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Abstract

We define the criticality of a boolean function f : {0, 1}n → {0, 1} as the minimum real number
λ ≥ 1 such that

P
[
DTdepth(f�Rp) ≥ t

]
≤ (pλ)t

for all p ∈ [0, 1] and t ∈ N, where Rp is the p-random restriction and DTdepth is decision-tree depth.

Criticality is a useful parameter: it implies an O(2(1− 1
2λ

)n) bound on the decision-tree size of f , as well
as a 2−Ω(k/λ) bound on Fourier weight of f on coefficients of size ≥ k.

In an unpublished manuscript [11], the author showed that a combination of H̊astad’s switching and
multi-switching lemmas [5, 6] implies that AC0 circuits of depth d+ 1 and size s have criticality at most
O(log s)d. In the present paper, we establish a stronger O( 1

d
log s)d bound for regular formulas: the

class of AC0 formulas in which all gates at any given depth have the same fan-in. This result is based on

(i) a novel switching lemma for bounded size (unbounded width) DNF formulas, and

(ii) an extension of (i) which analyzes a canonical decision tree associated with an entire depth-d
formula.

As corollaries of our criticality bound, we obtain an improved #SAT algorithm and tight Linial-
Mansour-Nisan Theorem for regular formulas, strengthening previous results for AC0 circuits due to
Impagliazzo, Matthews, Paturi [7] and Tal [17]. As a further corollary, we increase from o( logn

log logn
)

to o(logn) the number of quantifier alternations for which the QBF-SAT (quantified boolean formula
satisfiability) algorithm of Santhanam and Williams [14] beats exhaustive search.

1 Introduction

For a boolean function f , we consider the random variable DTdepth(f�Rp) (the decision-tree depth of f under
a p-random restriction) parameterized by p ∈ [0, 1]. For every f , there is a sufficient small value of p > 0
such that DTdepth(f�Rp) satisfies an exponential tail bound. This “sufficiently small” is quantified by the
following notion of criticality.

Definition 1. For λ ∈ R≥1, we say that a boolean function f is λ-critical if

P
[
DTdepth(f�Rp) ≥ t

]
≤ (pλ)t

for all p ∈ [0, 1] and t ∈ N. The criticality of f is the minimum λ ∈ R≥1 for which f is λ-critical.

Criticality has been implicitly studied in previous works, although we are unaware if this parameter of
boolean functions has been named before. Most notably, H̊astad’s switching lemma [5] is equivalent to the
statement that every width-w CNF or DNF formula is O(w)-critical. Motivating our study of criticality is
the observation that upper bounds on criticality imply upper bounds on decision-tree size.
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Theorem 2. If f : {0, 1}n → {0, 1} is λ-critical, then DTsize(f) is at most O(2(1− 1
2λ )n).

In light of Theorem 2, it is reasonable to expect upper bounds on the criticality of a class of boolean
functions to yield (randomized) #SAT algorithms.

In an unpublished manuscript [11], we observed that a combination of H̊astad’s switching lemma [5] and
“multi-swithing lemma” [6] can be used to show that AC0 circuits of depth d+ 1 and size s have criticality
O(log s)d. Via Theorem 2, this implies an essentially tight upper bound on the decision-tree size of AC0

circuits and yields a randomized #SAT algorithm with parameters matching that of Impagliazzo, Matthews
and Paturi [7] for AC0 circuits of super-linear size n1+Ω(1). In the present paper, we improve these results
by giving a quantitatively stronger upper bound on the criticality of regular AC 0 formulas, where regular
means that all gates at the same height have equal fan-in.

Theorem 3. Regular AC0 formulas of depth d + 1 and size s have criticality O( 1
d log s)d (specifically, at

most 60d( 1
d ln s+ 1)d).

Theorem 3 unifies (and arguably simplifies) several of the main results on AC0 circuits, including bounds
on decision-tree size and the Fourier spectrum and #SAT algorithms. In addition, by obtaining quantitative
stronger versions of these results for regular AC0 formulas, we improve an algorithm of Santhanam and
Williams [14] for satisfiability of quantified boolean formulas with bounded-many quantifier blocks.

1.1 Known bounds on criticality

The following bounds on criticality are immediate or known from previous work.

(1) If f is a boolean function which depends on n variables, then it is n-critical. This follows from

P
[
DTdepth(f�Rp) ≥ t

]
≤ P

[
Bin(n, p) ≥ t

]
≤ pt

(
n

t

)
≤ (pn)t.

(2) If f has decision-tree depth k, then f is k-critical. This follows from the folklore bound: for all t ≥ 1,

P
[
DTdepth(f�Rp) ≥ t

]
≤ 2t−1pt

(
k

t

)
≤ 2t−1

t!
(pk)t ≤ (pk)t.

(The first inequality is shown by induction on t.)

(3) Showing that (1) and (2) are tight: the n-variable parity function has criticality exactly λ = n. This
follows from

np(1− p)n−1 = P
[

Bin(n, p) = 1
]
≤ P

[
DTdepth(PARITYn�Rp) ≥ 1

]
≤ pλ.

Therefore, λ ≥ n(1− p)n−1 for all p ∈ (0, 1], hence λ ≥ n.

(4) H̊astad’s switching lemma [5] shows that every width-w CNF or DNF formula is O(w)-critical.

(5) An alternative switching lemma in [11] (included in Section 4 of this paper) shows that every size-m
CNF or DNF formula is O(logm)-critical.

(6) By a combination of Hastad’s switching lemma [5] and multi-switching lemma [6], it is shown in [11] that
every boolean function f computable by an AC0 circuit of depth d + 1 and size s is O(log s)d-critical.
The switching lemma is used to show

P
[
DTdepth(f�Rp) ≥ t

]
≤
(
p ·O(log s)d

)
t

for t ≤ log s, while the multi-switching lemma establishes this inequality for t > log s.
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1.2 Formulas vs. circuits

Every AC0 circuit of depth d + 1 and size s is equivalent to a regular AC0 formula of depth d + 1 and size
at most sd. Theorem 3 therefore implies the O(log s)d criticality bound for AC0 circuits.

The proof of our quantitatively stronger O( 1
d log s)d bound for regular AC0 formulas is based on a novel

“depth-d switching lemma”. Previous switching lemmas analyze the so-called canonical decision tree of
bounded-width depth-2 formula under a random restriction. In contrast, we analyze a certain canonical
decision tree associated with a depth-d formula under a sequence of random restrections. The bound we
obtain is in terms of top fan-in, as opposed to width (i.e., bottom fan-in of a depth-2 formula).

While our proof of Theorem 3 relies on the assumption of regularity, we conjecture that the O( 1
d log s)d

criticality bound applies to all AC0 formulas. In this connection, let us mention that a previous result of the
author [12] implies that every boolean function f computed by a (not necessarily regular) AC0 formula of
depth d+ 1 and size s satisfies

P
[
DTdepth(f�Rp) ≥ t

]
≤
(
p ·O( 1

d log s)d
)
t

for all t ≤ log s. The method of [12] applies H̊astad’s switching lemma to AC0 formulas in a more efficient
way. However, this method encounters the same log s barrier mentioned in §1.1(6). We do not know how to
establish criticality for non-regular AC0 formulas by proving the above inequality for t > log s.

1.3 Outline of the paper

In Section 2 we state the definitions of AC0 formulas, restrictions, decision trees, and present some key
inequalities. Section 3 gives some results on criticality, including a proof of Theorem 2. In Section 4 we show
that size-m DNF formulas have criticality O(logm) via a novel switching lemma argument. (This section
and Appendix A are independent of the rest of the paper, but serve a warm-up for the more complicated
switching lemmas that follow.) In Section 5, we introduce a canonical decision tree associated with an entire
depth-d formula under a chain of restrictions. Sections 6 and 7 prove switching lemmas for this notion
of canonical decision tree. Section 8 contains the proof of Theorem 3. Section 9 discusses satisfiability
algorithms. The paper concludes with some open questions in Section 10.

2 Preliminaries

N is the set of natural numbers {0, 1, 2, . . . }. For n ∈ N, [n] is the set {1, . . . , n} (in particular, [0] is the
empty set). ln(·) is the natural logarithm and log(·) is the base-2 logarithm. We consistently use boldface
for random objects.

Throughout this paper, we fix an arbitrary set V whose elements we call variable indices. Without loss of
generality, V = [n]; however, since the nature and number of variable indices plays no role in our switching
lemma, we prefer to think of V as an abstract set. (The only time we assume V = [n] is when speaking of
boolean functions f : {0, 1}n → {0, 1} in §3.)

Definition 4 (AC0 formulas). A depth-0 formula is a constant 0 or 1 or a literalXv orXv where v is a variable
index. For d ≥ 1, a depth-d formula is a syntactic object of the form OR(F1, . . . , Fm) or AND(F1, . . . , Fm)
where m ≥ 1 and F1, . . . , Fm are depth d− 1 formulas.

We measure size of a formula by the number of depth-1 subformulas. Formally,

size(F ) :=


0 if F has depth 0,

1 if F has depth 1,∑m
`=1 size(F`) if F has depth ≥ 2 and is the OR or AND of F1, . . . , Fm.

Up to a constant factor, size is equivalent to the number of gates in F .
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The (syntactic) support of a formula is the set of variable indices v such that the literal Xv or Xv occurs
as a depth-0 subformula. Throughout this paper, all definitions and proofs by induction are, first, with
respect to depth, and second, with respect to support size.

If F is a formula, we write F ≡ 0 (resp. F ≡ 1) if F computes the constant 0 function (resp. the constant
1 function).

A depth-d formula is regular if there exist integers m2, . . . ,md ≥ 1 such that, for all i ∈ {2, . . . , d}, every

depth i subformula has top fan-in mi. Note that such a formula has size
∏d
i=2mi.

Definition 5 (Restrictions and inputs). A restriction is a partial function % from V to {0, 1}, viewed as a
subset of V × {0, 1}, whose elements we denote by v 7→ b. We write Dom(%) for the domain of %, and we
write Stars(%) for the set V \Dom(%) of “unrestricted” variable indices.

An input is a restriction with domain V (i.e., a total function from V to {0, 1}, as opposed to a string in
{0, 1}|V |).

Two restrictions % and σ are consistent (we also say that σ is %-consistent) if %(v) = σ(v) for all v ∈
Dom(%) ∩Dom(σ). In this case, the union % ∪ σ is a restriction. We say that σ is a refinement of % if % ⊆ σ
(i.e., σ extends % by fixing additional variables).

If F is a formula and % is a restriction, we denote by F �% the formula obtained from F by relabeling literals
according to % (we do not perform any simplification to F ). Formally, we have the induction definition:

F �% =


F if F is a constant or a literal Xv or Xv where v ∈ Stars(%),

0 if F is Xv and %(v) = 0, or F is Xv and %(v) = 1,

1 if F is Xv and %(v) = 1, or F is Xv and %(v) = 0,

OR/AND(F1�%, . . . , Fm�%) if F is OR/AND(F1, . . . , Fm).

