ⊆ X ′ ⊆ A. Let B be any structure such that
A →n

X′∪Y B and A →n
X′∪Z B. It clearly follows that A →n

X∪Y B and A →n
X∪Z B.

So by n-freeness of Y and Z over X, we have A →n
Y ∪Z B. We conclude that

Y ⊥⊥⊥n
X′ Z in A, thus proving the statement for n-freeness. The same basic argument

works in the case of freeness.
(3) Suppose Y ⊥⊥⊥n

X Z in A and A Àn
X∪Y ∪Z A′ (so in particular A and A′

are equivalent under Àn
X∪Y and Àn

X∪Z and Àn
Y ∪Z). Let B be any structure such

that A′ →n
X∪Y B and A′ →n

X∪Z B. We have A →n
X∪Y B and A →n

X∪Z B by
transitivity of →n

X∪Y and →n
X∪Z . By n-freeness of Y and Z over X, it follows

that A →n
Y ∪Z B. We now get A′ →n

Y ∪Z B by transitivity of →n
Y ∪Z . Therefore,

Y ⊥⊥⊥n
X Z in A′. The same basic argument works in the case of freeness.

(4) This follows from part (3), as A′ retr−−→ A implies A ÀX∪Y ∪Z A′.

Examples 3.21. Having described the basic properties of freeness and n-freeness,
we present several examples to help the reader internalize these notions (and also,
indirectly, the notion of tree-depth).

(a) Sets Y and Z are 0-free over X in A if, and only if, there is no edge between
Y \X and Z \X in the Gaifman graph G(A) \X. (Easy exercise.)

(b) Sets Y and Z are n-free over ∅ in A if, and only if, the distance between Y
and Z in the Gaifman graph G(A) is at least 2n + 1. To see this, suppose that
Y and Z have distance ≥ 2n + 1 in G(A). Let C be any structure with tree-
depth ≤ n over Y ∪ Z such that there exists a homomorphism h : C →Y ∪Z A.
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Clearly, Y and Z have distance ≥ 2n + 1 in G(C). From this and the fact that
tdY ∪Z(C) ≤ n, it follows that C is a disjoint union of substructures C1 ⊕C2 such
that Y ⊆ C1 and Z ⊆ C2. We now get a homomorphism C = C1 ⊕ C2 →Y ∪Z

(A, Y )⊕(A, Z) by mapping C1 (resp. C2) to the lefthand (resp. righthand) copy of
A via the homomorphism h. Thus, we have shown that A →n

Y ∪Z (A, Y )⊕ (A, Z).
Lemma 3.19 now implies that Y ⊥⊥⊥n

∅ Z in A. Conversely, suppose that Y and Z
have distance ≤ 2n in G(A). There exists a path P in G(A) of length ≤ 2n with
endpoints in Y and Z. The substructure A|Y ∪Z∪P has tree-depth ≤ n over Y ∪ Z
and satisfies A|Y ∪Z∪P →Y ∪Z A and A|Y ∪Z∪P 6→Y ∪Z (A, Y )⊕ (A, Z). Therefore,
A 6→n

Y ∪Z (A, Y )⊕ (A, Z). By Lemma 3.19, it follows that Y 6⊥⊥⊥n
∅ Z in A.

(c) Generalizing one direction of examples (a,b): if the distance between Y \X
and Z \ X in G(A) \ X is at least 2n + 1, then Y ⊥⊥⊥n

X Z in A. The converse,
however, is false whenever X 6= ∅ or n 6= 0 (see example (g)).

(d) Sets Y and Z are free over ∅ in A if, and only if, they are separated over ∅ in
A. To see this, suppose Y ⊥⊥⊥∅ Z in A and let B be the structure (A, Y )⊕ (A, Z),
that is, A ⊕ A where the set Y (resp. Z) is identified with its lefthand (resp.
righthand) copy. We have A →Y B and A →Z B via the left and right embeddings
of set A into A t A. By freeness, we have A →Y ∪Z B. It follows that Y and Z
are separated in A, since these sets are separated in B. The reverse implication
(separated over ∅ =⇒ free over ∅) is a special case of Lemma 3.20(1).

(e) Consider a directed graph D (viewed as a structure in a vocabulary containing
a single binary relation) with vertices y, x1, x2, z and arcs (y, x1), (y, x2), (x1, z),
(x2, z). Sets {y} and {z} are separated over {x1, x2}, but not separated over {x1}.
However, {y} and {z} are free over {x1}. (This can be seen by noting that there is
a retraction D retr−−→ D|{x1,y,z}.)

(f) Consider a different directed graph D′ consisting of vertices y and z together
with a directed path from y to z of length ` (i.e., with `− 1 intermediate vertices)
for every integer ` ≥ 2. (To be clear, these paths are mutually disjoint except at
endpoints y and z.) In this case, {y} and {z} are n-free over a set X in D′ if, and
only if, X intersects the path of length ` for every ` ∈ {2, 3, . . . , 2n}.

(g) Suppose we modify the directed graph D′ from example (f) so that there are
exactly two directed paths from y to z for each length ` ≥ 2. Now {y} and {z} are
n-free over a set X if, and only if, X intersects at least one of each pair of paths of
length ` for every ` ∈ {2, 3, . . . , 2n}. (In particular, if X intersects exactly one of
each pair of paths of length 2, 3, . . . , 2n, then y and z have distance 2 in G(D′) \X
and yet {y} ⊥⊥⊥n

X {z} in D′; cp. example (c).)

Let A be any structure and consider any subsets Y, Z ⊆ A. Clearly Y and Z
are separated and hence n-free in A over the entire universe A. This raises an
interesting question: what is the size of the (not necessarily unique) smallest set
W over which Y and Z are n-free in A? The next lemma answers this question by
showing that |W | is bounded by a function of |Y ∪ Z| and n (independent of the
structure A). The fact that there exists a bound on |W | independent of A is not
at all obvious from the definition of n-freeness. Here is where the core-size bound
βn

m makes its entrance. Recall that βn
m is the size of the largest n-core over a set

of size m.
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Lemma 3.22 (Freeness Lemma). Suppose that sets Y and Z are n-free over
X in a structure A. Then there exists a subset W ⊆ X of size |W | ≤ βn

|Y ∪Z| such
that Y and Z are n-free over W in A.

Proof. Suppose Y ⊥⊥⊥n
X Z in A. By Lemma 3.19, we have A →n

Y ∪Z (A, Y )⊕X

(A, Z). So by Lemma 3.11, there exists a homomorphism h : C →Y ∪Z (A, Y )⊕X

(A, Z) where C = Coren
Y ∪Z(A).

Let h(C) denote the homomorphic image of C and let W = X ∩ h(C). Sets Y
and Z are clearly separated and hence free over W in h(C). There is thus a chain
of homomorphisms

C →Y ∪Z h(C) →Y ∪Z (h(C), Y )⊕W (h(C), Z) →Y ∪Z (A, Y )⊕W (A, Z)

where the middle homomorphism exists by Lemma 3.19 and the righthand homo-
morphism is the natural embedding of h(C)⊕W h(C) into A⊕W A. By composition,
we get a homomorphism Coren

Y ∪Z(A) →Y ∪Z (A, Y )⊕W (A, Z). Lemma 3.11 now
implies A →n

Y ∪Z (A, Y )⊕W (A, Z). Therefore, by Lemma 3.19 we have Y and Z
are n-free over W in A.

To complete the proof, note that |W | ≤ |h(C)| ≤ |C| ≤ βn
|Y ∪Z| since C is an

n-core over Y ∪ Z.

Remark 3.23. We might say that sets Y and Z are strongly n-free over X in
a structure A if A →n

X∪Y ∪Z B for all structures B such that A →n
X∪Y B and

A →n
X∪Z B. (Equivalently, Y and Z are strongly n-free over X if there exists

a homomorphism A →n
X∪Y ∪Z (A, Y ) ⊕X (A, Z).) As the name would suggest,

strong n-freeness over X clearly implies n-freeness over X. While the converse is
false, strong n-freeness over X is implied by (n + |X|)-freeness over X. Indeed,
the notions of n-freeness and strong n-freeness are superficially quite similar. The
definition of strong n-freeness might even appear more natural and therefore more
worth studying than n-freeness. The critical difference (and the reason we study
n-freeness instead of strong n-freeness) is the freeness lemma (Lemma 3.22), which
becomes false when restated with “strongly n-free” replacing “n-free”.

3.6 Extension Cores

Let c1, c2, c3, . . . be a fixed sequence of arbitrary but distinct dummy elements. For
concreteness, we can take ci to be the ith ordinal. We are now, for the time being,
no longer interested in cores over a finite set X, but rather in cores over the disjoint
union X t {c1, . . . , cm} where m ∈ N.

Definition 3.24. For every structure A, finite subset X ⊆ A and m,n ∈ N, let

E n
X,m(A) =

{
C ∈ C n

Xt{c1,...,cm} : C →X A
}

where X t {c1, . . . , cm} is the disjoint union of sets X and {c1, . . . , cm}. Members
of E n

X,m(A) are called m-extension n-cores of A over X. The union E n
X,0(A)∪· · ·∪

E n
X,m(A) is denoted by E n

X,≤m(A).

The key properties of extension cores are enumerated below.

Lemma 3.25 (Properties of Extension Cores).

(1 ) (A⊕X C) retr−−→ A for every C ∈ E n
X,m(A).
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(2 ) E n
X,≤m(A) is a finite set and every C ∈ E n

X,≤m(A) is a finite structure.

(3 ) If A →m+n
X B, then E n

X,m(A) ⊆ E n
X,m(B).

(4 ) If A Àm+n
X B (in particular, if A retr−−→ B and X ⊆ B), then E n

X,m(A) =
E n

X,m(B).

Proof. Statement (1) follows from Lemma 2.9(2) since C →X A for every
C ∈ E n

X,m(A). Statement (2) is a direct consequence of Proposition 3.9. As for (3),
suppose A →m+n

X B and let C ∈ E n
X,m(A). By Lemma 2.8(3), we have

tdX(C) ≤ tdXt{c1,...,cm}(C) + |{c1, . . . , cm}| ≤ n + m.

Therefore, A →m+n
X B yields C →X B. It follows that C ∈ E n

X,m(B) and
hence E n

X,m(A) ⊆ E n
X,m(B). This proves statement (3), which implies (4) straight-

away.

For future reference (specifically in the proof of Lemma 5.12), we state a gener-
alization of Lemma 3.25(4) in terms of n+m-homomorphism relative to a partial
isomorphism π (recall Notation 3.3).

Corollary 3.26. Suppose A Àn+m
π B where π is a partial isomorphism from

A to B with domain S ⊆ A and range T ⊆ B. Let C ∈ E n
S,m(A) and let D be the

isomorphic image of C under the function π ∪ idC\S : C −→ (C \S)∪T defined by
c 7−→ π(c) if c ∈ S and c 7−→ c if c ∈ C \ S. Then D ∈ E n

T,m(B).

Corollary 3.26 specializes to Lemma 3.25(4) in the case where S = T = X and π
is the identity function on X.

