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Abstract

We show that the decision tree size of a function f : {0,1}" — {0,1} computed by an AC°
circuit of depth d and size s is at most O(2(!7P)") where p = 1/O(log s)4~!. This result follows
from an exponential tail bound on the decision tree depth of the randomly restricted function
fIR,: for all t > 0, we show that

P[ DTyepth (fIRp) >t ] < exp(—t).

For t < log s, this is a straightforward consequence of Hastad’s Switching Lemma (1986); for
t > logs, we combine Hastad’s Multi-Switching Lemma (2014) with a shrinkage lemma for
decision trees.

Qualitatively, our bound on DTgye(f) improves a similar bound on the subcube partition
number of f due to Impagliazzo, Matthews and Paturi (2011). Our bound on DTgepth(fIRp)
improves a similar bound of Tal (2014) on the degree of f|R,, as a real polynomial.

1 Introduction

For every Boolean function f, there is a sufficiently small value of p > 0 such that the random
variable DT gepth (fRp) (i.e. the decision tree depth of f under the random restriction R,,) obeys an
exponential tail bound. To give a name to this phenomenon, let’s say that f is p-critical if for all
t>0,

IP[ DTdepth(erp) >t } < eXp(—t)-

We observe that criticality implies an upper bound on decision tree size. Namely, we show that if
f:{0,1}™ = {0,1} is p-critical, then DTgze(f) < O(21=P)?) (Proposition 5.2).

The main result in this note (Theorem 6.1) shows every function f computable by an ACP circuit
of depth d and size s is p-critical for p = 1/O(log s)4~!. The argument is based on a combination
of Hastad’s Switching Lemma [2] (for ¢ < logs) and Multi-Switching Lemma [3] (for ¢ > log s).!
As a corollary, we get a bound of 0(2(1_7’)") on the decision tree size of f. Qualitatively, this
improves a similar bound of Impagliazzo, Matthews and Paturi [4] on the subcube partition number
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of f.2 Our bound on DTsize(f) is moreover effective in the following sense: there is a randomized
algorithm which, given the circuit computing f, outputs a decision tree of size 0(2(1_1’)”) in time
poly(s) - O(20-P)"). We omit the details of this algorithm, but note that it gives an ACC-SAT
algorithm that essentially matches the running time of the algorithm of [4].

Our result on the criticality of AC? circuits also qualitatively strengthens recent results of Tal
[7], who considers a different property of Boolean functions f that we will call p-degree-criticality:
for all t > 0,

P[ deg(fIR,) >t | < exp(—t).

(Note that p-criticality implies p-degree-criticality since deg(-) < DTgepth(+).) By a similar combi-
nation of the Switching and Multi-Switching Lemmas, Tal shows that every function f computable
by a depth-d size-s AC? circuit is p-degree-critical for p = 1/O(log s)4~!. Tal further shows that
p-degree-criticality (called the “switching lemma type property” in [7]) implies tight bounds on the
Fourier tails of AC? functions, improving the bounds given by the LMN Theorem [5].

2 Preliminaries

log(-) denotes the base-2 logarithm.

DTgepth(f) and DTgze(f) denote the decision tree depth and decision tree size of a Boolean
function f (i.e. the minimum depth/size of a decision tree that computes f).

A restriction w.r.t. a Boolean function f is a function p from the variables of f (w.l.o.g. the set
{1,...,n}) to {0,1,x}. The restricted Boolean function is denoted f[o: {0,1}¢ ) — {0,1}.

For p € [0,1], R, denotes the random restriction which maps each variable independently to *
with probability p and to 0 and 1 with probability (1 — p)/2.

Circuit refers to single-output AC? circuits. Depth of a circuit is the maximum number of AND
and OR gates on any input-to-output path. Size of a circuit is the total number of gates. Under
this definition, depth-0 circuits have size 0 and depth-1 circuits have size 1.

Depth of a decision tree is the maximum number of variables queried on a branch. Size of a
decision tree is the number of branches (i.e. the number of leaves).

3 Decision Trees

For a decision tree T', random variable W (T') is the number of variables read on a uniform random
input (in other words, the length of a random walk down T'). This random variable has density
function

P[W(T)=1¢]=2" #{leaves of T at distance £ from the root}.

For a decision tree T' and a restriction g, let T'[p be the syntactically restricted decision tree
(defined in the obvious way).

“Impagliazzo, Matthews and Paturi show that there is a partition of {0,1}" into at most 209" subcubes on

which f is constant, where ¢ = 1/O(log(s/n) + dlogd)?~!. Our bound on decision tree size implies an equivalent

O(2"~P") bound on the subcube partition number of f. Note that p and & are within a factor of O(1)*~! when
s > pite@),



Lemma 3.1 (Syntactic Decision Tree Shrinkage Lemma). If T is a depth-k decision tree, then
P[ TR, has depth > (] < (2epk/¢)*.

Proof. Without loss of generality, assume that no variable is queries more than once on any branch
of T. Observe that random variables W(T'[R,) and Bin(W(T'),p) are identically distributed.
Using this observation, we have

P[ TR, bhas depth > ¢] = P [P[W(T[g) > (]>27"]
o~y

<2'P[W(TIR,) > (]

< (2epk/0)". O
Corollary 3.2 (Semantic Decision Tree Shrinkage Lemma). If DTyepth(f) < k, then
P[ DTaeptn(fIRy) > €] < (2epk/0)".