Note that the support of F �% equals the support of F minus the domain of %.
For p ∈ [0, 1], the p-random restriction Rp is the random restriction which independent maps each

variable index v to 0 or 1 with probability 1−p
2 , or leaves v unrestricted with probability p. For a restriction

%, a p-random refinement of % is the random restriction Rp conditioned on being an extension of % (i.e.,
conditioned on % ⊆ Rp).

Definition 6 (Sequences and bitstrings). For integers s, t ∈ N and arbitrary sequences α = 〈α1, . . . , αs〉 and
β = 〈β1, . . . , βt〉, we write α ◦ β for the concatenated sequence 〈α1, . . . , αs, β1, . . . , βt〉. The unique sequence
of length 0 is denoted by 〈〉. (Note that 〈〉 is the identity with respect to concatenation.)

We refer to sequences a = 〈a1, . . . , as〉 in the set {0, 1}s as bitstrings. (To avoid confusion, we regard
inputs to formulas as total functions V → {0, 1} rather than as ordered bitstrings in the set {0, 1}|V |.) For
t ≥ s, we write {0, 1}ts for the set of bitstrings q = 〈q1, . . . , qt〉 ∈ {0, 1}t such that q1 + · · · + qt = s. For
bitstrings a ∈ {0, 1}s and b ∈ {0, 1}t and q ∈ {0, 1}ts, we write b←q a for the bitstring 〈c1, . . . , ct〉 defined by

cj :=

{
bj if qj = 0,

ai if qj = 1 and q1 + · · ·+ qj−1 = i (i.e., qj is the ith 1-coordinate of q).

That is, b←q a overwrites b with a in the indices specified by q.

Definition 7 (Ordered restrictions). An ordered restriction is a sequence β = 〈v1 7→ b1, . . . , vt 7→ bt〉
where t ∈ N and each vi 7→ bi is an ordered pairs with vi ∈ V and bi ∈ {0, 1} such that v1, . . . , vt are
distinct. As a matter of notation, we sometimes identify β with its underlying (unordered) restriction
{v1 7→ b1, . . . , vt 7→ bt}, for instance, by writing Dom(β) for {v1, . . . , vt} or F �β for F �{v1 7→b1, ..., vt 7→bt}.

For an ordered restriction β = 〈v1 7→ b1, . . . , vt 7→ bt〉 and a set of variable indices S ⊆ V and a bitstring
a = 〈a1, . . . , as〉 ∈ {0, 1}|Dom(β)∩S|, we write β ←S a for the ordered restriction 〈v1 7→ c1, . . . , vt 7→ ct〉 where

cj :=

{
bj if vj /∈ S,
ai if vj is the ith variable of Dom(β) ∩ S in the order given by β.

In other words, 〈c1, . . . , ct〉 = 〈b1, . . . , bt〉 ←q a where q ∈ {0, 1}ts is the bitstring defined by qj = 1 :⇔ vj ∈ S.
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Definition 8 (Decision trees). A decision tree is a finite rooted binary tree T in which each non-leaf is
labeled by a variable index v and the two edges to its children are labeled by 0 and 1. We require the
variable indices on any root-to-leaf branch are distinct; each root-to-leaf branch therefore corresponds to
an ordered restriction. We measure size by the number of leaves and depth by the maximum number of
non-leaves on a root-to-leaf path.

We say that a decision tree T determines a boolean function f if the restricted function f�α is constant
for each ordered restriction α corresponding to a branch of T . (We might also say that T “computes” f , if we
regard T as having output values on leaves.) The decision-tree size (resp. decision-tree depth) of a boolean
function f , denoted DTsize(f) (resp. DTdepth(f)), is the minimum size (resp. depth) of a decision tree that
determines f .

Later on, it will be convenient to identify decision trees with the set of ordered restrictions corresponding
to branches. From this perspective, a decision tree is a nonempty set T ∗ of ordered restrictions such that,
for all 〈v1 7→ a1, . . . , vs 7→ as〉 ∈ T ∗ and i ∈ [s],

• if 〈v1 7→ a1, . . . , vi−1 7→ ai−1, v
′
i 7→ a′i〉 is an initial subsequence of any element of T ∗, then v′i = vi,

• 〈v1 7→ a1, . . . , vi−1 7→ ai−1, vi 7→ 1− ai〉 is an initial subsequence of some element of T ∗.

2.1 Inequalities

Lemma 9. For every integer s ≥ 1 and ε ∈ (0, 1],

∞∑
t=s

(1− ε)t
(
t− 1

s− 1

)
=

(
1− ε
ε

)s
.

Proof. Let X1,X2, . . . be independent Bernoulli(ε) random variables. Then

1 = P

[ ∞∑
i=1

Xi ≥ s
]

=

∞∑
t=s

P

[
Xt = 1 and

t−1∑
i=1

Xi = s− 1

]
=

∞∑
t=s

εs(1− ε)t−s
(
t− 1

s− 1

)
.

The identity follows by multiplying both sides by ((1− ε)/ε)s.

The next inequality also comes up in the AC0[⊕] formula lower bound of Rossman and Srinivasan [13].

Lemma 10. For all real numbers a, b, c ≥ 0,(
a

c
+ 1

)c
(b+ 1) ≤

(
a+ b

c+ 1
+ 1

)c+1

.

Proof. The lemma is trivial if c = 0 (under the convention that (a0 + 1)0 = 1), so assume c > 0. Let
f(a, b, c) := RHS− LHS. Then

∂

∂b
f(a, b, c) =

(
a+ b

c+ 1
+ 1

)c
−
(
a

c
+ 1

)c
.

Note that this is an increasing function of b with a zero at b = a/c. Therefore, f(a, b, c) is minimal at b = a/c
where it takes value f(a, a/c, c) = 0.

As a corollary, we get:

Lemma 11. For all integers d,m1, . . . ,md ≥ 1,

d∏
i=1

(lnmi + 1) ≤
(

1

d
ln

( d∏
i=1

mi

)
+ 1

)d
.
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Proof. For each j ∈ [d− 1], Lemma 10 implies(
1

j − 1
ln

( j−1∏
i=1

mi

)
+ 1

)j−1

(lnmj + 1) ≤
(

1

j
ln

( j∏
i=1

mi

)
+ 1

)j
.

The lemma follows from these d− 1 inequalities.

The final inequality of this section plays a key role in our switching lemma analysis.

Lemma 12. Let I be a finite set and let µ : I → [0, 1] be a function such that
∑
i∈I µ(i) ≤ 1. Then for

every function t : I → R≥1 and s ∈ R≥1,∑
i∈I

(
t(i)

s

)s
µ(i) ≤

(
1

s
ln

(∑
i∈I

et(i)µ(i)

)
+ 1

)s
.

Proof. Let λ :=
∑
i∈I µ(i) (∈ [0, 1]) and let ν(i) := µ(i)/λ (≥ µ(i)). We have∑

i∈I

(
t(i)

s

)s
µ(i) = λ

∑
i∈I

(
t(i)

s

)s
ν(i) ≤ λ

∑
i∈I

(
1

s
ln(et(i)) + 1

)s
ν(i)

≤ λ
(

1

s
ln

(∑
i∈I

et(i)ν(i)

)
+ 1

)s
by Jensen’s inequality since a 7→ ( 1

s ln(a) + 1)s is concave over a ∈ R≥1

= λ

(
1

s
ln

(∑
i∈I

et(i)µ(i)

)
+ 1− 1

s
ln(λ)

)s
≤
(

1

s
ln

(∑
i∈I

et(i)µ(i)

)
+ 1

)s
since λ 7→ λ(a− 1

s ln(λ))s is increasing over λ ∈ (0, 1] (hence maximal at λ = 1) for every a ∈ R≥1.

In the special case t(i) = ln(1/µ(i)) and s = 1, we get the inequality
∑
i∈I µ(i) ln(1/µ(i)) ≤ ln |I| + 1.

For distributions µ, this is essentially the inequality H(µ) ≤ log |Support(µ)| for Shannon entropy; when µ
is a sub-distribution, this inequality requires + O(1) on the righthand side.

3 Implications of Criticality

Before presenting our main result on regular AC0 formulas, we give some general results on λ-critical func-
tions. We begin with the following upper bound on decision-tree size, which is slightly stronger than Theo-
rem 2.

Proposition 13. If f : {0, 1}n → {0, 1} is 1
2ε -critical, then DTsize(f) ≤ 2n−εn−

√
εn+log(εn)+O(1).

Proof. We first note that the proposition is trivial if ε > 1
2 , since no non-constant boolean function has

criticality < 1. If n < 10 or ε < 2
n , then the bound DTsize(f) ≤ 2n−εn−

√
εn+log(εn)+O(1) follows from the

trivial bound DTsize(f) ≤ 2n by choosing a large enough constant. We may therefore assume that n ≥ 10
and ε ∈ [ 2

n ,
1
2 ].

Let p := ε− 1
n and note that p ∈ [ 1

n ,
1
2 ]. We have

E
[
DTsize(f�Rp)

]
≤ E

[
2DTdepth(f�Rp)

]
=

∞∑
t=0

2tP
[
DTdepth(f�Rp) = t

]
≤

∞∑
t=0

2t
(
p

2ε

)t
=

∞∑
t=0

(
1− 1

εn

)t
= εn.

We next make use of the following facts:
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• P
[

Bin(n, p) ≥ pn+
√
pn+ 1

]
> 0.05

(this bound holds for all n ≥ 10 and p ∈ [ 1
n ,

1
2 ], as can be shown using estimates in [19]),

• DTsize(f) ≤
∑

%:S→{0,1}

DTsize(f�%) for every set of variable indices S ⊆ [n].

Let S be a p-random subset of [n] (i.e., a uniform random subset of size Bin(n, p)), and let % be a uniform
random function [n] \ S → {0, 1}. Note that % is a p-random restriction.

For any c > 0, we have

1[ DTsize(f) > c2n−εn ] ≤ P
S

[
2n−|S|E

%

[
DTsize(f�%)

]
> c2n−εn

]
≤ P

S

[ (
|S| < pn+

√
pn+ 1

)
or
(
E
%

[
DTsize(f�%)

]
> c2pn+

√
pn+1−εn

) ]
≤ P

S

[
|S| < pn+

√
pn+ 1

]
+ P

S

[
E
%

[
DTsize(f�%)

]
> c2

√
εn−1

]
≤ P

[
Bin(n, p) < pn+

√
pn+ 1

]
+

2

c2
√
εn
E
[
DTsize(f�Rp)

]
< 0.95 +

2εn

c2
√
εn
.

Setting c := 40εn/2
√
εn, we have 1 [ DTsize(f) > c2n−εn ] < 1. We conclude that

DTsize(f) ≤ c2n−εn = 40 · 2n−εn−
√
εn+log(εn).

The following theorem (which includes Theorem 2) lists several consequences of criticality, which follow
from Proposition 13 as well as results of Linial, Mansour and Nisan [9] and Tal [17] relating the Fourier
spectrum of a boolean function to its degree under a p-random restriction.

Theorem 14 (Implications of criticality). If f : {0, 1}n → {0, 1} is λ-critical, then

(1) DTsize(f) ≤ O(2(1− 1
2λ )n),

(2) f agrees with PARITYn on at most 1
2 +O(2−n/2λ) fraction of inputs,

(3) P[ deg(f�Rp) ≥ t ] ≤ (pλ)t for all p and t,

(4)
∑
S⊆[n] : |S|≥k f̂(S)2 ≤ 2e · e−k/λ for all k,

(5)
∑
S⊆[n] : |S|=k |f̂(S)| ≤ O(λ)k for all k.