4. EQUIRANK HOMOMORPHISM PRESERVATION THEOREM

In this section, we prove our first main result: the equirank h.p.t. This section
is in principle independent from the following section (§5), in which we prove the
finite h.p.t. (In particular, the n-extension property plays no role in that proof.)
However, a close reading of this section will serve as a good warm-up for the more
complicated construction in §5.

4.1 The n-Extension Property

For structures A and B and tuples ~a ∈ Ak and ~b ∈ Bk, recall that notation
(A,~a) →n

X (B,~b) expresses (C,~c) →X (A,~a) =⇒ (C,~c) →X (B,~b) for every finite
structure C and tuple ~c ∈ Ck such that C has tree-depth at most n over X ∪
{c1, . . . , ck} (Notation 3.3).

Definition 4.1. A structure A is n-extendable if, for every set X ⊆ A of size < n

and every structure B such that A Àn−|X|
X B, it holds that ∀b ∈ B ∃a ∈ A s.t.

(A, a) Àn−|X|−1
X (B, b).

Cast into different notation (see Notation 3.3), A is n-extendable if, and only if,
for every structure B and partial isomorphism π from A to B such that |π| < n

and A Àn−|π|
π B, it holds that ∀b ∈ B ∃a ∈ A s.t. A Àn−|π|−1

π∪{(a,b)} B.

Remark 4.2. The n-extension property was first defined in a preliminary version
of this article [Rossman 2005], where it was called n-existential-positive saturation.
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The terminology was changed to avoid confusion with the common model-theoretic
notion of saturation. The new terminology bears an intentional similarity to the
“n-extension axioms” that show up in the theory of the infinite random graph [Blass
and Rossman 2005; Grädel et al. 2007].

Lemma 4.3. Suppose structures A and B are n-extendable and A Àn B. Then
A ≡n B.

Proof. For k ∈ {0, . . . , n}, let Πk be the set of partial isomorphisms π from A to
B such that |π| ≤ k and A Àn−k

π B. The n-extendability of A and B implies that
the sequence Π0, . . . , Πn is an n-back-and-forth system on A and B. Therefore,
A ≡n B by Lemma 2.20.

The next lemma gives a nice finitary criterion for n-extendability of a structure
A by reducing the class of structures B and elements b ∈ B in Definition 4.1 to
finitely many possibilities.

Lemma 4.4. A structure A is n-extendable if, and only if, for every set X ⊆ A

of size < n and 1-extension core C ∈ E
n−|X|−1
X,1 (A), there exists a ∈ A such that

(A, a) Àn−|X|−1
X (A⊕X C, c1).

Proof. The (=⇒) direction is trivial, so we prove only the (⇐=) direction.
Assume that for every every set X ⊆ A of size < n and 1-extension core C ∈
E

n−|X|−1
X,1 (A), there exists a ∈ A such that (A, a) Àn−|X|−1

X (A ⊕X C, c1). Let

X ⊆ A be such that |X| < n, let B be any structure such that A Àn−|X|
X B, and

let b be any element of B. We must find a ∈ A such that (A, a) Àn−|X|−1
X (B, b).

We may assume that b /∈ X, since otherwise (A, b) Àn−|X|−1
X (B, b) and there is

nothing further to show. We have

Coren−|X|−1
X∪{b} (B)

↓
X

by Lemma 3.12,

Coren−|X|
X (B)

= since A Àn−|X|
X B,

Coren−|X|
X (A)

↓
X

A.

Let C be the structure obtained from Coren−|X|−1
X∪{b} (B) by substituting b with the

dummy element c1 (assuming c1 /∈ Coren−|X|−1
X∪{b} (B) without loss of generality).

Thus, we have (C, c1) ∼=X (Coren−|X|−1
X∪{b} (B), b) and (C, c1) Àn−|X|−1

X (B, b). Note

that C ∈ C
n−|X|−1
Xt{c1} and C →X A (by the above). Thus, C is a 1-extension core

in the set E
n−|X|−1
X,1 (A). By our initial assumption, it follows that there exists an

element a ∈ A such that (A, a) Àn−|X|−1
X (A ⊕X C, c1). Therefore, it suffices to
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show that (A⊕X C, c1) Àn−|X|−1
X (B, b). By Lemma 3.4(1), this follows from the

previously established facts that A Àn−|X|−1
X B and (C, c1) Àn−|X|−1

X (B, b).

4.2 Extendable Co-retracts

Definition 4.5. For every structure A and n ∈ N, we define a new structure
Ξn(A) by

Ξn(A) =
⊕
X⊆A
|X|<n

C∈E
n−|X|−1
X,1 (A)

A

(
A⊕X C

)
.

For ` ∈ N, let

Ξ`
n(A) = Ξn(Ξn(. . . Ξn︸ ︷︷ ︸

` times

(A) . . . )).

Also, let

Ξ?
n(A) =

⋃

`∈N
Ξ`

n(A).

That is, Ξ?
n(A) is the union of the chain of structures A ⊆ Ξn(A) ⊆ Ξn(Ξn(A)) ⊆

· · · .
Example 4.6. Suppose that the vocabulary σ contains just a single binary re-

lation (so that σ-structures are directed graphs). Let A be a σ-structure with
universe {a, b, c} and binary relation {(b, a), (b, c), (c, b)}. The structure Ξ2(A) is
depicted below.

a

b c

In this picture, A is clearly delineated as a substructure of Ξ2(A) (it lies inside
the dashed triangle) with elements a, b, c explicitly labeled. The rest of Ξ2(A)
consists of various 1-extension cores, each attached to a subset of {a, b, c} of size
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< 2. Extension cores attached to a single element x ∈ {a, b, c} are canonical cores in
C 0
{x,c1}, while those attached to the empty set ∅ are canonical cores in C 1

{c1}. Each
extension core is surrounded by a dotted rectangle with the distinguished dummy
element c1 encircled.

Lemma 4.7. If A is a finite structure, then so is Ξn(A).

Proof. Suppose A is finite. There are finitely many subsets X ⊆ A (of size
< n). Moreover, for every X, the set E

n−|X|−1
X,1 (A) is finite and every each

C ∈ E
n−|X|−1
X,1 (A) is a finite structure by Lemma 3.25(2). Thus, Ξn(A) is clearly

finite.

On the other hand, note that Ξ?
n(A) is always an infinite structure (for n > 0),

even if A is finite. This is a main obstacle to proving that the equirank h.p.t.
(Theorem 4.12) holds on finite structures.

Lemma 4.8. For every structure A and n ∈ N,

(1 ) Ξn(A) retr−−→ A,
(2 ) Ξ?

n(A) retr−−→ Ξ`
n(A) for all ` ∈ N, and

(3 ) Ξn(A) retr−−→ A⊕X C for all X ⊆ A of size < n and all C ∈ C
n−|X|−1
X (A).

Proof.

(1) For every index pair (X,C) in the indexed A-sum defining Ξn(A), we have
A ⊕X C retr−−→ A by Lemma 3.25(1) (since C is an extension core of A over X).
Therefore, Ξn(A) retr−−→ A by Lemma 2.9(3).

(2) Statement (1) implies that Ξ?
n(A) is the union of the chain of co-retracts

A retr←−− Ξn(A) retr←−− Ξn(Ξn(A)) retr←−− · · · . It follows by Lemma 2.9(4) that Ξ?
n(A) is

a co-retract of Ξ`
n(A) for all ` ∈ N.

(3) Given X and C, it holds that Ξn(A) =
⊕
Y⊆A
|Y |<n

D∈E
n−|Y |−1
Y,1 (A)

(Y,D)6=(X,C)

A⊕XC

(
(A⊕X C)⊕Y D

)
.

For every index pair (Y,D), we have D →Y A (since D is an extension core of A
over Y ) and thus D →Y A⊕X C. It follows that (A⊕X C)⊕Y D retr−−→ A⊕X C by
Lemma 2.9(2). Therefore, Ξn(A) retr−−→ A⊕X C by Lemma 2.9(3).

Lemma 4.9. Ξ?
n(A) is n-extendable.

Proof. By virtue of Lemma 4.4, it suffices to show that for every X ⊆ Ξ?
n(A)

of size < n and every C ∈ E
n−|X|−1
X,1 (Ξ?

n(A)), there exists a ∈ Ξ?
n(A) such that

(Ξ?
n(A), a) Àn−|X|−1

X (Ξ?
n(A) ⊕X C, c1). In fact, we will show—even stronger—

that there exists a ∈ Ξ?
n(A) such that (Ξ?

n(A), a) ÀX (Ξ?
n(A) ⊕X C, c1). To this

end, we will define homomorphisms

f : (Ξ?
n(A)⊕X C) →X Ξ?

n(A), g : Ξ?
n(A) →X (Ξ?

n(A)⊕X C)

such that g(f(c1)) = c1. The result then follows by setting a = f(c1).
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Because X is finite, there exists ` ∈ N such that X ⊆ Ξ`
n(A). Lemma 4.8(2)

implies Ξ?
n(A) retr−−→ Ξ`

n(A). It follows that E
n−|X|−1
X,1 (Ξ`

n(A)) = E
n−|X|−1
X,1 (Ξ?

n(A))

by Lemma 3.25(4). Therefore, C ∈ E
n−|X|−1
X,1 (Ξ`

n(A)).
We now wish to consider the structure Ξ`

n(A)⊕X C, viewed as a substructure of
Ξ`+1

n (A). However, we will instead consider the structure Ξ`
n(A) ⊕X C′ where C′

is a structure which is isomorphic to C over X via an isomorphism i : C
∼=−→X C′.

This avoids potential confusion, as c1 cannot be seen as an element of Ξ`
n(A)⊕X C′.

By Lemma 4.8(3), we have Ξ`+1
n (A) = Ξn(Ξ`

n(A)) retr−−→ Ξ`
n(A)⊕X C′. In partic-

ular, we have a chain of retractions

Ξ?
n(A) retr−−→ Ξ`+1

n (A) retr−−→ Ξ`
n(A)⊕X C′ retr−−→ Ξ`

n(A).

We now fix retractions

r : Ξ?
n(A) retr−−→ Ξ`

n(A), s : Ξ?
n(A) retr−−→ Ξ`

n(A)⊕X C′.

Let r and s be the corresponding co-retractions

r : Ξ`
n(A) ↪−→ Ξ?

n(A), s : Ξ`
n(A)⊕X C′ ↪−→ Ξ?

n(A).

We form the ⊕X -sum of homomorphisms

r ⊕X i : Ξ?
n(A)⊕X C −→X Ξ`

n(A)⊕X C′,

r ⊕X i−1 : Ξ`
n(A)⊕X C′ −→X Ξ?

n(A)⊕X C.

(These maps are defined in the obvious way, viz. the value of r⊕X i on an element
α ∈ Ξ?

n(A) ⊕X C equals r(α) if α ∈ Ξ?
n(A) and i(α) if α ∈ C.) Homomorphisms

f : (Ξ?
n(A) ⊕X C) →X Ξ?

n(A) and g : Ξ?
n(A) →X (Ξ?

n(A) ⊕X C) are now defined
by

f = s ◦ (r ⊕X i), g = (r ⊕X i−1) ◦ s.