Proof. (1) follows immediately from Proposition 13. Property (2) is a consequence of (1). Property (3)
follows from the definition of criticality and the fact that deg(·) ≤ DTdepth(·). Linial, Mansour and Nisan [9]
showed that (3) ⇒ (4). Tal [17] showed that (4) ⇒ (5) (and moreover that (4) ⇒ (3), i.e., properties (3)
and (4) are equivalent up to constant in the O(·)).

We conclude this section by observing that any exponential tail bound on DTdepth(f�Rq) implies an upper
bound on criticality.

Proposition 15. Let f be a boolean function, let q, ε ∈ (0, 1], and suppose P[ DTdepth(f�Rq) = t ] ≤ (1−ε)t
for all t ∈ N. Then f is 2

εq -critical.
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Proof. Let 0 ≤ p ≤ q, let %1 be a q-random restriction over the variables of f , and let %2 be a p/q-random
restriction over Stars(%1). Then using §1.1(2) and Lemma 9, we have

P
[
DTdepth(f�Rp) ≥ t

]
= E

%1

[
P
%2

[
DTdepth((f�%1

)�%2
) ≥ t

] ]
=

∞∑
k=t

P
%1

[
DTdepth(f�%1

) = k
]
E
%1

[
P
%2

[
DTdepth((f�%1

)�%2
) ≥ t

] ∣∣∣∣ DTdepth(f�%1
) = k

]

≤
∞∑
k=t

P
[
DTdepth(f�Rq) = k

]
max

g :DTdepth(g)=k
P
[
DTdepth(g�Rp/q) ≥ t

]
≤
∞∑
k=t

(1− ε)k
(

2p

q

)t(
k

t

)
=

(
2p

q

)t
(1− ε)t−1

εt
≤

(
2p

εq

)t
.

4 Criticality of Size-m DNF Formulas

In this section, we show that size-m (unbounded width) DNF formulas have criticality O(logm) via a novel
switching lemma. This switching lemma is based on convexity (it uses the inequality in Lemma 12). As
a simple illustration of the underlying idea, in Appendix A we present a simple entropy argument showing
that size-m DNF formulas have average sensitivity O(logm).

The switching lemma for DNF formulas in this section serves as a warm-up for more complicated switching
lemmas for (sequences of) depth-d formulas in Sections 6 and 7. Those switching lemmas analyze a different
construction of canonical decision trees. (Our result for DNF formulas is technically distinct from the depth-2
case of our depth-d switching lemma.)

Let us now fix a DNF formula F = OR(F1, . . . , Fm) where each term F` is an AND of literals. We
identify each F` with an ordered restriction β` = 〈v1 7→ b1, . . . , vt 7→ bt〉 corresponding to its unique minimal
satisfying assignment, and we let V` = Dom(β`) = {v1, . . . , vt}. We say that a restriction % satisfies F` if
β` ⊆ %, and we say that % falsifies F` if there exists v ∈ V` ∩Dom(%) such that β`(v) 6= β`(%).

For restrictions %, we define the canonical decision tree CDT (F, %) inductively as follows:

• If % satisfies F` for any ` ∈ [m], or if % falsifies F` for every ` ∈ [m], then CDT (F ) is the trivial decision
tree {〈〉}.

• Otherwise, let ` ∈ [m] be the unique index such that % falsifies F1, . . . , F`−1 but not F`. Let Q :=
V`∩Stars(%) and note that |Q| ≥ 1. In this case, CDT (F, %) queries all variables in Q, receives answers
α : Q→ {0, 1}, and then proceeds as the decision tree CDT (F, % ∪ α).

Formally, if β` = 〈v1 7→ b1, . . . , vt 7→ bt〉 and Q = {vi1 , . . . , vis} where 1 ≤ i1 < · · · < is ≤ t, then we
have

CDT (F, % ∪ α) := {(vi1 7→ a1, . . . , vis 7→ as) ◦ β : a ∈ {0, 1}s, β ∈ CDT (F, % ∪ {vi1 7→ a1, . . . , vis 7→ as})}.

Note that the decision tree CDT (F, %) determines the function computed by F �%.

Lemma 16. Suppose CDT (F, %) has depth s ≥ 1. Then there exist

• integers r ∈ [s] and s1, . . . , sr ≥ 1 with s1 + · · ·+ sr = s,

• integers 1 ≤ `1 < · · · < `r ≤ m,

• sets Qi ⊆ V`i \ (V`1 ∪ · · · ∪ V`i−1
) with |Qi| = si and restrictions αi, σi : Qi → {0, 1} for each i ∈ [r]

such that, for all i ∈ [r],

(i) % ∪ α1 ∪ · · · ∪ αi−1 falsifies F`′ for all 1 ≤ `′ < `i,
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(ii) % ∪ α1 ∪ · · · ∪ αi−1 ∪ σi satisfies F`i ,

(iii) Qi = (V`i \ (V`1 ∪ · · · ∪ V`i−1
)) ∩ Stars(%).

Proof. Straightforward from unpacking the inductive definition of CDT (F, %).

Lemma 17. Let F = OR(F1, . . . , Fm) be a DNF formula and let % be a p-random restriction. Then

P[ CDT (F,%) has depth s ] ≤ (8ep log(em))s.

Proof. By Lemma 16, we have

P
%

[ CDT (F,%) has depth s ] ≤
∑

r,s1,...,sr,`1,...,`r,Q1,...,Qr,α1,...,αr,σ1,...,σr

P
%

[ (i),(ii),(iii) for all i ∈ [r] ]

≤ 2s max
r,~s

∑
~̀, ~Q,~α,~σ

P
%

[ (i),(ii),(iii) for all i ∈ [r] ].

The second inequality uses the fact that there are at most 2s possibilities for data (r, s1, . . . , sr).
Let x : V → {0, 1} be a uniform random completion of %. For any restriction γ, let xγ be the input

where xγ(v) equals γ(v) if v ∈ Dom(γ) and x(v) otherwise. For any r, ~s, ~̀, ~Q, ~α, ~σ, note that

P
%

[ (i),(ii),(iii) for all i ∈ [r] ] = 2s P
%,x

[ (i),(ii),(iii) for all i ∈ [r] and σ1 ∪ · · · ∪ σr ⊆ x ]

= 2s P
%,x

[ (i’),(ii’),(iii’) for all i ∈ [r] ]

= (2p)s(1− p)|V1∪···∪V`r |−sP
x

[ (i’),(ii’) for all i ∈ [r] ]

≤ (2p)sP
x

[ (i’),(ii’) for all i ∈ [r] ]

where

(i’) xα1∪···∪αi−1 falsifies F`′ and 1 ≤ `′ < `i,

(ii’) xα1∪···∪αi−1 satisfies F`i ,

(iii’) Qi = (V`i \ (V`1 ∪ · · · ∪ V`i−1)) ∩ Stars(%).

Letting

µ(~̀, ~Q, ~α) := P
x

[ (i’),(ii’) for all i ∈ [r] ],

we have

P
%

[ CDT (F,%) has depth t ] ≤ (4p)s max
r,~s

∑
~̀, ~Q,~α

µ(~̀, ~Q, ~α).

We next observe that, given any `1, . . . , `i, there are 2si
(
|V`i \ (V`1 ∪ · · · ∪ V`i−1)|

si

)
choices for (Qi, αi).

Therefore,∑
~̀, ~Q,~α

µ(~̀, ~Q, ~α) ≤ 2s
∑
`1

max
Q1,α1

(
|V`1 |
s1

)∑
`2

max
Q2,α2

(
|V`2 \ V`1 |

s2

)
· · ·
∑
`r

max
Qr,αr

(
|V`2 \ (V`1 ∪ · · · ∪ V`r−1

)|
sr

)
µ(~̀, ~Q, ~α)

≤ 2s
∑
`1

max
Q1,α1

∑
`2

max
Q2,α2

∑
`r

max
Qr,αr

(
|V`1 ∪ · · · ∪ V`r |

s

)
µ(~̀, ~Q, ~α).
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We replace each
∑

max with max
∑

as follows. Let Q?i and α?i range over functions Q?i (`1, . . . , `i) ∈(
V`i\(V`1∪···∪V`i−1

)
si

)
and α?i (`1, . . . , `i) : Q?i (`1, . . . , `i)→ {0, 1}, and let µ(~̀, ~Q?, ~α?) be short for

µ(〈`1, . . . , `r〉, 〈Q?1(`1), . . . , Q?r(`1, . . . , `r)〉, 〈α?1(`1), . . . , α?r(`1, . . . , `r)〉).

This allows us replace each
∑
`1,...,`i

maxQi,αi with maxQ?i ,α?i
∑
`1,...,`i

to obtain

∑
~̀, ~Q,~α

µ(~̀, ~Q, ~α) ≤ 2s max
~Q?,~α?

∑
~̀

(
|V`1 ∪ · · · ∪ V`r |

s

)
µ(~̀, ~Q?, ~α?).

A key observation is that, for any given ~Q? and ~α?, we have
∑
~̀ µ(~̀, ~Q?, ~α?) ≤ 1. To see why, note that

each input x determines at most one sequence ~̀= 〈`1, . . . , `r〉 such that (i’) and (ii’) hold for all i ∈ [r], that
is, xα

?
1(`1)∪···∪α?i−1(`1,...,`i−1) satisfies F`i and falsifies F`′ for all `′ < `i. Therefore, the events (over random x)

defining probabilities µ(~̀, ~Q?, ~α?) are mutually exclusive. We now have the following bound, using Lemma
12 for the last inequality:∑

~̀

(
|V`1 ∪ · · · ∪ V`r |

s

)
µ(~̀, ~Q?, ~α?) ≤

∑
~̀

(
e|V`1 ∪ · · · ∪ V`r |

s

)s
µ(~̀, ~Q?, ~α?)

=

(
e

ln(2)

)s∑
~̀

(
ln(2|V`1∪···∪V`r |)

s

)s
µ(~̀, ~Q?, ~α?)

≤
(

e

ln(2)

)s(
1

s
ln

(∑
~̀

2|V`1∪···∪V`r |µ(~̀, ~Q?, ~α?)

)
+ 1

)s
.

A second key observation is that, for any ~̀, ~Q, ~α, we have

µ(~̀, ~Q, ~α) = P[ (i’),(ii’) for all i ∈ [r] ] ≤ P[ (ii’) for all i ∈ [r] ]

=

{
(1/2)|V`1∪···∪V`r | if

∧
i∈[r] F`i�αi∪···∪αi−1

is satisfiable,

0 otherwise.

Therefore, ∑
~̀

2|V`1∪···∪V`r |µ(~̀, ~Q?, ~α?) ≤
∑
~̀

1 ≤
(
m

r

)
≤ mr ≤ ms.

Putting the pieces together, we conclude

P
%

[ CDT (F,%) has depth s ] ≤
(

8ep

ln(2)

)s(
1

s
ln(ms) + 1

)s
=

(
8ep log(em)

)s
.