It is easy to see that f and g fix X pointwise, since each of the constituent homo-
morphisms r, s, i, r, s, i−1 fixes X pointwise. Finally, we have g(f(c0)) = c0 as:

g(f(c0)) = g(s((r ⊕X i)(c0)))
= g(s(i(c0))) since c0 ∈ C,

= g(i(c0)) since s is a co-retraction and i(c0) ∈ C ′ ⊆ Dom(s),

= (r ⊕X i−1)(i(c0))

= i−1(i(c0)) since i(c0) ∈ C ′,

= c0.

Remark 4.10. Every structure A has a co-retract which is simultaneously n-
extendable for every n ∈ N, for example,

⋃
`∈N Ξ`(Ξ`−1(. . . Ξ2(Ξ1(A)) . . . )).

We are now ready for the main theorem of this section. The result is slightly
more general than the equirank h.p.t., which follows straightaway as a corollary.

Theorem 4.11. Suppose P and Q are classes of structures and Φ is a first-order
sentence such that for all structures A and B,

• if A ∈ P and A → B then B |= Φ, and
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• if A |= Φ and A → B then B ∈ Q.

Then there exists an existential-positive sentence Ψ such that qrank(Ψ) ≤ qrank(Φ)
and P ⊆ Mod(Ψ) ⊆ Q.

Proof. Let n = qrank(Φ) and suppose A and B are structures and such that
A ∈ P and A →n B. We will prove that B ∈ Q. The conclusion that P ⊆
Mod(Ψ) ⊆ Q for some existential-positive sentence Ψ of quantifier-rank at most n
then follows by Lemma 3.16.

Let C = Coren(A) and note that A Àn C and C → B. Structures Ξ?
n(A) and

Ξ?
n(C) are both n-extendable by Lemma 4.9. Since Ξ?

n(A) retr−−→ A and Ξ?
n(C) retr−−→ C

(by Lemma 4.8), we have A Àn Ξ?
n(A) and C Àn Ξ?

n(C). Therefore, Ξ?
n(A) Àn

Ξ?
n(C) by transitivity of Àn. Lemma 4.3 now yields Ξ?

n(A) ≡n Ξ?
n(C). The full

picture is

Ξ?
n(A)≡n Ξ?

n(C)

re
tr

−−→ re
tr

−−→

A Àn C → B.

In particular, we have A → Ξ?
n(A) ≡n Ξ?(C) → B.

We now argue that B ∈ Q. Since A ∈ P and A → Ξ?
n(A), it follows that

Ξ?
n(A) |= Φ because of the hypothesis concerning P and Φ. Since Ξ?

n(A) ≡n Ξ?
n(C),

we have Ξ?
n(C) |= Φ. Since Ξ?

n(C) → B, we conclude that B ∈ Q by the hypothesis
concerning Q and Φ.

Theorem 4.12 (Equirank Homomorphism Preservation Theorem). A
first-order sentence is preserved under homomorphisms on all structures if, and
only if, it is equivalent to an existential-positive sentence of equal quantifier-rank.

Proof. The easy (⇐=) direction was given earlier as Lemma 2.3. The (=⇒)
direction is nothing but the special case of Theorem 4.11 where P = Q = Mod(Φ)
for a first-order sentence Φ.

We once again emphasize that Ξ?
n(A) is an infinite structure, even if A is finite.

The proof of Theorem 4.12 thus uses, in an essential way, the fact that Φ is preserved
under homomorphisms on all structures, not just on finite structures. For this
reason, Theorem 4.12 does automatically yield a valid result when restricted to
finite structures. Our interpolation and preservation theorems on finite structures
(Theorems 5.15 and 5.16) do not include this strong “equirank” condition. However,
we believe that Theorem 4.11 and 4.12 are likely true on finite structures. We
advance a conjecture to this effect in §7.

5. FINITE HOMOMORPHISM PRESERVATION THEOREM

Our proof of the finite h.p.t. (Theorem 5.16) follows the same basic plan as our
proof of the equirank h.p.t. in the previous section.

Definition 5.1. For every structure A and parameters r, s, t, u ∈ N, we define a
new structure ∆r,s,t,u(A) by
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∆r,s,t,u(A) =
⊕
S⊆A
|S|≤s

C∈E r
S,≤t(A)

A

(
A⊕S C⊕S · · · ⊕S C︸ ︷︷ ︸

u times

)
.

In this expression, S ranges over subsets of A of size ≤ s, and C ranges over (≤ t)-
extension r-cores of A over S. For each index pair (S,C), u disjoint copies of C
are glued onto A via the operation ⊕S .

Let ∆r,s,t,u(A) denote the universe of ∆r,s,t,u(A) (by mild abuse of notation).
For each element α ∈ ∆r,s,t,u(A) \ A, there is a unique index pair (Sα,Cα) and
iα ∈ {1, . . . , u} such that α belongs to the iαth copy of Cα.

—Sα is called the support of α and denoted by Supp(α).
—The iαth copy of Cα, viewed as a substructure of ∆r,s,t,u(A), is called the clan

of α and denoted by Clan(α). The universe of Clan(α) is denoted by Clan(α).

Note that Supp(α) = Clan(α) ∩ A. We remark that Supp(a) and Clan(a) are
undefined for elements a ∈ A.

The structural operator ∆r,s,t,u(·) has similar properties to Ξn(·). Lemma 5.2,
below, corresponds to Lemmas 4.7 and 4.8 about Ξn(·). We omit the proof of
Lemma 5.2, as the arguments are virtually identical.

Lemma 5.2.

(1 ) If A is finite, then so is ∆r,s,t,u(A).

(2 ) ∆r,s,t,u(A) retr−−→ A⊕Supp(α) Clan(α) retr−−→ A for all α ∈ ∆r,s,t,u(A) \A.

From now on, let n be a fixed positive integer. We define integers
r(`), s(`), t(`), u(`) for ` = 0, . . . , n − 1, as well as r(n) and t(n), by the follow-
ing inductive scheme:

r(0) = 0 t(0) = 1
r(` + 1) = r(`) + t(`) t(` + 1) = t(`) · s(`)

s(`) = β
r(`)
u(`) u(`) = (n− `) · t(`).

This induction easily seen to be well-founded.6

Remark 5.3. This definition of sequences r, s, t, u is precisely what our main
technical lemma (Lemma 5.12) requires. However, any other choice of sequences

6The first few values of r, s, t, u are given by:

r(0) = 0 r(1) = 1 r(2) = n + 1

s(0) = β0
n = n s(1) = β1

n(n−1) s(2) = βn+1

n(n−2)β1
n(n−1)

t(0) = 1 t(1) = n t(2) = nβ1
n(n−1)

u(0) = n u(1) = n(n− 1) u(2) = n(n− 2)β1
n(n−1)
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r, s, t, u is acceptable, so long as all of the above equations hold after each equality
= is replaced by an inequality ≥. The reader may therefore disregard the equations
defining r, s, t, u (at least for the time being) and simply regard

r(0), t(0), u(0), s(0), r(1), t(1), u(1), s(1), . . .
. . . , r(n−1), t(n−1), u(n−1), s(n−1), r(n), t(n)

as a sufficiently fast increasing sequence, since any fast enough increasing sequence
satisfies the system of inequalities with ≥ replacing =, above.

Definition 5.4. For every structure A and ` ∈ {0, . . . , n−1}, let

∆`(A) = ∆r(`),s(`),t(`),u(`)(A) =
⊕
S⊆A

|S|≤s(`)

C∈E
r(`)
S,≤t(`)

(A)

A

(
A⊕S C⊕S · · · ⊕S C︸ ︷︷ ︸

u(`) times

)
,

Γ`(A) = ∆`(∆`+1(. . . ∆n−2(∆n−1(A)) . . . )).

In addition, let Γn(A) = A and Ã = Γ0(A), and let Ã (resp. Γ`(A)) denote
the universe of Ã (resp. Γ`(A)). Note that Γ`(A) = ∆`(Γ`+1(A)) for all ` ∈
{0, . . . , n−1}.

Here, roughly, is the picture of Ã for the reader to keep in mind. Ã is built up
around A in what we will call “levels”, similar to the layers of an onion. Levels
are labeled n, n−1, . . . , 0 in decreasing order from the inside out. The nth and
innermost level of Ã is the original structure A. For ` < n, the `th level of Ã
consists of a collection of extension cores (“clans”), each glued onto a set of elements
in higher levels (a “support”). Ã is thus constructed from the inside out. Moving
outward from higher to lower levels, the arity of clans and the size of supports
rapidly decreases. An element of level 0 has a far smaller clan and support than a
typical element of level n−1. The central idea behind this construction is to ensure
that for every ` ∈ {0, . . . , n} and every s(`)-tuple ~α of elements of level ≥ `, the
≡`-class of (Ã, ~α) (i.e., the first-order type of ~α in Ã up to quantifier-rank `) is an
invariant of the Àr(`)-class of (Ã, ~α) (i.e., the “existential-positive type” of ~α in Ã
up to quantifier-rank r(`)).

We will now precisely define the terms level, support and clan in the structure Ã.
(Earlier we defined support and clan in structures ∆r,s,t,u(A).) These notions give
us a convenient way of indexing elements of Ã.

Definition 5.5 (Level, Support and Clan). The level λ(α) of an element α ∈ Ã is
defined by

λ(α) = max{` : α ∈ Γ`(A)}.
Thus, Γ`(A) = {α ∈ Ã : λ(α) ≥ `}. For every α ∈ Ã \ A, the level λ(α) is the
unique ` ∈ {0, . . . , n−1} such that α ∈ Γ`(A) \ Γ`+1(A).

For an element α ∈ Ã \ A of level `, let Supp(α) and Clan(α) denote the sup-
port and clan of α as defined in Definition 5.1 for α considered as an element of
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∆`(Γ`+1(A))\Γ`+1(A) in the structure ∆`(Γ`+1(A)). We remark that Supp(a) and
Clan(a) are undefined for elements a ∈ A.

Lemma 5.2 has an immediate corollary.

Corollary 5.6.

(1 ) If A is finite, then so is Ã.

(2 ) Ã retr−−→ Γλ(α)(A) retr−−→ Γλ(α)+1(A) ⊕Supp(α) Clan(α) retr−−→ Γλ(α)+1(A) for all
α ∈ Ã \A.

It is helpful to think of Ã as an acyclic directed graph, in which there is an arc
from α to α′ (denoted by α 99K α′) for all α ∈ Ã \ A and α′ ∈ Supp(α). This
relation is clearly acyclic, since λ(α) < λ(α′) for every arc α 99K α′. Note that the
out-degree of an element α ∈ Ã \A is bounded by s(λ(α)). Since s(`) is a (rapidly)
increasing function, this means that elements of higher (inner) levels potentially
have much greater out-degree than elements of lower (outer) levels.

Definition 5.7 (`-Closure and `-Frontier). Let X ⊆ Ã and ` ∈ {0, . . . , n}.
—We say that X is `-closed if Clan(α) ⊆ X for all α ∈ X such that λ(α) < `.
—The `-closure of X, denoted by cl`(X), is the unique minimal `-closed set con-

taining X.
—The `-frontier of X, denoted by `X, is the set cl`(X) ∩ Γ`(A).

Note that the intersection of `-closed sets is `-closed (so the `-closure of a set X
is well-defined).

Remark 5.8.

(1) It is easy to see that cl`(X) =
⋃

α∈X cl`({α}) for every X ⊆ Ã and ` ∈
{0, . . . , n}. It follows that `X =

⋃
α∈X

`{α}.
(2) If X is `-closed, then it contains the endpoint α′ of every arc α 99K α′ such

that α ∈ X and λ(α) < `. (Indeed, we have X ⊇ Clan(α) ⊇ Supp(α) 3 α′.)

(3) The `-frontier of a set X consists of precisely the elements of Ã that one can
reach by starting at an element in X and following arcs of 99K until crossing into
Γ`(A) (i.e., until reaching an element in Ã of level ≥ `). Recall that the level of
elements increases along arcs of 99K, so that eventually any path reaches the set
Γ`(A). (Having explained the `-frontier, we will no longer speak about the acyclic
arc relation 99K.)

The next lemma bounds the size of the `-frontier of a set X in terms of |X|.
Lemma 5.9. |`X| ≤ |X| · t(`) for all X ⊆ Ã and ` ∈ {0, . . . , n}.
Proof. We argue by induction on `. In the base case ` = 0, the claim is

obvious as 0X = X and t(0) = 1. For the induction step, let ` ≥ 1 and assume
|`−1X| ≤ |X| · t(`− 1). Notice that

`X =
⋃

α∈`−1X

{
Supp(α) if λ(α) = `− 1,

{α} if λ(α) ≥ `.
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We see that each α ∈ `−1X “contributes” to `X either one element (itself) or else
|Supp(α)| many elements. Since |Supp(α)| ≤ s(`− 1) for all α of level `− 1,

|`X| ≤ |`−1X| · (maximal “contribution” of any α ∈ `−1X)
≤ |X| · t(`− 1) · s(`− 1) = |X| · t(`).

Therefore, the lemma holds by induction.

So far we have considered only a single structure A and its corresponding Ã. We
will now focus on the relationship between Ã and B̃ given two structures A and
B.

Definition 5.10 (`-Kosher). For ` ∈ {0, . . . , n}, a partial isomorphism f from Ã
to B̃ is `-kosher if it satisfies conditions (K1)–(K4), below.

K1. Ã Àr(`)
f B̃. (See Notation 3.3 regarding the meaning of Àr(`)

f .)

K2. Dom(f) and Range(f) are `-closed sets in Ã and B̃, respectively.

K3. min{`, λ(α)} = min{`, λ(f(α))} for all α ∈ Dom(f).

K4. f(Clan(α)) = Clan(f(α)) for all α ∈ Dom(f) such that λ(α) < `.

To be clear: in (K3), λ(α) is the level of α in Ã and λ(f(α)) is the level of f(α) in
B̃. Similarly, in (K4), Clan(α) is the clan of α in Ã and Clan(f(α)) is the clan of
f(α) in B̃.

Note that `-kosher is a stronger condition as ` increases (so n-kosher implies
n−1-kosher, etc.). This is crucial for defining an n-back-and-forth system between
structures Ã and B̃ (in Lemma 5.12 and Corollaries 5.13 and 5.14).7 The next
lemma states some obvious properties of `-kosher partial isomorphisms.

Lemma 5.11.

(1 ) f is an `-kosher partial isomorphism from Ã to B̃ if, and only if, its inverse
f−1 is an `-kosher partial isomorphism from B̃ to Ã.

(2 ) The empty map (with domain ∅) is an n-kosher partial isomorphism from Ã to
B̃ if, and only if, A Àr(n) B.

(3 ) If f is `-kosher, then f(cl`(X)) = cl`(f(X)) for all X ⊆ Dom(f).

Proof. For statement (1), conditions (K1)–(K3) are evidently symmetric in f
and f−1; condition (K4) is symmetric in f and f−1 once one assumes (K3). For
statement (2), simply notice that conditions (K2)–(K4) are trivial when f is the
empty map. Statement (3) is easily deduced from definitions.

Now comes our main technical lemma.

7From the standpoint of the n-round Ehrenfeucht-Fräıssé game, we begin with a pair of structureseA and eB for which the empty partial isomorphism is n-kosher. Duplicator (the player attempting
to show that eA ≡n eB) is able to maintain the condition that, after k rounds of the game, the k
pairs of elements from eA and eB (representing the plays in rounds 1, . . . , k) extend to an (n− k)-
kosher partial isomorphism.
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Lemma 5.12 (Main Lemma). Let ` ∈ {0, . . . , n− 1} and suppose f is an `+1-
kosher partial isomorphism from Ã to B̃ with domain cl`+1(X) for some X ⊆ Ã of
size < n − `. Then for every α ∈ Ã, there exists an `-kosher partial isomorphism
extending f ¹ cl`(X) to domain cl`(X ∪ {α}).

At a high level, the proof works as follows. Given an element α ∈ Ã, we consider
the `-frontier `(X ∪ {α}), which we partition into disjoint subsets U = `X and
V = `{α} \ `X. (Note that f is defined on U but not on V .) We first construct an
`-kosher partial isomorphism h which extends f ¹ U to the `-frontier `(X∪{α}). We
then extend h an `-kosher partial isomorphism on the entire `-closure cl`(X ∪{α}).

The proof is divided into eight steps, where Steps 1–7 cover the construction
of h and Step 8 gives the extension of h to cl`(X ∪ {α}). We begin with the
observation that sets U and V are free over `+1X in Ã. Using the freeness lemma
(Lemma 3.22), we show that there exists a subset W ⊆ `+1X of size ≤ s(`) such
that U and V are r(`)-free over W in Ã. We then consider Corer(`)

W∪V (Ã), the r(`)-
core of Ã over W ∪V . As Ã Àr(`+1)

f¹W B̃ retr−−→ Γ`+1(B) (by `+1-kosherness of f) and
r(` + 1) = t(`) + s(`) ≥ |V |+ |W | (since |V | ≤ t(`) by Lemma 5.9), it follows that
Ã and B̃ have isomorphic |V |-extension r(`)-cores over W and f(W ), respectively
(by Lemma 3.25(4)). In particular, there exists an extension core (C, c1, . . . , c|V |) ∈
E

r(`)
f(W ),|V |(Γ`+1(B)) such that Corer(`)

W∪V (Ã) ∼= C via an isomorphism which extends

f ¹ W and maps V onto the set {c1, . . . , c|V |} (by Corollary 3.26). As B̃ retr−−→
Γ`(B) retr−−→ Γ`+1(B) ⊕ C retr−−→ Γ`+1(B) (by Lemma 5.6(2)), we obtain a function
from V to B̃ via the isomorphism Corer(`)

W∪V (Ã)
∼=−→ C where we view C as a

substructure of Γ`+1(B)⊕C (which in turn is a retract of B̃). This gives the map
h on V . Taking h ¹ U = f ¹ U , we get h : `(X ∪ {α}) −→ B̃. Steps 1–7 define
h more formally and show that it is an `-kosher partial isomorphism from Ã to
B̃. Step 8 extends h to the entire `-closure cl`(X ∪ {α}) in a manner essentially
governed by `-kosher conditions (K2)–(K4).

Proof. Fix α ∈ Ã (we can assume α /∈ cl`(X), since otherwise the lemma is
trivial) and let U = `X and V = `{α} \ `X. Note that U ∪ V = `(X ∪ {α}) (see
Remark 5.8(1)). We proceed in eight steps.

Step 1. We claim that U and V are free over `+1X in Ã. It follows from defi-
nitions that U and V are separated over `+1X in Γ`(A). Therefore, U and V are
free over `+1X in Γ`(A) by Lemma 3.20(1). Since Ã retr−−→ Γ`(A), Lemma 3.20(4)
implies that U and V are free over `+1X in Ã.

Step 2. Lemma 5.9 yields |U ∪V | = |`(X ∪{α})| ≤ (n− `) · t(`). By the freeness
lemma (Lemma 3.22), there exists W ⊆ `+1X such that |W | ≤ β

r(`)
(n−`)·t(`) = s(`)

and U ⊥⊥⊥r(`)
W V in Ã. Fix any such set W .

We claim that W ⊆ Dom(f) and f(W ) ⊆ Γ`+1(B). For the first claim: we have
W ⊆ `+1X ⊆ cl`+1(X) = Dom(f). For the second claim: note that W ⊆ `+1X ⊆
Γ`+1(A) and hence f(W ) ⊆ Γ`+1(B) by `+1-kosher condition (K3).
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Step 3. We claim that Corer(`)
W∪V (Ã) →f¹W Γ`+1(B), that is, there exists a

homomorphism from Corer(`)
W∪V (Ã) to Γ`+1(B) which extends f ¹ W (note that

W ⊆ `+1X ⊆ Dom(f)). Such a homomorphism is formed by composition as follows:

Corer(`)
W∪V (Ã)

↓W by Lemma 3.12,

Corer(`)+|V |
W (Ã)

↓W since r(`) + |V | = r(`) + |`{α}| ≤ r(`) + t(`) = r(` + 1),

Corer(`+1)
W (Ã)

∼=f¹W since Ã Àr(`+1)
f B̃ by `+1-kosher condition (K1),

Corer(`+1)
f(W ) (B̃)

∼=f(W ) since B̃ retr−−→ Γ`+1(B) and hence B̃ Àr(`+1)
f(W ) Γ`+1(B),

Corer(`+1)
f(W ) (Γ`+1(B))

↓f(W )

Γ`+1(B).

Step 4. Let m = |V \W | and fix an arbitrary enumeration v1, . . . , vm of V \W .
It is obvious that there exists a (unique) canonical core C′ ∈ C

r(`)
f(W )t{c1,...,cm} such

that

(Corer(`)
W∪V (Ã), v1, . . . , vm) ∼=f¹W (C′, c1, . . . , cm).

That is, Corer(`)
W∪V (Ã) is isomorphic to C′ via a bijection which extends partial

isomorphism f ¹ W and maps vi to ci for all i ∈ {1, . . . , m}.
We claim that C′ is an extension core in the set E

r(`)
f(W ),m(Γ`+1(B)). By Step 3

and our choice of C′, we have

C′ ∼=f−1¹f(W ) Corer(`)
W∪V (Ã) →f¹W Γ`+1(B).

By composition of the lefthand isomorphism and the righthand homomorphism, we
have C′ →f(W ) Γ`+1(B). Therefore, C′ ∈ E

r(`)
f(W ),m(Γ`+1(B)) as claimed.

Note that |f(W )| = |W | ≤ s(`) and m ≤ |V | = |`{α}| ≤ t(`). Thus, we see that
(f(W ),C′) shows up among index pairs (S,C) in the following expression defining
Γ`(B):

Γ`(B) = ∆`(Γ`+1(B)) =
⊕

S⊆Γ`+1(B),
|S|≤s(`)

C∈E
r(`)
S,≤t(`)

(Γ`+1(B))

Γ`+1(B)

(
Γ`+1(B)⊕S C⊕S · · · ⊕S C︸ ︷︷ ︸

u(`) times

)
.

Let C1, . . . ,Cu(`) be the distinct clans corresponding to the index pair (f(W ),C′).
Journal of the ACM, Vol. V, No. N, July 2008.