Corollary 18. Every size-m DNF formula has criticality at most 16e log(em).

Proof. Let F be a size-m DNF formula. Without loss of generality, let t ≥ 1 and 0 < p ≤ (16e log(em))−1.
Then

P
%

[ DTdepth(F �%) ≥ t ] ≤
∞∑
s=t

P
%

[ CDT (F,%) has depth s ] ≤
∞∑
s=t

(
8ep log(em)

)s
≤

(
16ep log(em)

)t
.
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5 The Canonical Decision Tree of a Depth-d Formula

In this section, we define the canonical decision tree of a depth-d formula F under a chain of restrictions
%1 ⊆ · · · ⊆ %d, denoted T ∗%1,...,%d(F ). The primary definition, however, is of a richer object T%1,...,%d(F ).

Definition 19. For every d ∈ N and chain of restrictions %1 ⊆ · · · ⊆ %d and depth-d formula F , we define a
set of ordered restrictions T%1,...,%d(F ) as follows. In the base case d = 0, let

T%1,...,%d(F ) :=

{
{〈〉} if F is a constant 0 or 1,

{〈v 7→ 0〉, 〈v 7→ 1〉} if F is a literal Xv or Xv.

For d ≥ 1, the definition is inductive. Suppose F = OR(F1, . . . , Fm) where each F` is a depth d − 1
formula. Assume that T%1,...,%d−1

(F`) is defined for all ` ∈ [m] and that T%1,...,%d(F �γ) is defined for every
restriction γ whose domain includes at least one variable index in the support of F . We consider three cases:

(i) If F1�%d ≡ · · · ≡ Fm�%d ≡ 0, then T%1,...,%d(F ) := {〈〉}.

(ii) If F1�%d ≡ · · · ≡ F`−1�%d ≡ 0 and F`�%d ≡ 1, then T%1,...,%d(F ) := {〈〉}.

(iii) If F1�%d ≡ · · · ≡ F`−1�%d ≡ 0 and F`�%d computes a non-constant function, then T%1,...,%d(F ) is the
set of ordered restrictions 〈v1 7→ a1, . . . , vu 7→ au〉 of length u ≥ 1 such that there exist t ∈ [u] and
b ∈ {0, 1}t satisfying

• 〈v1 7→ b1, . . . , vt 7→ bt〉 ∈ T%1,...,%d−1
(F`),

• 〈vt+1 7→ at+1, . . . , vu 7→ au〉 ∈ T%1,...,%d(F �{v1 7→a1, ..., vt 7→at}), and

• for all i ∈ [t], if vi ∈ Dom(%d), then bi = ai = %d(vi); and if vi ∈ Stars(%d), then

bi =

{
ai if (F`�%d)�{v1 7→b1, ..., vi−1 7→bi−1, vi 7→ai} 6≡ 0,

1− ai if (F`�%d)�{v1 7→b1, ..., vi−1 7→bi−1, vi 7→ai} ≡ 0.

Finally, T%1,...,%d(F ) is defined in the same way if F = AND(F1, . . . , Fm), but with the roles 0 and 1
exchanged.

Lemma 20. T%1,...,%d(F ) is nonempty and every α = 〈v1 7→ a1, . . . , vu 7→ au〉 ∈ T%1,...,%d(F ) satisfies:

(a) α is consistent with %d (i.e., for all i ∈ [u], if vi ∈ Dom(%d), then ai = %d(vi)),

(b) the support of F contains Dom(α) (i.e., for all i ∈ [u], the literal Xvi or Xvi occurs as a depth-0
subformula of F ),

(c) for all i ∈ [u], if vi ∈ Stars(%d), then 〈v1 7→ a1, . . . , vi−1 7→ ai−1, vi 7→ 1− ai〉 is an initial subsequence
of some element of T%1,...,%d(F ),

(d) for all i ∈ [u] and every variable index v′i and bit a′i ∈ {0, 1}, if 〈v1 7→ a1, . . . , vi−1 7→ ai−1, v
′
i 7→ a′i〉

is an initial subsequence of any element of T%1,...,%d(F ), then v′i = vi,

(e) the function computed by F �%d∪α is constant (i.e., F �%d∪α ≡ 0 or F �%d∪α ≡ 1).

Proof. Though the proof is straightforward from Definition 19, we include full details. Note that the lemma
is trivial when d = 0 as well as in cases (i) and (ii) when d ≥ 1. So we assume that F = OR(F1, . . . , Fm)
falls under case (iii), as witnessed by ` ∈ [m]. By the induction hypothesis, we may assume that the lemma
holds with respect to F` as well as F �γ for every restriction γ whose domain includes at least one variable
index in the support of F .

We first establish that T%1,...,%d(F ) is nonempty. By the induction hypothesis, T%1,...,%d−1
(F`) is nonempty.

Since F`�%d is non-constant and F`�%d∪β is constant for every β ∈ T%1,...,%d−1
(F`), there exists β ∈ T%1,...,%d−1

(F`)
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such that F`�%d∪β ≡ 1. Let β = 〈v1 7→ b1, . . . , vt 7→ bt〉 and note that t ≥ 1. For all i ∈ [t], we have
(F`�%d)�{v1 7→b1, ..., vi 7→bi} 6≡ 0, since this is the same formula as F`�%d∪{v1 7→b1, ..., vi 7→bi} by %d-consistency of β.
By the definition of T%1,...,%d(F ) in case (iii), it follows that β ◦ γ ∈ T%1,...,%d(F ) for every γ ∈ T%1,...,%d(F �β).
Nonemptiness of T%1,...,%d(F ) therefore follows from nonemptiness of T%1,...,%d(F �β), which we know by the
induction hypothesis applied to F �β (noting that Dom(β) contains a variable index in the support of F ,
namely v1, which is in the support of F` by the induction hypothesis applied to F`).

Now consider any α = 〈v1 7→ a1, . . . , vu 7→ au〉 ∈ T%1,...,%d(F ), as witnessed by some t ∈ [u] and b ∈ {0, 1}t
in definition of case (iii). Let γ := {v1 7→ a1, . . . , vt 7→ at}. We establish properties (a)–(e) in order.

(a): Suppose i ∈ [u] and vi ∈ Dom(%d). If i ∈ {1, . . . , t}, then ai = %d(vi) by definition of T%1,...,%d(F ) in case
(iii). Otherwise, if i ∈ {t+ 1, . . . , u}, then ai = %d(vi) by property (a) with respect to F �γ .

(b): From the induction hypothesis, we know that v1, . . . , vt are in the support of F` (hence also the support
of F ) and that vt+1, . . . , vt are in the support of F �γ (hence also the support of F ).

(c): First note that (F`�%d)�{v1 7→b1, ..., vi−1 7→bi−1} 6≡ 0 for all i ∈ [t], as easily shown by induction on i. It then
follows from the definition of case (iii) that for all i ∈ [t], if vi ∈ Stars(%d), then 〈v1 7→ a1, . . . , vi−1 7→
ai−1, vi 7→ 1− ai〉 is an initial subsequence of some element of T%1,...,%d(F ). The same conclusion for all
i ∈ {t+ 1, . . . , u} follows from property (c) with respect to F �γ .

(d): If i ∈ [t] and 〈v1 7→ a1, . . . , vi−1 7→ ai−1, v
′
i 7→ a′i〉 is an initial subsequence of an element of T%1,...,%d(F ),

then by definition of case (iii), 〈v1 7→ b1, . . . , vi−1 7→ bi−1, v
′
i 7→ a′i〉 is initial subsequence of an element

of T%1,...,%d−1
(F`) and therefore v′i = vi. For i ∈ {t+ 1, . . . , u}, the conclusion follows from property (d)

with respect to F �γ .

(e): Since 〈vt+1 7→ at+1, . . . , vu 7→ au〉 ∈ T%1,...,%d(F �γ), the formula (F �γ)�%d∪{vt+1 7→at+1, ...,vu 7→au}, which
is the same formula as F �%d∪α by %d-consistency of α, computes a constant function by property (e)
with respect to F �γ .

Definition 21. For α = 〈v1 7→ a1, . . . , vu 7→ au〉 ∈ T%1,...,%d(F ), let α∗ denote the subsequence

α∗ := 〈vi1 7→ ai1 , . . . , vis 7→ ais〉

for the unique 1 ≤ i1 < · · · < is ≤ u such that {vi1 , . . . , vis} = Dom(α) ∩ Stars(%d). Let

T ∗%1,...,%d(F ) := {α∗ : α ∈ T%1,...,%d(F )}.

Lemma 22. T ∗%1,...,%d(F ) is the set of branches of a decision tree determining F �%d . Moreover, each element
of T ∗%1,...,%d(F ) is a subsequence of a unique element of T%1,...,%d(F ).

Proof. Straightforward from Lemma 20.

Definition 23. We call T ∗%1,...,%d(F ) the canonical decision tree of F �%d under %1, . . . , %d. For a bitstring
a ∈ {0, 1}s and an ordered restriction α, we write “T (a)

%1,...,%d(F ) = α” if α ∈ T%1,...,%d(F ) and there exist
variable indices v1, . . . , vs such that α∗ = 〈v1 7→ a1, . . . , vs 7→ as〉. We say that “T (a)

%1,...,%d(F ) exists” if

T (a)
%1,...,%d(F ) = α for any α ∈ T%1,...,%d(F ).

Note that, by Lemma 22, if T (a)
%1,...,%d(F ) exists then T (a)

%1,...,%d(F ) = α for a unique α ∈ T%1,...,%d(F )

(justifying our use of the equality symbol). We may regard T (·)
%1,...,%d(F ) as a partial function from bitstrings

to elements of the set T%1,...,%d(F ).
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6 Depth-d Switching Lemma

In this section, we consider a depth-d formula F = OR(F1, . . . , Fm) and study the branches of T%1,...,%d(F )
where %1 ⊆ · · · ⊆ %d is a chain of random restrictions where %d is a p-random refinement of %d−1 and
formulas F1, . . . , Fm satisfy a certain hypothesis with respect to %1, . . . ,%d−1. This allows us to bound the
probability that T%1,...,%d(F ) has an a-branch for any string a ∈ {0, 1}s. We refer to the main result of this
section, Proposition 25, as the “depth-d switching lemma” since it analyzes the canonical decision tree of
F in a similar manner as H̊astad’s switching lemma analyzes the canonical decision tree of a CNF or DNF
formula.

Proposition 25 is in fact a special case of the slightly more general Proposition 28 (“serial depth-d
switching lemma”), which we prove in the next section. The proofs are essentially the same, but with
Proposition 25 we have fewer indices to keep track of. The next lemma unpacks the recursive definition of

T%1,...,%d(F ) to obtain a more explicit characterization of its branches. This lemma associates T (a)
%1,...,%d(F ),

whenever this exists, with certain data (r,~s,~̀,~t,~b,~q).