Homomorphism Preservation Theorems · 39

It holds that C′ ∼=f(W ) C1
∼=f(W ) · · · ∼=f(W ) Cu(`) and

Γ`(B) retr−−→ Γ`+1(B)⊕f(W ) C1 ⊕f(W ) · · · ⊕f(W ) Cu(`)
retr−−→ Γ`+1(B).

Step 5. The set `X \ `+1X (consisting of elements of cl`(X) of level exactly `)
has at most |`X| ≤ |X| · t(`) < (n− `) · t(`) = u(`) elements by Lemma 5.9. The set

{C1, . . . ,Cu(`)} \ {Clan(f(x)) : x ∈ `X \ `+1X}
is therefore nonempty. We now fix a choice of C in this set, as well as an isomor-
phism

g : (Corer(`)
W∪V (Ã), v1, . . . , vm)

∼=−→f¹W (C, c1, . . . , cm).

As for the isomorphism g, we will be interested in the image g(V ) of the set V .

Step 6. Recall that U ⊥⊥⊥r(`)
W V in Ã by Step 2. We now prove that f(U) ⊥⊥⊥r(`)

f(W )

g(V ) in B̃. We claim that f(U) and g(V ) are free (not just r(`)-free) over f(W )
in B̃. To see this, first notice that sets f(U) and C are separated over f(W ) in
Γ`(B). Since g(V ) ⊆ C, it follows that f(U) and g(V ) are separated (and therefore
free) over f(W ) in Γ`(B). Finally, since B̃ retr−−→ Γ`(B), Lemma 3.20(4) yields
f(U) ⊥⊥⊥f(W ) g(V ) in B̃.

Step 7. Let function h : U ∪ V ∪W −→ B̃ be defined by

h(y) =

{
f(y) if y ∈ U ∪W,

g(y) if y ∈ V.

We advance four claims:

i. U and V are r(`)-free over W in Ã,

ii. h(U) and h(V ) are r(`)-free over h(W ) in B̃,

iii. Ã Àr(`)
h¹(W∪U) B̃,

iv. Ã Àr(`)
h¹(W∪V ) B̃.

Once we prove claims (i)–(iv), it follows that Ã Àr(`)
h¹(U∪V ) B̃. Indeed, by the

definition of freeness, we have

U ⊥⊥⊥r(`)
W V in Ã,

Ã →r(`)
h¹(W∪U) B̃,

Ã →r(`)
h¹(W∪V ) B̃





=⇒ Ã →r(`)
h¹(U∪V ) B̃,

h(U) ⊥⊥⊥r(`)
h(W ) h(V ) in B̃,

B̃ →r(`)
h−1¹h(W∪U) Ã,

B̃ →r(`)
h−1¹h(W∪V ) Ã





=⇒ B̃ →r(`)
h−1¹h(U∪V ) Ã.

Claims (i) and (ii) were proved in Steps 2 and 6, respectively. As for claim (iii),
`+1-kosherness of f yields Ã Àr(`+1)

f B̃. Since r(`) ≤ r(` + 1) and (W ∪ U) ⊆
Dom(f), it follows that Ã Àr(`)

f¹(W∪U) B̃. This proves claim (iii), since h ¹ (W∪U) =
f ¹ (W ∪ U).
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Finally, we prove claim (iv). First, we have C Àr(`)
f(W ) Γ`+1(B), derived as follows:

C Àr(`)
f−1¹W Ã Àr(`+1)

f B̃ retr−−→ Γ`+1(B).

Therefore, C Àr(`)
C Γ`+1(B)⊕f(W ) C by Lemma 3.4(3). In particular,

C Àr(`)
f(W )∪g(V )

(
Γ`+1(B)⊕f(W ) C

)

as f(W ) ∪ g(V ) ⊆ C. Putting pieces together, we have

Ã Àr(`)
W∪V Corer(`)

W∪V (Ã) ∼=(f¹W )∪(g¹V ) C by Step 5,

↑↓r(`)
f(W )∪g(V ) by previous equation,

B̃ retr−−→ (
Γ`+1(B)⊕f(W ) C

)
by Corollary 5.6(2).

It follows that Ã Àr(`)
(f¹W )∪(g¹V ) B̃, which proves claim (iv) as h ¹ (W ∪ V ) = (f ¹

W ) ∪ (g ¹ V ).

Step 8. This is the last step in the proof. While the notation gets rather in-
tensive, the basic arguments have been developed already in previous steps. The
reader who has followed the action so far should find things fairly straightforward.
The plan is roughly as follows. Having defined the function h : U ∪ V ∪W −→ B̃,
we now construct an `-kosher partial isomorphism h0 : cl`(X ∪ {α}) −→ B̃ which
extends both h ¹ U ∪ V and f ¹ cl`(X) (thus completing the proof). The function
h0 is built up in stages. We begin with the map h ¹ U ∪ V , which we rename h`.
Note that Dom(h`) = U ∪V = cl`(X∪{α})∩Γ`(A) and Range(h`) ⊆ Γ`(B). Using
the results of previous steps, we easily show that h` is `-kosher and agrees with f on
their common subdomain U . We then extend maps h` and f ¹ cl`(X)∩Γ`−1(A) to
an `-kosher partial isomorphism h`−1 with Dom(h`−1) = cl`(X∪{α})∩Γ`−1(A) and
Range(h`−1) ⊆ Γ`−1(B). There is a straightforward method for extending `-kosher
maps in this way; the `-kosher condition almost dictates how h`−1 must be defined.
Continuing in the same manner, we extend maps h`−1 and f ¹ cl`(X)∩Γ`−2(X) to
an `-kosher partial isomorphism h`−2 with Dom(h`−2) = cl`(X ∪ {α}) ∩ Γ`−2(A)
and Range(h`−2) ⊆ Γ`−2(B). This process continues until we at last obtain h0.

We now give the formal argument. For k ∈ {0, . . . , `}, let

Yk = cl`(X) ∩ Γk(A) = {y ∈ cl`(X) : λ(y) ≥ k},
Zk =

(
cl`({α}) \ cl`(X)

) ∩ Γk(A) = {z ∈ cl`({α}) \ cl`(X) : λ(z) ≥ k}.
Note that Y` = U and Z` = V and Y0 = cl`(X) and Y0 ∪ Z0 = cl`(X ∪ {α}).

Proceeding inductively, we construct a sequence of partial isomorphisms h`, h`−1,
. . . , h0 from Ã to B̃ satisfying conditions (H1)–(H3) for all k ∈ {0, . . . , `}.

H1. hk is `-kosher.
H2. Dom(hk) = Yk ∪ Zk (= cl`(X ∪ {α}) ∩ Γk(A)).
H3. If k < `, then hk extends both hk+1 and f ¹ Yk.

Once we construct h0, we will have completed the proof of the lemma.
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For the base case k = `, we let h` = h ¹ (U ∪ V ). We have Ã Àr(`)
h`

B̃ by Step 7.
Thus, h` satisfies `-kosher condition (K1). It trivially satisfies conditions (K2)–
(K4) since Dom(h`) ⊆ Γ`(A) and Range(h`) ⊆ Γ`(B). Therefore, h` is `-kosher
and thus satisfies (H1). It satisfies (H2) since its domain U ∪V equals Y` ∪Z`, and
it trivially satisfies (H3). This completes our argument in the base case k = `.

We now handle the induction step. Let k ∈ {0, . . . , ` − 1} and suppose we have
constructed functions h`, h`−1, . . . , hk+1 satisfying (H1)–(H3). We give a construc-
tion of hk. Let D1, . . . ,Dq enumerate (in any order) the distinct clans of elements
of cl`({α}) \ cl`(X) with level exactly k, and let S1, . . . , Sq be the correspond-
ing supports. That is, let {D1, . . . ,Dq} = {Clan(z) : z ∈ Zk \ Zk+1} and let
Si = Di ∩ Γk+1(A) for all i ∈ {1, . . . , q}.

The arguments over the next four paragraphs are carried out for each i ∈
{1, . . . , q}. We begin by claiming that Si ⊆ Dom(hk+1). Indeed, Si equals Supp(zi)
for some zi ∈ Zk \ Zk+1. Since λ(zi) = k, every element of Supp(zi) has level
≥ k + 1 and thus belongs to the set {z′ ∈ cl`(X ∪ {α}) : λ(z′) ≥ k + 1} =
cl`(X ∪ {α})∩Γk+1(A). But this set is precisely Yk+1 ∪Zk+1, which is Dom(hk+1)
by (H2). Therefore, Si ⊆ Dom(hk+1) as claimed.

Let Ti = hk+1(Si). Partial isomorphism hk+1 is `-kosher by (H1). Since all
elements of Si have level ≥ k + 1 in Ã, `-kosher condition (K3) of hk+1 implies
that all elements of Ti have level ≥ k + 1 in B̃, that is, Ti ⊆ Γk+1(B). Also, note
that |Ti| ≤ s(k) since |Ti| = |Si| and |Si| ≤ s(k) as Si is the support of an element
of level k in Ã.

Next, we show that Γk+1(A) Àr(k)+t(k)
hk+1¹Si

Γk+1(B). By `-kosher condition (K1) of

hk+1, we have Ã Àr(`)
hk+1

B̃. It now follows:

Ã Àr(`)
hk+1¹Si

B̃ as we merely restrict partial isomorphism hk+1,

Γk+1(A) Àr(`)
hk+1¹Si

B̃ since Ã retr−−→ Γk+1(A) and so Ã ÀSi Γk+1(A),

Γk+1(A) Àr(`)
hk+1¹Si

Γk+1(B) since B̃ retr−−→ Γk+1(B) and so B̃ ÀTi Γk+1(B),

Γk+1(A) Àr(k)+t(k)
hk+1¹Si

Γk+1(B) since r(k) + t(k) = r(k + 1) ≤ r(`).

Note that by the definition of Γk(A) = ∆k(Γk+1(A)), the clan Di is ∼=Si-
isomorphic to some extension core D′

i in the set E
r(k)
Si,≤t(k)(Γk+1(A)). Let Ei be

the isomorphic image of D′
i under the function D′

i −→ (D′
i \ Si) ∪ Ti defined by

d 7−→ hk+1(d) if d ∈ Si and d 7−→ d if d ∈ D′
i \ Si. By Corollary 3.26, Ei is an

extension core in the set E
r(k)
Ti,≤t(k)(Γk+1(B)).

The upshot of the last three paragraphs is that the pair (Ti,Ei) shows up among
index pairs (T,E) in the following expression defining Γk(B):

Γk(B) = ∆k(Γk+1(B)) =
⊕

T⊆Γk+1(B),
|T |≤s(k)

E∈E
r(k)
T,≤t(k)

(Γk+1(B))

Γk+1(B)

(
Γk+1(B)⊕T E⊕T · · · ⊕T E︸ ︷︷ ︸

u(k) times

)

For all i ∈ {1, . . . , q}, let Ei,1, . . . ,Ei,u(k) be the distinct copies of extension core
Ei in this expression (modulo the common subset Ti). Note that q, the number of
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different clans of elements of Zk with level k, is at most |k{α}| ≤ t(k) by Lemma 5.9.
Let F1, . . . ,Fp enumerate (in any order) the set {Clan(f(y)) : y ∈ Yk \ Yk+1} of
clans (in B̃) of elements f(y) for y ∈ cl`(X) with level k (in Ã). Note that p, the
number of such clans, is at most |Yk \Yk+1| ≤ |kX|, which by Lemma 5.9 is at most
|X| · t(k) ≤ (n−`−1) · t(k) ≤ (n−k−1) · t(k) = u(k)− t(k). By a simple pigeonhole
argument, there exists a function j : {1, . . . , q} −→ {1, . . . , u(k)} such that for all
i ∈ {1, . . . , q},

Ei,j(i) /∈ {F1, . . . ,Fp,E1,j(1), . . . ,Ei−1,j(i−1)}.
For each i, we fix any isomorphism gi : Di

∼=hk+1¹Si Ei,j(i). We now define
function hk : Yk ∪ Zk −→ B̃ by

hk(x) def=





hk+1(x) if x ∈ Yk+1 ∪ Zk+1

f(x) if x ∈ Yk \ Yk+1

gi(x) if x ∈ Di \ Si

=





hk+1(x) if x ∈ Yk+1 ∪ Zk+1

f(x) if x ∈ Yk

gi(x) if x ∈ Di.