Lemma 24 (Unpacking T (a)
%1,...,%d(F )). Let F = OR(F1, . . . , Fm) be a depth-d formula, let %1 ⊆ · · · ⊆ %d be

restrictions, let s ≥ 1, and let a ∈ {0, 1}s. If T (a)
%1,...,%d(F ) exists, then there exist

• integers r ∈ [s] and s1, . . . , sr ≥ 1 with s1 + · · ·+ sr = s,

• integers 1 ≤ `1 < · · · < `r ≤ m,

• integers ti ≥ si and bitstrings bi ∈ {0, 1}ti and qi ∈ {0, 1}tisi for each i ∈ [r]

with the property that there exist unique ordered restrictions β1, . . . , βr such that, for all i ∈ [r],

(i) (F`′�γi)�%d ≡ 0 for all 1 ≤ `′ < `i,

(ii) (F`i�γi)�%d 6≡ 0,

(iii) T (bi)
%1,...,%d−1(F`i�γi) = βi,

(iv) βi is %d-consistent and (F`i�γi)�%d−1∪βi ≡ 1,

(v) “qi identifies Stars(%d) within Dom(βi) ∩ Stars(%d−1)” in the following sense: for all j ∈ [ti],

qi,j = 1 ⇐⇒ Stars(%d) contains the jth variable of Dom(βi) ∩ Stars(%d−1) in the order given by βi.

where γi := (β1 ◦ · · · ◦ βi−1)←Stars(%d−1) ci,

ci := ( b1 ◦ · · · ◦ bi−1 )←q1◦···◦qi−1 〈a1, . . . , as1+···+si−1〉.

(Note that conditions (iii) and (v) imply that |Dom(βi) ∩ Stars(%d−1)| = ti and |Dom(βi) ∩ Stars(%d)| = si
and γi = (β1 ◦ · · · ◦ βi−1)←Stars(%d) 〈a1, . . . , as1+···+si−1〉.)

Proof. Straightforward from Definition 19.

Proposition 25 (“Depth-d switching lemma”). Let F = OR(F1, . . . , Fm) be a depth-d formula. Suppose
%1 ⊆ · · · ⊆ %d−1 are random restrictions such that the following holds: for all integers r ≥ 1 and 1 ≤
`1 < · · · < `r ≤ m and t1, . . . , tr ≥ 1 and bitstrings b1, . . . , br, c1, . . . , cr where bi ∈ {0, 1}ti and ci ∈
{0, 1}t1+···+ti−1 ,

P
%1,...,%d−1

[
∃β1, . . . , βr

∧
i∈[r]

(
T (bi)
%1,...,%d−1

(F`i�(β1◦···◦βi−1)←Stars(%d−1)ci
) = βi

) ]
≤
(

1

2e

)t1+···+tr
.

Then for every integer s ≥ 1 and bitstring a ∈ {0, 1}s and p ∈ [0, 1], letting %d be a p-random refinement of
%d−1, we have

P
%1,...,%d

[
T (a)
%1,...,%d

(F ) exists
]
≤
(
4ep(lnm+ 1)

)s
.
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Proof. By Lemma 24 and a union bound,

P
%1,...,%d

[
T (a)
%1,...,%d

(F ) exists
]

≤
∑

r,s1,...,sr
`1,...,`r
t1,...,tr
b1,...,br
q1,...,qr

P
%1,...,%d



∃β1, . . . , βr such that, for all i ∈ [r],

(i) (F`′�γi)�%d ≡ 0 for all 1 ≤ `′ < `i

(ii) (F`i�γi)�%d 6≡ 0

(iii) T (bi)
%1,...,%d−1

(F`i�γi) = βi

(iv) βi is %d-consistent and (F`i�γi)�%d−1∪βi ≡ 1

(v) qi identifies Stars(%d) within Dom(βi) ∩ Stars(%d−1)

where γi := (β1 ◦ · · · ◦ βi−1)←Stars(%d−1) ci,

ci := ( b1 ◦ · · · ◦ bi−1 )←q1◦···◦qi−1 〈a1, . . . , as1+···+si−1
〉


≤ 2s max

r,s1,...,sr

∑
`1,...,`r,t1,...,tr,b1,...,br,q1,...,qr

P
%1,...,%d

[
∃β1, . . . , βr such that (i)–(v) for all i ∈ [r]

]
.

Henceforth, we fix r, s1, . . . , sr and bound the sum over ~̀,~t,~b,~q.
Let x be a uniform random completion of %d. For each choice of ~̀,~t,~b,~q, we have the following key

sequence of (in)equalities, which we state below and justify afterwards:

P
%1,...,%d

[
∃β1, . . . ,βr such that (i)–(v) for all i ∈ [r]

]
= 2s P

%1,...,%d,x

[
∃β1, . . . , βr such that (i)–(v) and βi ⊆ x for all i ∈ [r]

]

≤ 2s P
%1,...,%d,x



∃β1, . . . , βr such that, for all i ∈ [r],

(i’) (F`′�γi)(x) = 0 for all 1 ≤ `′ < `i

(ii’) (F`i�γi)(x) = 1

(iii’) T (bi)
%1,...,%d−1

(F`i�γi) = βi

(iv’) βi ⊆ x

(v’) qi identifies Stars(%d) within Dom(βi) ∩ Stars(%d−1)

where γi := (β1 ◦ · · · ◦ βi−1)←Stars(%d−1) ci,

ci := ( b1 ◦ · · · ◦ bi−1 )←q1◦···◦qi−1 〈a1, . . . , as1+···+si−1
〉


= (2p)s(1− p)(t1+···+tr−s)µ(~̀,~t,~b,~q)

≤ (2p)sµ(~̀,~t,~b,~q)

where

µ(~̀,~t,~b,~q) := P
%1,...,%d,x

[
∃β1, . . . , βr such that (i’)–(iv’) for all i ∈ [r]

]
.

The first equality follows from the independence of conditions (i)–(v) (which only depend on %1, . . . ,%d) and
the event that (β1 ∪ · · · ∪ βr) ⊆ (x \ %d) for any fixed %d in the support of %d (this event has probability 2−s

since |Dom(βi)∩Stars(%d)| = si for each i ∈ [r]). The subsequent inequality follows from the observation that
conditions (i)–(v) together with (β1∪· · ·∪βr) ⊆ x imply conditions (i’)–(v’). The next equality follows from
the independence of conditions (i’)–(iv’) and condition (v’). To see this, consider the following alternative
way of generating %d and x given %1, . . . ,%d−1: first generate x as a uniform random completion of %d−1

(rather than of %d), then obtain %d from x by randomly removing each pair v 7→ xv with v ∈ Stars(%d−1)
independently with probability 1 − p. The independence of conditions (i’)–(iv’) and condition (v’) is now
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seen by observing that the former only depends on %1, . . . ,%d−1 and x, while the latter only depends on
%d (for any fixed %1, . . . , %d−1, x in the support of %1, . . . ,%d−1,x). The probability of the latter event is
precisely ps(1 − p)(t1+···+tr−s) since for each i ∈ [r], the set Dom(βi) ∩ Stars(%d−1) contains ti variables, of
which Stars(%d) is required to include exactly the si variables specified by qi.

Combining the above inequalities, we have

P
%1,...,%d

[
T (a)
%1,...,%d

(F ) exists
]
≤ (4p)s max

r,s1,...,sr

∑
`1,...,`r,t1,...,tr,b1,...,br,q1,...,qr

µ(~̀,~t,~b,~q).

We next turn to bounding both the individual probabilities µ(~̀,~t,~b,~q) and their sum
∑
~̀,~t,~b,~q µ(~̀,~t,~b,~q).

Ignoring conditions (i’) and (ii’), we have

µ(~̀,~t,~b,~q) ≤ P
%1,...,%d,x

[
∃β1, . . . , βr such that (iii’) and (iv’) for all i ∈ [r]

]
=

(
1

2

)t1+···+tr
P

%1,...,%d−1

[
∃β1, . . . , βr such that (iii’) for all i ∈ [r]

]

=

(
1

2

)t1+···+tr
P

%1,...,%d−1


∃β1, . . . , βr such that, for all i ∈ [r],

T (bh,i)
%1,...,%d−1(F`i�(β1◦···◦βi−1)←Stars(%d−1)ci

) = βi

where ci := (b1 ◦ · · · ◦ bi−1)←q1◦···◦qi−1 〈a1, . . . , as1+···+si−1
〉


≤
(

1

4e

)t1+···+tr
.

The first equality follows from independence of conditions (iii’) and (iv’). The second equality is a restatement
of condition (iii’). The last inequality uses the hypothesis of the theorem concerning formulas F1, . . . , Fm.

We next bound the sum
∑
~̀,~t,~b,~q µ(~̀,~t,~b,~q). We start out by observing that∑

`1,...,`r,t1,...,tr,b1,...,br,q1,...,qr

P
%1,...,%d,x

[
∃β1, . . . , βr such that (i’)–(v’) for all i ∈ [r]

]
≤ 1,

since these events are mutually exclusive. To see why, consider any %1, . . . , %d, x in the support of %1, . . . ,%d,x
and notice that there is a unique process of uniquely determining ~̀,~t,~b,~q (if any exist) such that conditions
(i’)–(v’) hold. First, we find the unique `1 (if any exists) such that F`1(x) = 1 and F`′(x) = 0 for all
1 ≤ `′ < `1 (note that γ1 = 〈〉). Next, let β1 be the unique branch of T%1,...,%d−1

(F`1) consistent with x, let
bi be the sequence of answers to the queried variable indices on this branch, and let ti be the length of b1.
If F`1(x) = 0 or |Dom(β1)∩ Stars(%d)| 6= s1, then the process fails; otherwise, let q1 ∈ {0, 1}t1s1 be the unique
bitstring that identifies Stars(%d) within Dom(β1) ∩ Stars(%d−1). Having uniquely determined `1, t1, b1, q1,
the process continues by finding the unique `2 (if any exists) such that (F`2�γ2)(x) = 1 and (F`′�γ2)(x) = 0
for all 1 ≤ `′ < `1 (note that γ2 is completed determined by previous data β1, b1, q1). Continuing in this
manner, we find unique t2, b2, q2, etc.

Note that condition (v’) uniquely determines bitstrings q1, . . . , qs. This condition is omitted from the

events in probabilities µ(~̀,~t,~b,~q), which therefore are not mutually exclusive as the choice of qi ∈ {0, 1}tisi is
now free. However, we can restore mutual exclusivity as follows. For each i ∈ [r], let q?i range over functions
associating each sequence of partial data (`1, t1, b1, . . . , `i, ti, bi) with an element q?i (`1, t1, b1, . . . , `i, ti, bi) ∈
{0, 1}tisi . Let

µ(~̀,~t,~b,~q?) := µ
(
~̀,~t,~b, 〈q?1(`1, t1, b1), . . . , q?r (`1, t1, b1, . . . , `r, tr, br)〉

)
.

For any choice of q?1 , . . . , q
?
r , the events in probabilities µ(~̀,~t,~b,~q?) are mutually exclusive over ~̀,~t,~b. (It is a

subtle but important point that q?i is a function of (`1, t1, b1, . . . , `i, ti, bi) independent of any “future” data
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`j , tj , bj for j > i.) Therefore, ∑
`1,...,`r,t1,...,tr,b1,...,br

µ(~̀,~t,~b,~q?) ≤ 1.

We now have the bound∑
`1,...,`r,t1,...,tr,b1,...,br,q1,...,qr

µ(~̀,~t,~b,~q) ≤
∑

`1,t1,b1

(
t1
s1

)
max
q1
· · ·

∑
`r,tr,br

(
tr
sr

)
max
qr

µ(~̀,~t,~b,~q)

= max
q?1 ,...,q

?
r

∑
`1,t1,b1

(
t1
s1

)
· · ·

∑
`r,tr,br

(
tr
sr

)
µ(~̀,~t,~b,~q?)

≤ max
q?1 ,...,q

?
r

∑
`1,...,`r,t1,...,tr,b1,...,br

(
t1 + · · ·+ tr

s

)
µ(~̀,~t,~b,~q?)

≤ max
q?1 ,...,q

?
r

∑
`1,...,`r,t1,...,tr,b1,...,br

es
(
t1 + · · ·+ tr

s

)s
µ(~̀,~t,~b,~q?)

≤ max
q?1 ,...,q

?
r

es
(

1

s
ln

( ∑
`1,...,`r,t1,...,tr,b1,...,br

e(t1+···+tr)µ(~̀,~t,~b,~q?)

)
+ 1

)s
where the final inequality is by Lemma 12.

We next have
∑
~̀,~t,~b e

(t1+···+tr)µ(~̀,~t,~b,~q?) ≤ ms as follows:

∑
`1,...,`r,t1,...,tr,b1,...,br

e(t1+···+tr)µ(~̀,~t,~b,~q?) ≤
∑

`1,...,`r,t1,...,tr,b1,...,br

(
1

4

)t1+···+tr

≤
∑

`1,...,`r

∞∑
t=r

(
1

4

)t ∑
t1,...,tr,b1,...,br : t1+···+tr=t

1

=
∑

`1,...,`r

∞∑
t=r

(
1

2

)t(
t− 1

r − 1

)

=
∑

`1,...,`r

1 =

(
m

r

)
≤ mr ≤ ms.

The first inequality uses our bound µ(~̀,~t,~b,~q) ≤ (1/8e)(t1+···+tr) (which holds for any q1, . . . , qr including
q?1(`1, t1, b1), . . . , q?r (`1, t1, b1, . . . , `r, tr, br)). The first equality is due to the fact that there are

(
t−1
r−1

)
choices

for integers t1, . . . , tr ≥ 1 such that t1 + · · ·+ tr = t, and there are 2ti choices for each bitstring bi ∈ {0, 1}ti .
The second equality uses Lemma 9. Finally, we use the fact that r ≤ s since s1, . . . , sr ≥ 1 are integers such
that s1 + · · ·+ sr = s.

Putting together these inequalities, we get the desired bound

P
%1,...,%d

[
T (a)
%1,...,%d

(F ) exists
]
≤
(
4ep(lnm+ 1)

)s
.

7 Serial Depth-d Switching Lemma

We would like to prove Theorem 3 (our upper bound on the criticality of regular AC0 formulas) by applying
Proposition 25 (“depth-d switching lemma”) to each layer of a regular AC0 formula. Unfortunately, there is a
mismatch between the hypothesis and the conclusion of Proposition 25: the hypothesis applies to a sequence
of depth d− 1 formulas, while the conclusion applies to single depth-d formula (and cannot therefore serve
as the hypothesis for a depth d+ 1 formula).
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In this section, we prove an extension of Proposition 25 which we require for Theorem 3. We call this
result, Proposition 28, the “serial depth-d switching lemma”, since it explores the canonical decision trees of
a sequence of depth-d formulas F1, . . . , Fk in order. For integers s1, . . . , sk ≥ 1 and bitstrings ah ∈ {0, 1}sh
(h ∈ [k]), we would like to bound the event that T%1,...,%d(F1) has an a1-branch, call it α1, and that
T%1,...,%d(F2�α1

) has an a2-branch α2, etc., and finally that T%1,...,%d(Fd�α1◦···◦αk−1
) has an ak-branch αk.

However, in order for the conclusion of Proposition 28 to match the hypothesis, we need to consider a more
general event where, instead of considering T%1,...,%d(Fh�α1◦···◦αh−1

) in the hth stage, we instead apply the
restriction (α1◦· · ·◦αh−1)←Stars(%d) ch (overwriting α1◦· · ·◦αh−1 on all previously queried variables) where
ch ∈ {0, 1}s1+···+sh−1 is an arbitrary bitstring. Although this makes notation in Proposition 28 slightly more
cumbersome, the probabilistic main argument is nearly identical to Proposition 25.

Notation 26. In what follows, we will consider integers k ≥ 1 and r1, . . . , rk ≥ 1 and various indexed
families ~w = {wh,i}h∈[k],i∈[rh]. It is often convenient to regard ~w as a sequence of length r1 + · · ·+ rk:

~w = 〈w1,1, . . . , w1,r1 , . . . . . . , wh,1, . . . , wh,rk〉.

For h ∈ [k] and i ∈ [rk + 1], notation “w1,1, . . . , wh,i−1” shall refer to the initial subsequence of length
r1 + · · ·+ rh−1 + i− 1:

〈w1,1, . . . , wh,i−1〉 = 〈w1,1, . . . , w1,r1 , . . . . . . , wh−1,1, . . . , wh−1,rh−1
, wh,i, . . . , wh,i−1〉.

For example, if wh,i are integers (or bitstrings, ordered restrictions, etc.), we will write “w1,1 + · · ·+wh,i−1”
(or “w1,1 ◦ · · · ◦ wh,i−1”) for the sum (or composition) of the first r1 + · · ·+ rh−1 + i− 1 elements of ~w.

The following lemma plays the same role in Proposition 28 as Lemma 24 does in Proposition 25.

Lemma 27. Let F1, . . . , Fk be depth-d formulas where Fh = OR(Fh,1, . . . , Fh,m) for each h ∈ [k]. Let
%1 ⊆ · · · ⊆ %d be restrictions. Let s1, . . . , sk ≥ 1 and let ah ∈ {0, 1}sh and ch ∈ {0, 1}s1+···+sh−1 for each
h ∈ [k]. Suppose there exist ordered restrictions α1, . . . , αk such that, for all h ∈ [k],

T (ah)
%1,...,%d

(Fh�(α1◦···◦αh−1)←Stars(%d)
ch

) = αh.

Then there exist

• integers rh ∈ [sh] and sh,1, . . . , sh,rh ≥ 1 with sh,1 + · · ·+ sh,rh = sh for each h ∈ [k],

• integers 1 ≤ `h,1 < · · · < `h,rh ≤ m for each h ∈ [k],

• integers th,i ≥ sh,i and bitstrings bh,i ∈ {0, 1}th,i and qh,i ∈ {0, 1}
th,i
sh,i for each h ∈ [k] and i ∈ [rh]

with the property that there exist unique ordered restrictions β1,1, . . . , βh,rh such that, for all h ∈ [k] and
i ∈ [rh],

(i) (Fh,`′�γh,i)�%d ≡ 0 for all 1 ≤ `′ < `h,i,

(ii) (Fh,`h,i�γh,i)�%d 6≡ 0,

(iii) T (bh,i)
%1,...,%d−1(Fh,`h,i�γh,i) = βh,i,

(iv) βh,i is %d-consistent and (Fh,`h,i�γh,i)�%d−1∪βh,i ≡ 1,

(v) “qh,i identifies Stars(%d) within Dom(βh,i) ∩ Stars(%d−1)” in the following sense: for all j ∈ [th,i],

qh,i,j = 1 ⇐⇒ Stars(%d) contains the jth variable of Dom(βh,i) ∩ Stars(%d−1) in the order given by βh,i.

where

γh,i := (β1,1 ◦ · · · ◦ βh,i−1)←Stars(%d−1) dh,i,

dh,i := ( b1,1 ◦ · · · ◦ bh,i−1 )←q1,1◦···◦qh,i−1 (ch ◦ 〈ah,1, . . . , ah,sh,1+···+sh,i−1
〉).
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(Note that conditions (iii) and (v) imply that |Dom(βh,i)∩Stars(%d−1)| = th,i and |Dom(βh,i)∩Stars(%d)| =
sh,i and γh,i = (β1,1 ◦ · · · ◦ βh,i−1)←Stars(%d) (ch ◦ 〈ah,1, . . . , ah,sh,1+···+sh,i−1

〉).)

Proof. Straightforward from Definition 19.

Proposition 28 (“Serial depth-d switching lemma”). Let k,m ≥ 1, let F1, . . . , Fk be depth-d formulas where
Fh = OR(Fh,1, . . . , Fh,m) for each h ∈ [k]. Suppose %1 ⊆ · · · ⊆ %d−1 are random restrictions such that, for all
r1, . . . , rk ≥ 1 and 1 ≤ `h,1 < · · · < `h,rh ≤ m and th,i ≥ 1 and bh,i ∈ {0, 1}th,i and dh,i ∈ {0, 1}t1,1+···+th,i−1

(h ∈ [k] and i ∈ [rh]),

P
%1,...,%d−1

[
∃β1,1, . . . , βk,rk

∧
h∈[k]
i∈[rh]

(
T (bh,i)
%1,...,%d−1(Fh,`h,i�(β1,1◦···◦βh,i−1)←Stars(%d−1)dh,i

) = βh,i

) ]
≤
(

1

2e

)t1,1+···+tk,rk
.

Then for all integers s1, . . . , sk ≥ 1 and bitstrings ah ∈ {0, 1}sh and ch ∈ {0, 1}s1+···+sh−1 (h ∈ [k]) and
p ∈ [0, 1], letting %d be a p-random refinement of %d−1, we have

P
%1,...,%d

[
∃α1, . . . , αk

∧
h∈[k]

(
T (ah)
%1,...,%d

(Fh�(α1◦···◦αh−1)←Stars(%d)
ch

) = αh

) ]
≤
(

4ep(lnm+ 1)
)s1+···+sk

.

Note that Proposition 25 is precisely the special case k = 1 of Proposition 28. The following proof closely
parallels the proof of Proposition 25 (with a few more indices to keep track of). We omit the justifications
of certain (in)equalities that would be redundant.