In the lefthand expression defining hk, note that sets Yk+1 ∪ Zk+1 and Yk \ Yk+1

and D1 \ S1, . . . , Dq \ Sq partition the set Yk ∪ Zk. In the equivalent righthand
expression, note that hk is consistent on overlapping cases (Yk+1 ∪ Zk+1) ∩ Yk and
(Yk+1 ∪ Zk+1) ∩Di and Yk ∩Di; in particular, f(x) = hk+1(x) for all x ∈ Yk+1 by
hypothesis (H3) and gi(x) = hk+1(x) for all x ∈ Si since by our choice of gi (i.e.,
the fact that gi is an isomorphism extending hk+1 ¹ Si). Note that hk indeed has
domain Yk ∪ Zk, as

⋃q
i=1 Di \ Si = Zk \ Zk+1; thus, hk satisfies hypothesis (H2).

Moreover, hk clearly extends both hk+1 and f ¹ Yk; it thus satisfies hypothesis
(H3).

It remains only to show that hk satisfies hypothesis (H1), i.e., that it is `-kosher.
`-kosher conditions (K2)–(K4) are easy to check. We will show that hk satisfies
`-kosher condition (K1), i.e., Ã Àr(`)

hk
B̃. Define substructures G ⊆ Γk(A) and

F ⊆ Γk(B) by

G =
⋃

y∈Yk\Yk+1

Clan(y), F = F1 ∪ · · · ∪ Fp =
⋃

y∈Yk\Yk+1

Clan(f(y)).

Note that G ⊆ Dom(f). By `+1-kosherness of f and Lemma 5.11(3), we see that
F = f(G). Therefore, f ¹ G is an isomorphism of structures G ∼= F.

Let S′ = G ∩ Γk+1(A) and T ′ = F ∩ Γk+1(B). We now define substructures
A′ ⊆ Ã and B′ ⊆ B̃ by

A′ =
( · · · (((Γk+1(A)⊕S′ G

)⊕S1 D1

)⊕S2 D2

) · · · ⊕Sq−1 Dq−1

)⊕Sq Dq,

B′ =
( · · · (((Γk+1(B)⊕T ′ F

)⊕T1 E1,j(1)

)⊕T2 E2,j(2)

) · · ·
· · · ⊕Tq−1 Eq−1,j(q−1)

)⊕Tq Eq,j(q).

Note that Dom(hk) ⊆ A′ and Range(hk) ⊆ B′. In addition, note that Ã retr−−→
Γk(A) retr−−→ A′ and B̃ retr−−→ Γk(B) retr−−→ B′. Therefore, once we prove A′ Àr(`)

hk
B′,

it follows that Ã Àr(`)
hk

B̃.

The final claim is that A′ Àr(`)
hk

B′. This is accomplished by repeatedly applying
Corollary 3.5.
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—First, note that Γk+1(A) Àr(`)
hk¹Γk+1(A) Γk+1(B). Indeed, hk ¹ Γk+1(A) = hk+1

and Ã Àr(`)
hk+1

B̃ by `-kosher condition (K1) of hk; now use Ã retr−−→ Γk+1(A) and

B̃ retr−−→ Γk+1(B).
—Second, note that G ∼=hk¹G F and S′ = Γk+1(A) ∩ G and T ′ = hk(S′). By

Corollary 3.5, this implies

Γk+1(A)⊕S′ G Àr(`)
hk¹(Γk+1(A)⊕S′G) Γk+1(B)⊕T ′ F.

—Next, we have D1
∼=hk¹D1 E1,j(1). Also, S1 = (Γk+1(A) ⊕S′ G) ∩ D1 and T1 =

hk(S1). Corollary 3.5 implies
(
Γk+1(A)⊕S′ G

)⊕S1 D1 Àr(`)
hk¹(Γk+1(A)⊕S′G)⊕S1D1

(
Γk+1(B)⊕T ′ F

)⊕T1 E1,j(1).

—We proceed in this fashion for i = 2, . . . , q, each time proving
((

Γk+1(A)⊕S′ G
)⊕S1 D1

) · · · ⊕Si
Di

Àr(`)
hk¹((Γk+1(A)⊕S′G)⊕S1D1)···⊕Si

Di((
Γk+1(B)⊕T ′ F

)⊕T1 E1,j(1)

) · · · ⊕Ti Ei,j(i).

Once we reach i = q, we have shown A′ Àr(`)
hk

B′.

With this, the proof of Lemma 5.12 is concluded.

The following corollary shows that Lemma 5.12 is really symmetric in Ã and B̃.

Corollary 5.13. Let ` ∈ {0, . . . , n−1} and suppose f is an `+1-kosher partial
isomorphism from Ã to B̃ with domain cl`+1(X) for some X ⊆ Ã of size < n− `.
Then for every β ∈ B̃, there exists an `-kosher partial isomorphism f ′ extending
f ¹ cl`(X) to range cl`(f(X) ∪ {β}). Moreover, Dom(f ′) = cl(X ∪ {f ′−1(β)}) for
any such f ′.

Proof. We have f(cl`+1(X)) = cl`+1(f(X)) by Lemma 5.11(4). Thus, f−1 is
an `+1-kosher partial isomorphism from B̃ to Ã with domain cl`+1(f(X)) where
|f(X)| < n − `. By Lemma 5.12, for every β ∈ B̃ there is an `-kosher partial
isomorphism g from B̃ to Ã extending f−1 ¹ cl`(f(X)) to domain cl`(f(X)∪ {β}).
By Lemma 5.11(1), the inverse g−1 is an `-kosher partial isomorphism from Ã to B̃
extending f ¹ cl`(X) to range cl`(f(X)∪ {β}). Finally, if f ′ is any `-kosher partial
isomorphism extending f ¹ cl`(X) to range cl`(f(X) ∪ {β}), then

Dom(f ′) = f ′−1(cl`(f(X) ∪ {β}))
= cl`(f ′−1(f(X)) ∪ {f ′−1(β)}) = cl`(X ∪ {f ′−1(β)})

where the middle equality is by Lemma 5.11(4).

Lemmas 2.20, 5.11(2), 5.12 and Corollary 5.13 yield:

Corollary 5.14. Suppose A Àr(n) B. For k ∈ {0, . . . , n}, let Πk be the set of
partial isomorphisms f from Ã to B̃ such that |Dom(f)| ≤ k and f extends to an
(n− k)-kosher partial isomorphism from Ã to B̃. Then the sequence Π0, . . . , Πn is
an n-back-and-forth system on Ã and B̃. Consequently, Ã ≡n B̃.
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Until now, n has been a fixed positive integer. The value of n has determined
the sequences r(`), s(`), t(`), u(`) for ` = 0, . . . , n−1, as well as the number r(n).
We now make this dependence explicit by writing rn(`), sn(`), tn(`), un(`). Let
ρ : N −→ N be the function defined by ρ(n) = rn(n).

Theorem 5.15. Suppose P and Q are classes of finite structures and Φ is a
first-order sentence such that for all finite structures A and B,

• if A ∈ P and A → B then B |= Φ, and
• if A |= Φ and A → B then B ∈ Q.

Then there exists an existential-positive sentence Ψ such that qrank(Ψ) ≤
ρ(qrank(Φ)) and P ⊆ Modfin(Ψ) ⊆ Q.

The proof follows the same scheme as the proof of Theorem 4.11.

Proof. Let n = qrank(Φ) and suppose A and B are finite structures such
that A ∈ P and A →ρ(n) B. We will show that B ∈ Q. The conclusion that
P ⊆ Modfin(Ψ) ⊆ Q for some existential-positive sentence Ψ of quantifier-rank at
most ρ(n) then follows by Lemma 3.16.

Let C = Coreρ(n)(A) and note that A Àρ(n) C and C → B. Corollary 5.14
yields Ã ≡n C̃, and so we have the diagram

Ã ≡n C̃

re
tr

−−→ re
tr

−−→

A Àρ(n) C → B

in which all structures are finite. Since A ∈ P and A → Ã, we have Ã |= Φ (by
the hypothesis involving P). As Ã ≡n C̃, it follows that C̃ |= Φ. Since C̃ |= Φ
and C̃ → B, we have B ∈ Q (by the hypothesis involving Q). Having shown that
B ∈ Q, we are done.

The main result of this article, the homomorphism preservation theorem on finite
structures, now follows as a corollary.

Theorem 5.16 (Finite Homomorphism Preservation Theorem). A first-
order sentence of quantifier-rank n is preserved under homomorphisms on finite
structures if, and only if, it is equivalent in the finite to an existential-positive
sentence of quantifier-rank ρ(n).

Proof. The easy (⇐=) direction was given earlier as Lemma 2.3. The hard
(=⇒) direction is nothing but the special case of Theorem 5.15 where P = Q =
Modfin(Φ) for a first-order sentence Φ.

6. NON-ELEMENTARY LOWER BOUNDS

In this section we present a previously unpublished result of Yuri Gurevich and
Saharon Shelah (announced but not proved in [Gurevich 1990]). The proof we give
here was adapted from unpublished notes. Recall that a function from N to N
is non-elementary if it is not bounded by any tower-exponential function 22...2n

of
fixed height.
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Theorem 6.1. There is a sequence Φ1,Φ2, Φ3, . . . of homomorphism-preserved
first-order sentences (in a suitable finite relational vocabulary) such that the mini-
mal quantifier-count of any existential-positive sentence equivalent to Φn is a non-
elementary function of the length of Φn.

In a slightly different formulation, Theorem 6.1 states that

max
hom-preserved first-order Φ

length(Φ)=n

min
ex-pos Ψ

Ψ≡Φ

qcount(Ψ) = non-elementary(n).

Since quantifier-count is a lower bound on length, this statement remains true if we
replace length(Φ) by qcount(Φ). This theorem neatly complements our equirank
h.p.t., which tells us that there is no blow-up in quantifier-rank, that is,

max
hom-preserved first-order Φ

qrank(Φ)=n

min
ex-pos Ψ

Ψ≡Φ

qrank(Ψ) ≤ n.