Proof. Fix s1, . . . , sk and a1, . . . , ak and c1, . . . , ck and p, and let s := s1 + · · ·+ sk.
Let ~r = {rh} and ~s = {sh,i} and ~̀ = {`h,i} and ~t = {th,i} and ~b = {bh,i} and ~q = {qh,i} (where h ∈ [k]

and [i] ∈ [rh]) range over data satisfying the bullet items of Lemma 27. We have

P
%1,...,%d

[
∃α1, . . . , αk

∧
h∈[k]

(
T (ah)
%1,...,%d

(Fh�(α1◦···◦αh−1)←Stars(%d)
ch

) = αh

) ]

≤
∑

~r,~s,~̀,~t,~b,~q

P
%1,...,%d



∃β1,1, . . . , βk,rk such that, for all h ∈ [k] and i ∈ [rh],

(i) (Fh,`′�γh,i)�%d ≡ 0 for all 1 ≤ `′ < `h,i

(ii) (Fh,`h,i�γh,i)�%d 6≡ 0

(iii) T (bh,i)
%1,...,%d−1(Fh,`h,i�γh,i) = βh,i

(iv) βh,i is %d-consistent and (Fh,`h,i�γh,i)�%d−1∪βh,i ≡ 1

(v) qh,i identifies Stars(%d) within Dom(βh,i) ∩ Stars(%d−1)

where γh,i := (β1,1 ◦ · · · ◦ βh,i−1)←Stars(%d−1) dh,i,

dh,i := ( b1,1 ◦ · · · ◦ bh,i−1 )←q1,1◦···◦qh,i−1 (ch ◦ 〈ah,1, . . . , ah,sh,1+···+sh,i−1
〉)


≤ 2s max

~r,~s

∑
~̀,~t,~b,~q

P
%1,...,%d

[
∃β1,1, . . . , βk,rk such that (i)–(v) for all h ∈ [k] and i ∈ [rh]

]
.
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Letting x be a uniform random completion of %d, we have

P
%1,...,%d

[
∃β1,1, . . . , βk,rk such that (i)–(v) for all h ∈ [k] and i ∈ [rh]

]
= 2s P

%1,...,%d,x

[
∃β1,1, . . . , βk,rk such that (i)–(v) and βh,i ⊆ x for all h ∈ [k] and i ∈ [rh]

]

≤ 2s P
%1,...,%d,x



∃β1,1, . . . , βk,rk such that, for all h ∈ [k] and i ∈ [rh],

(i’) (Fh,`′�γh,i)(x) = 0 for all 1 ≤ `′ < `h,i

(ii’) (Fh,`h,i�γh,i)�(x) = 1

(iii’) T (bh,i)
%1,...,%d−1(Fh,`h,i�γh,i) = βh,i

(iv’) βh,i ⊆ x

(v’) qh,i identifies Stars(%d) within Dom(βh,i) ∩ Stars(%d−1)

where γh,i := (β1,1 ◦ · · · ◦ βh,i−1)←Stars(%d−1) dh,i,

dh,i := ( b1,1 ◦ · · · ◦ bh,i−1 )←q1,1◦···◦qh,i−1 (ch ◦ 〈ah,1, . . . , ah,sh,1+···+sh,i−1
〉)


= (2p)s(1− p)(t1,1+···+tk,r−s)µ(~̀,~t,~b,~q)

≤ (2p)sµ(~̀,~t,~b,~q)

where

µ(~̀,~t,~b,~q) := P
%1,...,%d,x

[
∃β1,1, . . . , βk,rk such that (i’)–(iv’) for all h ∈ [k] and i ∈ [rh]

]
.

Ignoring conditions (i’) and (ii’), we have

µ(~̀,~t,~b,~q) ≤ P
%1,...,%d,x

[
∃β1,1, . . . , βk,rk such that (iii’) and (iv’) for all h ∈ [k] and i ∈ [rh]

]
=

(
1

2

)t1,1+···+tk,rk
P

%1,...,%d−1

[
∃β1,1, . . . , βk,rk such that (iii’) for all h ∈ [k] and i ∈ [rh]

]

=

(
1

2

)t1,1+···+tk,rk
P

%1,...,%d−1


∃β1,1, . . . , βk,rk such that, for all h ∈ [k] and i ∈ [rh],

T (bh,i)
%1,...,%d−1(Fh,`h,i�(β1,1◦···◦βh,i−1)←Stars(%d−1)dh,i

) = βh,i where

dh,i := ( b1,1 ◦ · · · ◦ bh,i−1 )←q1,1◦···◦qh,i−1 (ch ◦ 〈ah,1, . . . , ah,sh,1+···+sh,i−1
〉)


≤
(

1

4e

)t1,1+···+tk,rk
.

For each h ∈ [k] and i ∈ [rh], let q?h,i range over functions associating each sequence (`1,1, t1,1, b1,1, . . . , `h,i, th,i, bh,i)

with an element q?h,i(`1,1, t1,1, b1,1, . . . , `h,i, th,i, bh,i) ∈ {0, 1}
th,i
sh,i . Let

µ(~̀,~t,~b,~q?) := µ
(
~̀,~t,~b, 〈q?1,1(`1,1, t1,1, b1,1), . . . , q?k,rk(`1,1, t1,1, b1,1, . . . , `k,rk , tk,rk , bk,rk)〉

)
.
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For every choice of q?1,1, . . . , q
?
k,rk

, we have
∑
~̀,~t,~b µ(~̀,~t,~b,~q?) ≤ 1. Therefore, using Lemma 9,

∑
~̀,~t,~b,~q

µ(~̀,~t,~b,~q) ≤
∑

`1,1,t1,1,b1,1

(
t1,1
s1,1

)
max
q1,1
· · ·

∑
`k,rk ,tk,rk ,bk,rk

(
tk,rk
sk,rk

)
max
qk,rk

µ(~̀,~t,~b,~q)

= max
~q?

∑
`1,1,t1,1,b1,1

(
t1,1
s1,1

)
· · ·

∑
`k,rk ,tk,rk ,bk,rk

(
tk,rk
sk,rk

)
µ(~̀,~t,~b,~q?)

≤ max
~q?

∑
~̀,~t,~b

(
t1,1 + · · ·+ tk,rk

s

)
µ(~̀,~t,~b,~q?)

≤ max
~q?

es
(

1

s
ln

(∑
~̀,~t,~b

e(t1,1+···+tk,rk )µ(~̀,~t,~b,~q?)

)
+ 1

)s
.

Finally, we have

∑
~̀,~t,~b

e(t1,1+···+tk,rk )µ(~̀,~t,~b,~q?) ≤
∑
~̀,~t,~b

(
1

4

)t1,1+···+tk,rk

≤
∑
~̀

∞∑
t=r1+···+rk

(
1

4

)t ∑
~t,~b : t1,1+···+tk,rk=t

1

=
∑
~̀

∞∑
t=r1+···+rk

(
1

2

)t(
t− 1

r1 + · · ·+ rk − 1

)

=
∑
~̀

1 =

(
m

r1

)
· · ·
(
m

rk

)
≤ m(r1+···+rk) ≤ ms.

Putting together these inequalities, we get the desired bound

P
%1,...,%d

[
∃α1, . . . , αk

∧
h∈[k]

(
T (ah)
%1,...,%d

(Fh�(α1◦···◦αh−1)←Stars(%d)
ch

) = αh

) ]
≤
(
4ep(lnm+ 1)

)s
.

8 Proof of Theorem 3

The following lemma is required for the analysis of depth-1 subformulas in the proof of Theorem 3.

Lemma 29. Let % be a p-random restriction. Let F1, . . . , Fk be depth-1 formulas, let s1, . . . , sk ≥ 1, and let
ah ∈ {0, 1}sh and ch ∈ {0, 1}s1+···+sh−1 for each h ∈ [k]. Then

P
%

[
∃α1, . . . , αk

∧
h∈[k]

(
T (ah)
% (Fh�(α1◦···◦αh−1)←Stars(%)ch

) = αh

) ]
≤ (2p)s1+···+sk .

Proof. Assume F1�% computes a non-constant function, since otherwise T (a1)
% (F1) does not exist (note that

α1 = 〈〉). Let V1 be the set of variable indices occurring in literals of F1. Observe that T (a1)
% (F1) exists if,

and only if, |V1 ∩ Stars(%)| = s1 and % gives the unique assignment to variables in V1 ∩ Dom(%) such that

F1�% is non-constant. This happens with probability
(|V1|
s1

)
ps1( 1−p

2 )|V1|−s1 , which is at most (2p)s1 . Also
note that this event only depends %|V1

(i.e., the partial function % restricted to Dom(%) ∩ V1). If this event

holds, then we have T (a1)
% (F1) = α1 for the unique ordered restriction α1 with Dom(α1) = V1 ∩ Stars(%)

whose values are given by a1.
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Next let F ′2 := F2�α1←Stars(%)c1
and assume that F ′2�% computes a non-constant function, since otherwise

T (a2)
% (F ′2) does not exist. Let V2 be the set of variable indices occurring in literals of F ′2, and note that

V1 ∩ V2 = ∅. Observe that T (a2)
% (F ′2) exists if, and only if, |V2 ∩ Stars(%)| = s2 and % gives the unique

assignment to variables in V2 ∩ Dom(%) such that F ′2�% is non-constant. Conditioned on the value of %|V1
,

this second event happens with probability
(|V2|
s2

)
ps2( 1−p

2 )|V2|−s2 , which is at most (2p)s2 . Moreover, this
second event only depends on %|V2

.
Continuing in this manner, we conclude that the event in question holds with probability at most

(2p)s1+···+sk .

Proof of Theorem 3. Let F be a regular formula of depth d+ 1 and size s. For i ∈ {2, . . . , d+ 1}, let mi

be the top fan-in of depth-i subformulas of F . Let

λ :=

d+1∏
i=2

8e2(lnmi + 1).

Note that s = m2 · · ·md+1 and therefore by Lemma 11

λ ≤ (8e2)d
(

1

d
ln s+ 1

)d
.

We claim that F is λ-critical. To see this, consider any p ∈ [0, 1
λ ]. Let %1 ⊆ · · · ⊆ %d+1 be a sequence of

random restrictions where

• %1 is a
1

4e
-random restriction,

• %i is a
1

8e2(lnmi + 1)
-random refinement of %i for each i ∈ {2, . . . , d},

• %d+1 is a
pλ

16e(lnmd+1 + 1)
-random refinement of %d.

Note that %d+1 is a p-random restriction.
For all integers k ≥ 1 and s1, . . . , sk ≥ 1 and bitstrings ah ∈ {0, 1}sh and ch ∈ {0, 1}s1+···+sh−1 (h ∈ [k]),

we have:

• for all depth-1 subformulas F1, . . . , Fk of F , Lemma 29 implies

P
%1

[
∃α1, . . . , αk

∧
h∈[k]

(
T (ah)
%1

(Fh�(α1◦···◦αh−1)←Stars(%1)ch
) = αh

) ]
≤
(

1

2e

)s1+···+sk
,

• for all i ∈ {2, . . . , d} and depth-i subformulas F1, . . . , Fk of F , Proposition 28 implies

P
%1,...,%i

[
∃α1, . . . , αk

∧
h∈[k]

(
T (ah)
%1,...,%i(Fh�(α1◦···◦αh−1)←Stars(%i)

ch
) = αh

) ]
≤
(

1

2e

)s1+···+sk
,

• finally, Proposition 25 (or Proposition 28) implies

P
%1,...,%d+1

[
T (a1)
%1,...,%d+1

(F ) exists
]
≤
(
pλ

4

)s1
.
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Therefore, for all t ≥ 1, we have

P
[
DTdepth(F �Rp) ≥ t

]
≤
∞∑
u=t

P
[
T ∗%1,...,%d+1

(F ) has depth u
]

≤
∞∑
u=t

∑
a∈{0,1}u

P
[
T (a)
%1,...,%d+1

(F ) exists
]

≤
∞∑
u=t

2u
(
pλ

4

)u
≤ (pλ)t.

This shows that F is λ-critical, and since λ = O( 1
d log s)d, the theorem is proved.

9 Satisfiability Algorithms

The following theorem gives a randomized #SAT algorithm for regular AC0 formulas. For AC0 circuits
of size Ω(n2) (after converting to regular formulas), this matches the runtime of the #SAT algorithm of
Impagliazzo, Matthews and Paturi [7].

Theorem 30. There is a randomized, zero-error algorithm which, given a regular AC0 formula F of depth
d+ 1 and size s on n variables, outputs a decision tree for F of size O(sn · 2(1−ε)n) where ε = 1/O( 1

d log s)d.
This algorithm also solves the #SAT problem, that is, it counts the number of satisfying assignments for F .

Proof. First we require a lemma that |T%1,...,%d(F �γ)| ≤ |T%1,...,%d(F )| for any depth-d formulas F , restrictions
%1 ⊆ · · · ⊆ %d and %d-consistent restriction γ. This is straightforward from Definition 19 of T%1,...,%d(·), but
requires a careful argument (by induction on a stronger statement) to make precise. We omit the details.

Accepting this claim, we can extract from Definition 19 an algorithm which, given any depth-d formula
F and restrictions %1 ⊆ · · · ⊆ %d, computes the set T%1,...,%d(F ) in time O(n) ·

∑d
i=1

∑
Fi
|T%1,...,%i(Fi)| where

Fi ranges over depth-i subformulas of F .
If we are now given a regular AC0 formula F of depth d + 1 and size s on n variables, we can compute

a decision tree for F as follows. Consider any sets D1 ⊆ · · · ⊆ Dd+1 ⊆ [n] and let D := Dd+1. We
get a decision tree for F by querying all variables in D, receiving answers % : D → {0, 1}, and then
proceeding as the decision tree T%1,...,%d+1

(F ) where %i is the restriction of % to domain Di. The time

required to construct this decision tree is O(n) ·
∑d+1
i=1

∑
Fi

∑
%:D→{0,1} |T%1,...,%i(Fi)|. If % is a uniform

random restriction with domain D and |D| ≤ (1 − ε)n (for a choice of δ > 0 to be determined), then this

bound is O(n·2(1−δ)n) ·
∑d+1
i=1

∑
Fi
E |T%1,...,%i(Fi)|.

Let us now randomly generate sets D1 ⊆ · · · ⊆Dd+1 ⊆ [n] as follows:

• D1 is a 1 − 1
4e -random subset of [n] (i.e., D1 includes each variable index in [n] independently with

probability 1− 1
4e ),

• for each i ∈ {2, . . . , d+ 1}, Di is the union of Di−1 and a 1− 1
8e2(lnmi+1) -random subset of [n] \Di−1

where mi is the top fan-in of depth-i subformulas of F (equivalently: [n] \Di is a 1
8e2(lnmi+1) -random

subset of [n] \Di−1).

Note that D (:= Dd+1) is a (1 − 1
λ )-random subset of [n] where λ = O( 1

d log s)d. The proof of Theorem 3
shows that, for every i ∈ [d+ 1] and depth-i subformula Fi,

E |T%1,...,%i(Fi)| =

∞∑
t=0

∑
a∈{0,1}t

P
[
T (a)
%1,...,%i(Fi) exists

]
≤ 1 +

∞∑
t=1

2t(1/2e)t =
1

1− (1/e)
.

We may assume that λ ≤ n/2, since otherwise the theorem is trivial. We then have P[ |D| ≤ (1 − 1
2λ )n ]

with probability Ω(1) (and in fact 1− o(1) when λ� n). It follows that, with at least this probability, our

algorithm constructs a decision tree for F in time O(sn·2(1− 1
2λ )n).
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As a corollary, we improve the parameters of an algorithm of Santhanam and Williams [14] for the
satisfiability problem for q-QB-CNF and q-QB-DNF, the class of quantified CNF and DNF formulas with q
quantifier blocks (i.e., q quantifier alternations).

Corollary 31. Satisfiability of q-QB-CNF (resp. q-QB-DNF) with n variables and poly(n) clauses (resp.

disjuncts) can be solved probabilistically with zero error in time poly(n) · 2n−Ω(qn1/(q+1))+O(q).

The proof of Corollary 31 is adapted straightforwardly from [14], using Theorem 30 in place of the AC0-
circuit satisfiability algorithm of Impagliazzo, Matthews and Paturi [7]. Corollary 31 extends from o( logn

log logn )

to o(log n) the range of q for which the algorithm of [14] beats exhaustive search (i.e., poly(n) · 2n time). We
remark that a second algorithm in [14] running time poly(n) · 2n−Ω(q), which beats exhaustive search when
q = ω(log n). The range of q where q-QB-CNF and q-QB-DNF is not known to beat exhaustive search by a
factor of at least nk is therefore reduced to between c1 log n and c2 log n for constants c1(k) < c2(k).

10 Open Questions

It is an open question whether the assumption of regularity is unnecessary in Theorem 3. We conjecture
that our criticality bound for regular formulas holds for all formula.

Conjecture 32. All AC0 formulas of depth d+ 1 and size s have criticality at most O( 1
d log s)d.

For (regular) formulas of n variables, can this bound be improved to O( 1
d log( sn ) + log(d))d? (Results in

[7] for AC0 circuits involve the quantity O(log( sn ) + d log(d))d.)
Since deg(f) ≤ DTdepth(f) for all boolean functions f , it follows that λ-criticality implies λ-degree-

criticality, that is, the bound P[ deg(f�Rp) ≥ t ] ≤ (pλ)t. What about a reserve implication?

Question 33. Does degree-criticality λ imply criticality O(λ)?

Tal [16] showed that DeMorgan formulas of size L have degree-criticality O(
√
L). As a special case of

Question 33, one can ask:

Question 34. Do DeMorgan formulas of size L have criticality O(
√
L)?

Finally, we ask a question that would potentially yield a much simpler and more aesthetic proof of
Theorem 3. We will say that a boolean function f is hereditarily λ-critical if every subfunction of f is
λ-critical (i.e., f�% is λ-critical for every restriction %).

Question 35. Suppose f is the disjunction of boolean functions f1 ∨ · · · ∨ fm where each fi is hereditarily
λ-critical. Is f necessarily O(λ ln(m+ 1)) critical?

A positive answer to Question 35 implies Theorem 3. If Question 35 could be answered affirmatively, we
may then consider the following generalization:

Question 36. Suppose f is the disjunction of boolean functions f1 ∨ · · · ∨ fm where each fi is hereditarily
λi-critical. Let λ ≥ max{λ1, . . . , λm} such that

∑m
i=1 e

−(λ/λi) ≤ 1. Is f necessarily O(λ) critical?

A positive answer to Question 36 would be very interesting as it implies Conjecture 32.
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A Appendix: Average Sensitivity of Size-m DNF Formulas

As a warm-up for our switching lemma for size-m DNF formulas (Section 4), we present a simple proof that
every size-m DNF formula F with expected value λ ∈ [0, 1] has average sensitivity at most min{2 log(m +
1), 2λ log(m/λ)}. Up to an 1 + o(1) factor, these bounds can be derived from known results on the average
sensitivity of width-w DNFs (see Remark 39). However, our proof involves different argument based on the
entropy of the “first witness function” associated with F . This argument was the starting point for our
alternative proof of the switching lemma and provides a simple illustration of the underlying principle.

Recall the definitions of sensitivity and average sensitivity. For a function f with domain {0, 1}n and a
point x ∈ {0, 1}n, let

S(f, x) := |{i ∈ [n] : f(x) 6= f(x⊕ i)}| and AS(f) := E
x∈{0,1}n

[ S(f, x) ].

The expected value of f is Ex∈{0,1}n [ f(x) ].

Theorem 37. Every m-clause DNF with expected value λ has average sensitivity at most min{2 log(m +
1), 2λ log(m/λ)}.

Proof. Let F = C1 ∨ · · · ∨Cm be an m-clause DNF. Let F̃ : {0, 1}n → [m+ 1] be the “first witness function”
mapping x ∈ {0, 1}n to the index of the first satisfied clause if any, and otherwise to m+ 1. Let

S<(F̃ , x) := |{i ∈ [n] : F̃ (x) < F̃ (x⊕ i)}| and AS<(F̃ ) := E
x∈{0,1}n

[ S<(F̃ , x) ].

Observe that AS(F ) ≤ AS(F̃ ) = 2·AS<(F̃ ).

Let µ = (µ1, . . . , µm+1) be the probability distribution induced by F̃ under the uniform distribution on

{0, 1}n, that is, µ` := Px∈{0,1}n [ F̃ (x) = ` ]. For each ` ∈ [m], we have

2Ey∈F̃−1(`)[ S<(F̃ ,y) ] ≤ E
y∈F̃−1(`)

[ 2S<(F̃ ,y) ] by Jensen’s inequality

≤ 2|C`| since S<(F̃ , y) ≤ |C`| for all y ∈ F̃−1(`)

≤ 1

µ`
since µ` ≤ P

x∈{0,1}n
[ C`(x) = 1 ] = 2−|C`|.

Therefore, Ey∈F̃−1(`)[ S<(F̃ , y) ] ≤ log(1/µ`).

Using the fact that µ has entropy at most log(m+ 1), we have

AS<(F̃ ) = E
x∈{0,1}n

[ S<(F̃ , x) ]

=
∑
`∈[m]

µ` E
y∈F̃−1(`)

[ S<(F̃ , y) ]

≤
∑
`∈[m]

µ` log(1/µ`) ≤
∑

`∈[m+1]

µ` log(1/µ`) = H(µ) ≤ log(m+ 1).

We conclude that AS(F ) ≤ 2 log(m+ 1).
If F has expected value λ, then letting µ′` := µ`/λ (and noting that λ =

∑
`∈[m] µ`), we have∑

`∈[m]

µ` log(1/µ`) = λ
∑
`∈[m]

µ′`

(
log(1/µ′`)− log(λ)

)
= λ

(
H(µ′)− log(λ)

)
≤ λ log(m/λ).

This gives the bound AS(F ) ≤ 2λ log(m/λ).
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For k, t ∈ N, observe that the function PARITY(x1, . . . , xk) ∧ AND(xk+1, . . . , xk+t) is equivalent to a
DNF with m := 2k−1 clauses and has expected value λ := (1/2)t+1 and average sensitivity (k + t)2−t

(= 2λ log(m/λ)). This shows that Theorem 37 is tight whenever λ ∈ [0, 1
2 ] is an inverse power of two.

Remark 38. Theorem 37 has a (weak) converse: Keller and Lifshitz [8] showed that every boolean function
with expected value λ and average sensitivity at most 2λ log(m/λ) is ελ-approximated by a DNF of size

2m
O(1/ε)

.

Remark 39. The average sensitivity of a width-w DNF with expected value λ is known to be at most
the minimum of w (Amano [1]), 2λw (Boppana [4]) and 2(1 − λ)w/ log( 1

1−λ ) (Traxler [18]). Each of these
bounds is tight for a certain values of λ. Extending all three bounds, Scheder and Tan [15] proved an upper
bound of β(λ)w for a certain piecewise linear function β : [0, 1] → [0, 1]; this bound is asymptotically tight
for all values of λ. By approximating any m-clause by a DNF of width dlogme, they also observe that
(1 + o(1))β(λ) log(m+ 1) is an upper bound on the average sensitivity of m-clause DNFs.
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