The “suitable” finite relational vocabulary in Theorem 6.1 consists of three unary
relation symbols and one binary relation symbol; we believe, however, that Theo-
rem 6.1 should be true for any finite relational vocabulary containing at least one
relation symbol of arity at least 2. In the course of proving Theorem 6.1, we show
(in Corollary 6.3) that the core-size bound βn

0 is a non-elementary function of n.
It follows easily that βn

m is a non-elementary function of n for every constant m.

6.1 The Existential-Positive Sentence Θn ∨Ψn

Let σ be the vocabulary {Zero,Gen♂,Gen♀,E} where Zero,Gen♂,Gen♀ are unary
relation symbols and E is a binary relation symbol. Let (Sn)n∈N be the sequence
of sets defined by S0 = {∅} and Sn = {♂, ♀}Sn−1 (i.e., the set of functions from
Sn−1 to {♂, ♀}) for all n ≥ 1. Let tower(n) = |Sn|, so that tower(0) = 1 and
tower(n) = 2tower(n−1) for all n ≥ 1.

For all f ∈ ⋃
n∈N Sn, we define a primitive-positive formula θf (x) by

θf (x) ,





Zero(x) if f ∈ S0 (i.e., f = ∅),
∧

f ′∈Sn−1

(
∃y Exy ∧ θf ′(y) ∧Genf(f ′)(y)

)
if f ∈ Sn for n ≥ 1.

(We use the notation ,, above, to distinguish from the internal equality symbol =
of first-order logic.) For all n ≥ 1, we define a primitive-positive sentence Θn and
an existential-positive sentence Ψn by

Θn ,
∧

f∈Sn−1

(
∃x θf (x) ∧Gen♂(x)

)
∧

(
∃x θf (x) ∧Gen♀(x)

)
,

Ψn ,
(
∃x Gen♂(x) ∧Gen♀(x)

)
∨

∨

f,f ′∈S0∪···∪Sn−1

f 6=f ′

(
∃x θf (x) ∧ θf ′(x)

)
.

Notice that qrank(Θn) = qrank(Ψn) = n and qcount(Θn), qcount(Ψn) ≥ |Sn−1| =
tower(n− 1).

We introduce some terminology for speaking about structures (with vocabulary
σ). Elements of Sn are n-colors; by extension, elements of S0 ∪ · · · ∪ Sn−1 are
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<n-colors. Given a structure A, an element a ∈ A and an n-color f ∈ Sn, we say
that a has n-color f in A if A |= θf (a). Entities ♂ and ♀ are genders. We say
that a is male if A |= Gen♂(a) and female if A |= Gen♀(a). We say that a has a
gender if it is male or female (or both). In this terminology, the sentence Θn says
that for all f ∈ Sn−1, there exists a male element with n−1-color f as well as a
female element with n−1-color f (possibly the same element). The negation ¬Ψn

of Ψn says that all elements have at most one gender and at most one <n-color.
Thus, if A |= ¬Ψn and an element a ∈ A has a gender (resp. <n-color), then we
may unambiguously speak of its (unique) gender (resp. <n-color). Bear in mind
that an element a ∈ A has a 0-color in A if, and only if, A |= Zero(a).

Notice that genders and colors are preserved under homomorphisms. By this, we
mean that if h is a homomorphism from A to B and a ∈ A has gender g ∈ {♂, ♀}
in A, then h(a) has gender g in B. Similarly, if a has n-color f ∈ Sn in A, then
h(a) has n-color f in B.

6.2 The Hom-Minimal Core Cn

We now define a particular finite structure Cn, which we will show is both a core
and a hom-minimal model of Θn ∨ Ψn (see Definition 2.15). The universe Cn

consists of all sequences 〈fi, gi, fi+1, gi+1, . . . , fn−1, gn−1〉 where i ∈ {0, . . . , n−1}
and fj ∈ Sj and gj ∈ {♂, ♀} subject to the constraint that fj(fj−1) = gj−1 for all
i < j < n. (Recall that j-colors are functions from j − 1-colors to genders.) We
regard Cn as a rooted forest in which an element 〈fi, gi, fi+1, gi+1, . . . , fn−1, gn−1〉
where i < n− 1 has as its parent the element 〈fi+1, gi+1, . . . , fn−1, gn−1〉. Relation
symbols Zero,Gen♂,Gen♀,E are interpreted in Cn as follows.

• E is the child-of relation in Cn, that is, the set of pairs

(〈fi, gi, fi+1, gi+1, . . . , fn−1, gn−1〉, 〈fi+1, gi+1, fi+2, gi+2, . . . , fn−1, gn−1〉)
where i < n− 1.

• Zero is the set of leaves of Cn, that is, the set of 〈f0, g0, f1, g1, . . . , fn−1, gn−1〉
having length 2n.

• Gen♂ (resp. Gen♀) is the set of elements 〈fi, gi, fi+1, gi+1, . . . , fn−1, gn−1〉 such
that gi = ♂ (resp. gi = ♀).

As an aside, we point out that the structure Cn is (up to isomorphism) precisely
the structure AΘn as defined in the proof of Lemma 2.13.

Lemma 6.2. Cn is a core.

Proof. Even stronger, we will prove that Cn is rigid, meaning that the only
homomorphism Cn → Cn is the identity map. We first observe that every ho-
momorphism h : Cn → Cn fixes each root 〈fn−1, gn−1〉; this is because h pre-
serves both genders and colors and each 〈fn−1, gn−1〉 is the unique element of
Cn with color fn−1 and gender gn−1. We next claim that h fixes all children
〈fn−2, gn−2, fn−1, gn−1〉 of roots; indeed, 〈fn−2, gn−2, fn−1, gn−1〉 is the unique el-
ement of Cn with color fn−2 and gender gn−2 whose parent has color fn−1 and
gender gn−1 (this “second generation” property is similarly preserved under homo-
morphisms). We proceed inductively to show that h fixes elements at distance k

Journal of the ACM, Vol. V, No. N, July 2008.



Homomorphism Preservation Theorems · 47

from a root for all k from 2 to n − 2. This argument establishes that Cn is rigid
and is therefore a core.

It is evident from our description of Cn as rooted forest that it has tree-depth at
most n. Since Cn is a core, it follows that core-size bound βn

0 is at least the size
of Cn. As |Cn| ≥ |Sn−1| = tower(n− 1), we have obtained a non-elementary lower
bound on the core-size bound.

Corollary 6.3. The core-size bound βn
0 is a non-elementary function of n.

We claim that Cn |= Θn ∧ ¬Ψn. Each element 〈fi, gi, fi+1, gi+1, . . . , fn−1, gn−1〉
has gender gi and i-color fi in Cn (this is seen by induction on i). In particular,
we have Cn |= Θn since Cn contains both a male element and a female element of
each n−1-color. On the other, we have Cn |= ¬Ψn since no element of Cn is both
male and female, nor does any element have more than one <n-color.

Lemma 6.4. Cn is a hom-minimal model of Θn ∨Ψn.

Proof. We just observed that Cn |= Θn, so therefore Cn |= Θn ∨Ψn. Suppose
B is a model of Θn ∨Ψn such that B → Cn. To prove that Cn is a hom-minimal
model (Definition 2.15), we must show that Cn → B. We begin by observing
that B 6|= Ψn. Indeed, were it the case that B |= Ψn, then Cn |= Ψn since Ψn

is existential-positive and hence preserved under homomorphisms; but we know
that Cn 6|= Ψn. Therefore, B 6|= Ψn and so it must be the case that B |= Θn.
We now construct a homomorphism h from Cn to B starting with the roots of
Cn and working down to the leaves. For each root 〈fn−1, gn−1〉, there exists an
element b ∈ B with n−1-color fn−1 and gender gn−1 (because B |= Θn); let h map
〈fn−1, gn−1〉 to any such b. For each child 〈fn−2, gn−2, fn−1, gn−1〉 of 〈fn−1, gn−1〉,
the fact that h(〈fn−1, gn−1〉) has n−1-color fn−1 means that it has a child b′ with
gender gn−2 and n−2-color fn−2; let h map 〈fn−2, gn−2, fn−1, gn−1〉 to any such b′.
Continuing in this manner, we eventually extend h to the entire universe of Cn.

Lemma 6.5. Θn ∨ Ψn is not logically equivalent to any existential-positive sen-
tence with fewer than tower(n− 1) quantifiers.

Proof. Let Φ be an existential-positive sentence equivalent to Θn ∨ Ψn. Then
Φ and Θn ∨ Ψn have the same hom-minimal models; in particular, Cn is a finite
hom-minimal model of Φ. By Proposition 2.16, we have

qcount(Φ) ≥ |Core(Cn)| = |Cn| ≥ tower(n− 1)

where the middle equality uses fact that Cn is a core (Lemma 6.2) and so Cn
∼=

Core(Cn).

6.3 An Exponentially Concise First-Order Sentence Equivalent to Θn ∨Ψn

We now complete the proof of Theorem 6.1 by defining a sequence of first-order
sentences Φn equivalent to Θn ∨ Ψn but only exponentially long in n. First, we
define various subformulas. These formulas are listed below, along with the intended
meaning in models of ¬Ψn+1:

HasG(x) ⇔ x has a (unique) gender,
SameG(x, x′) ⇔ x and x′ have the same gender,
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OppG(x, x′) ⇔ x and x′ have opposite genders,

HasCn(x) ⇔ x has a (unique) n-color,

SameCn(x, x′) ⇔ x and x′ have the same n-color,

Edgen(x, y) ⇔ y has both an n−1-color and a gender and there is an edge
from x to y,

Swapn(x, x′, y) ⇔ x, x′ have n-colors (say f, f ′ ∈ Sn), y has an n−1-color (say
f0 ∈ Sn−1), and f, f ′ agree (as functions Sn−1 −→ {♂, ♀})
on all n−1-colors except f0, i.e., f(f0) = f ′(f1) ⇐⇒ f0 6= f1

for all f1 ∈ Sn−1.

In other words, Swapn(x, x′, y) says that the n-colors of x and x′ swap values on
the n−1-color of y, but are identical on all other n−1-colors.

Formulas HasG(x), SameG(x, y) and OppG(x, y) are defined easily enough. (In
the following definitions, φ → ψ and φ ↔ ψ and ⊥ respectively abbreviate ¬φ ∨ ψ
and (φ → ψ) ∧ (ψ → φ) and ∃x ¬(x = x).)

HasG(x) , Gen♂(x) ∨Gen♀(x)

SameG(x, x′) ,
(
Gen♂(x) ∧Gen♂(x′)

) ∨ (
Gen♀(x) ∧Gen♀(x′)

)

OppG(x, x′) ,
(
Gen♂(x) ∧Gen♀(x′)

) ∨ (
Gen♀(x) ∧Gen♂(x′)

)

The other formulas are defined recursively. In the base case n = 0:

HasC0(x) , Zero(x)
SameC0(x, x′) , Zero(x) ∧ Zero(x′)

Swap0(x, x′, y) , ⊥
Edge0(x, y) , ⊥

For all n ≥ 1, we define:

Edgen(x, y) , Exy ∧HasCn−1(y) ∧HasG(y)

HasCn(x) , ∃y0 Edgen(x, y0) ∧

∀y∀z
(

Edgen(x, y) ∧
Edgen−1(y, z)

)
→ ∃y′

(
Edgen(x, y′) ∧
Swapn−1(y, y′, z)

)

SameCn(x, x′) , HasCn(x) ∧HasCn(x′) ∧

∀y∀y′



Edgen(x, y) ∧
Edgen(x′, y′) ∧
SameCn−1(y, y′)


 → SameG(y, y′)

Swapn(x, x′, y0) , HasCn(x) ∧HasCn(x′) ∧HasCn−1(y0) ∧

∀y∀y′



Edgen(x, y) ∧
Edgen(x′, y′) ∧
SameCn−1(y, y′)


 →

(
OppG(y, y′) ↔
SameCn−1(y0, y)

)

One can check that this recursion is well-founded and that these formulas have the
intended meaning on models of ¬Ψn+1.
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For all n ≥ 1, we define first-order sentences Θ∗n and Ψ∗n as follows. Let Θ∗1 , Θ1

and Ψ∗1 , Ψ1. For all n ≥ 2, let

Θ∗n , ∃x0

(
HasCn−1(x0) ∧HasG(x0)

)
∧

∀x
(
HasCn−1(x) ∧HasG(x)

)
→ ∃x′

(
SameCn−1(x, x′) ∧OppG(x, x′)

)
∧

∀x∀y
(
HasCn−1(x) ∧HasCn−2(y)

)
→ ∃x′

(
Swapn−1(x, x′, y) ∧HasG(x′)

)
,

Ψ∗n , Ψ∗n−1 ∨ ∃x′
(
HasCn−1(x′) ∧

∨n−2
i=0 HasCi(x′)

)
∨

∃x∃y∃y′
(

HasCn−1(x) ∧ Edgen−1(x, y) ∧ Edgen−1(x, y′) ∧
SameCn−2(y, y′) ∧OppG(y, y′)

)
.

Lemma 6.6. For all n ≥ 1, let Φn , Θ∗n ∨Ψ∗n.

(1 ) The length of Φn is exponential in n.
(2 ) Φn is logically equivalent to Θn ∨Ψn.

Proof. Straightforward induction.

We conclude this section with the proof of Theorem 6.1.

Proof of Theorem 6.1. The sentence Φn of Lemma 6.6 has length exponen-
tial in n and yet (since Φn is equivalent to Θn∨Ψn) any existential-positive sentence
equivalent to Φn has at least tower(n− 1) quantifiers by Lemma 6.5.

7. EXTENSIONS AND OPEN QUESTIONS

We conclude by stating some corollaries of our main results and mentioning a few
questions left open by our work.

7.1 Extensions of our Results

7.1.1 Beyond finite relation vocabularies. Both of our homomorphism preserva-
tion theorems (Theorems 4.12 and 5.16) were stated in terms of first-order sentences
in a finite relational vocabulary σ. In fact, these results extend to first-order for-
mulas in vocabularies consisting of arbitrarily many relation symbols as well as
constant symbols. We first claim that the addition of finitely many constant sym-
bols c1, . . . , ck to σ is no problem, once definitions are suitably modified. Structures
A by definition now include interpretations cA1 , . . . , cAk ∈ A for all constant symbols
ci. Homomorphisms h : A −→ B now additionally satisfy h(cAi ) = cBi for all ci.
Elements cAi and cBi are now identified in the X-sum A⊕X B. Less obvious,tdX(A)
is now defined as tree-depth of the graph G(A) \ (X ∪ {cA1 , . . . , cAk }). Other defin-
itions, such as those of →n

X and Coren
X(A), remain essentially unchanged. It can

be checked that all lemmas and proofs now go through exactly as before (when σ
is a finite relational vocabulary), including the key proposition that C n

X is finite for
every n and finite set X (Proposition 3.9).

Having established that our results extend to finite vocabularies containing con-
stant as well as relation symbols, there is a simple argument which extends our main
results from first-order sentences to first-order formulas: a formula φ(x1, . . . , xk)
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is preserved under homomorphisms if, and only if, the corresponding sentence
φ(c1, . . . , ck) in the vocabulary extended by constant symbols c1, . . . , ck is pre-
served under homomorphisms. Finally, our main theorems extend to vocabularies
with infinitely many relation and constant symbols for the simple reason that any
first-order formula involves only finitely many symbols. Hence, it suffices to con-
sider only the relevant finite fragment of the infinite vocabulary. (Of course, the
upper bound ρ(n) in the finite h.p.t. will depend on the particular relevant finite
fragment.)

Extending our two homomorphism preservation theorems to vocabularies which
contain function symbols (in addition to relation and constant symbols) appears to
be a messier exercise. We believe that some version of both preservation theorems
should hold once the notion of (quantifier-)rank is adjusted to account for nesting
of function symbols as well as quantifiers.

7.1.2 Relativized homomorphism preservation theorems. The finite h.p.t. (The-
orem 5.16) relativizes on any class K of finite structures which is co-homomorphism
closed (meaning that A ∈ K whenever A → B and B ∈ K for all finite A and B).
One example is the class of finite k-partite structures (i.e., finite structures with
k-partite Gaifman graphs).

Corollary 7.1. Suppose K is a co-homomorphism closed class of finite struc-
tures. Then every first-order sentence of quantifier-rank n which is preserved under
homomorphisms on K is logically equivalent on K to an existential-positive sentence
of quantifier-rank ρ(n).

Proof. This claim boils down to a simple observation. Recall the following
diagram from the proof of Theorem 5.15 (of which the finite h.p.t. is a corollary):

Ã ≡n C̃

re
tr

−−→ re
tr

−−→

A Àρ(n) C → B

The observation is that if finite structures A, B are both in class K, then so are
finite structures Ã, C, C̃ since K is co-homomorphism closed.

The equirank h.p.t. similarly relativizes on co-homomorphism closed classes.

7.1.3 Preservation theorems for primitive-positive sentences. The equirank and
finite homomorphism preservation theorems yield corresponding equirank and finite
preservation theorems for primitive-positive sentences.

Corollary 7.2. A first-order sentence of quantifier-rank n is preserved under
homomorphisms and products [on finite structures] if, and only if, it is logically
equivalent [in the finite] to a primitive-positive sentence of quantifier-rank n [ρ(n)].

Proof. The (⇐=) direction, that every primitive-positive formula is preserved
under homomorphisms and products, is an easy exercise. In the (=⇒) direction,
let Φ be a first-order sentence of quantifier-rank n that is preserved under ho-
momorphisms and products [on finite structures]. By the equirank [finite] h.p.t.,
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Φ is equivalent to an existential-positive sentence of quantifier-rank n [ρ(n)]. Fi-
nally, every existential-positive sentence that is preserved under products has an
equivalent primitive-positive sentence with the same quantifier-rank (another easy
exercise).

7.2 Failure of the Classical Homomorphism Interpolation Theorem on Finite Structures

The classical h.p.t. can be seen as a special case of a more general interpolation
theorem.

Theorem 7.3 (Classical Homomorphism Interpolation Theorem).
Let Φ1 and Φ2 be first-order sentences and suppose that for all structures A and
B, if A |= Φ1 and A → B, then B |= Φ2. Then there exists an existential-positive
“interpolant” between Φ1 and Φ2, that is, an existential-positive sentence Ψ such
that Mod(Φ1) ⊆ Mod(Ψ) ⊆ Mod(Φ2).

The classical h.p.t. is precisely the special case of Theorem 7.3 where Φ1 = Φ2. In
light of the finite h.p.t., it is natural to ask whether Theorem 7.3 also survives when
restricted to finite structure. Eric Rosen and the author discovered that, unlike the
classical h.p.t., but like other classical interpolation theorems, Theorem 7.3 indeed
fails on finite structures.

Theorem 7.4 (Failure on Finite Structures). There exist first-order sen-
tences Φ1 and Φ2 such that

• for all finite structures A and B, if A |= Φ1 and A → B then B |= Φ2, and
• there is no existential-positive sentence Ψ such that Modfin(Φ1) ⊆ Modfin(Ψ) ⊆

Modfin(Φ2).

Proof. Consider the vocabulary consisting of a binary relation E and a unary
relation P . We regard structures in this vocabulary as directed graphs with a
distinguished subset of vertices (defined by P ). Let Φ1 be a sentence expressing
“E is anti-reflexive, symmetric and 2-regular (i.e., the edge relation of a 2-regular
simple graph) and |{x, y}∩P | = 1 for all but a unique undirected edge {x, y}”. Let
Φ2 express “either there exist at least three vertices, or some vertex has a self-loop”.
Both Φ1 and Φ2 are clearly first-order statements.

Notice that every finite model of Φ1 contains a unique odd cycle (however, Φ1

has infinite models without odd cycles). Let A and B be finite structures and
suppose that A |= Φ1 and A → B. We claim that B |= Φ2. We may assume
that B has at most two vertices, since otherwise B clearly satisfies Φ2. But then
two consecutive vertices in the odd cycle of A must map to the same vertex of B
under any homomorphism from A to B. It follows that this vertex of B contains a
self-loop and hence B |= Φ2.

It remains to show that Φ1 and Φ2 have no existential-positive interpolant on
finite structures. Toward a contradiction, assume that Ψ is an existential-positive
sentence such that Modfin(Φ1) ⊆ Modfin(Ψ) ⊆ Modfin(Φ2). Let n be the quantifier-
rank of Ψ. Let A be the structure with universe A = {0, . . . , 2n} and relations
EA = {(i, j) : i−j ≡ 1 or −1 modulo 2n+1} and PA = {0, 2, 4, . . . , 2n−2, 2n}. The
underlying simple graph of A (throwing away unary relation PA) is a (2n +1)-cycle
and hence 2-regular. With the only exception of {0, 2n}, every other undirected
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edge {i, i+1} satisfies |{i, i+1}∩PA| = 1. So we see that A |= Φ1 and consequently
A |= Ψ since Modfin(Φ1) ⊆ Modfin(Ψ). Let B be the two-element structure with
B = PB = {0, 1} and EB = {(0, 1), (1, 0)}. One can show that A →n B (in fact,
B ∼= Coren(A)) by arguing that if td(C) ≤ n and C → A, then G(C) is bipartite,
the two parts describing a homomorphism C → B (details are left to the reader).
It follows that B |= Ψ and hence B |= Φ2 as Modfin(Ψ) ⊆ Modfin(Φ2). But B has
fewer than three vertices and yet contains no self-loop, which implies B |= ¬Φ2,
yielding a contradiction. Therefore, no such Ψ exists.

7.3 Open Questions

Our work raises an obvious question about the status of the equirank h.p.t. on finite
structures.

Question 7.5. What is the minimal function ρ : N −→ N for which the finite
h.p.t. (Theorem 5.16) is valid? In particular, does the finite h.p.t. hold with ρ(n) =
n? Equivalently, is the equirank h.p.t. (Theorem 4.12) valid on finite structures?

Recall that every structure has an infinite n-extendable co-retract for all n ∈ N
(Lemma 4.9).

Question 7.6. Is it true that for all n ∈ N, every finite structure has a finite
n-extendable co-retract?

It follows from the proof of Theorem 4.11 that if the answer to Question 7.6 is
“yes”, then the equirank h.p.t. holds on finite structures.

Finally, we would like to know whether the equirank h.p.t. has analogues among
other classical preservation theorems.

Question 7.7. Which classical preservation theorems besides the h.p.t. have valid
“equirank” versions?
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