4 Switching Lemmas

We consider the following classes.

e DT (k) is the class of [Boolean functions computed by] depth-k decision trees.

e CKT(d,s) is the class of single-output depth-d size-s circuits. CKT (d; s1,...,Sq) is the sub-
class of circuits in CKT (d, s) which have s; depth-i subcircuits for all ¢ € {1,...,d} (where
S1+ -+ sq4=sand sq =1).

e CKT(d,s) o DT (k) is the class of circuits in CKT (d, s) whose inputs are labeled by decision
trees in DT (t) over a common set of variables.

e DT (t)oCKT(d,s)oDT (k) is the class of depth-t decision trees with leaves labeled by circuits
in CKT(d, s) o DT (k) over a common set of variables.

Note that CKT (d,s) = CKT(d,s) o DT (1) = DT(0) oCKT(d,s) o DT (1).

4.1 Hastad’s Switching and Multi-Switching Lemmas

We state the Swiching Lemma of Hastad (1986) and Multi-Swiching Lemma of Hastad (2014) in
the form we will use. (The original statements speak about k-DNF/CNFs. Lemma 4.1, below,
includes a union bound over depth-1 subcircuits.)

Lemma 4.1 (Switching Lemma [2]). If f € CKT (d;s1,...,84) o DT (k), then
P[ fIR, ¢ CKT(d—1;89,...,84) o DT (t — 1) ] < s1(5pk)".

Lemma 4.2 (Multi-Switching Lemma [3]). If f € CKT (d;s1,...,8q4) c DT (k) and £ > logs1 + 1,
then

P[ fIR, ¢ DT(t — 1) o CKT(d — 1;52,...,54) o DT (£) ] < 51(50pk)".



4.2 Combined Multi-Switching Lemma

Key to our main result is the following lemma, which combines the Multi-Switching Lemma 4.2
with the Syntactic Decision Tree Shrinkage Lemma 3.1.

Lemma 4.3 (Combined Multi-Switching Lemma). If f € DT (t —1) o CKT (d; s1,...,54) o DT (k)
and £ > log sy + 1, then

P[ fIR, ¢ DT (t — 1) 0o CKT(d — 15 52,...,584) o DT(£) ] < s51(200pk)/2.

Note that Lemma 4.3 has a stronger hypothesis than Lemma 4.2, but gives a weaker bound of
51(200pk)*/? compared to s1(50pk)’; these bounds are comparable when t > log s; and pk < 1.

Proof. Suppose f is computed by a depth ¢ — 1 decision tree T" in which each leaf X is labeled by a
circuit C € CKT(d,s,m) o DT (k). Consider events

A <5 TIR, has depth < [t/2] — 1,
B <5 C\R, € DT([t/2] — 1) 0 CKT(d — 1;59,...,54) o DT (£) for every leaf A of T.
Observe that
ANB = fIR, € DT(t—1)oCKT(d — 1;52,...,5q4) o DT (logs +1).
By the Syntactic Decision Tree Shrinkage Lemma 3.1, we have

P[ -A ] =P[ TR, has depth > [t/2] ]

< (2ep(t — 1)/[t/2])1/?]
< (4ep)"/?.

By a union bound and the Multi-Switching Lemma 4.2, we have

P[-B] <Y P[CAR, ¢ DT([t/2] = 1) 0 CKT(d — 135, ..., 54) o DT ({) |
A

<) s1(50pk)!?]
A

< 271 (50pk) /21,
Putting things together, we have

P[ fIR, ¢ DT(t —1) o CKT(d — 1;82,...,54) oDT(logs + 1) ] < P[ ~A |+ P[ -B |
< (dep)'/? + 2!~ 151 (50pk)"/



5 Criticality

Definition 5.1. We say that a Boolean function f is p-critical if for all ¢ > 0,
P[ DTgeptn(f1Ry) >t ] < exp(—t).
Observe that every n-variable Boolean function f : {0,1}"™ — {0, 1} is 1/en-critical, since
P[ DTgepth (fRi/en) =t ] < P[Bin(n,1/en) > t | < exp(—t).
Every Boolean function is thus p-critical for some p > 0. (Note that the original Switching Lemma

of [2] implies that every k-DNF (or k-CNF) is 1/5ek-critical.)
A key property of criticality is that it implies an bound on decision tree size.

Proposition 5.2. Every p-critical function {0,1}"* — {0,1} has a decision tree of size O(201-P)").

Proof. Suppose f :{0,1}" — {0, 1} is p-critical. Let I be a random (1 — p)-binomial random subset
of [n] (with density function P[ I =1 ] = (1 — p)lp"~Hl for every I C [n]). Let p: T — {0,1} be
a uniform random function. Note that g has distribution R, when viewed on its own as a random
restriction [n] — {0, 1, x}.

We obtain a decision tree for f by querying all variables in I and considering the decision tree
depth of flo for each o : I — {0,1}. We show that the resulting decision tree has size at most
20 - 21=P)" with probability < 1. Therefore, f has a decision tree of this size (by the magic of the
probabilistic method).

First, we observe that, for any fixed I C [n],

1 DT., < 9D Taeptn(f10) — ol E 9D Taeptn(fle) 1.
) s 3 LE |

Using the fact that every median of Bin(n, p) is at least [pn], we have
. . 1
(2) P [ II| > [(1 —p)n] } =P [ Bin(n,1 —p) >n — |pn| } =P { Bin(n,p) < |pn] } < 7

Putting things together, we have

P[ DTae(f) > 20207 <P [ 2l | [2PTesn(fIe) ] 5 90 2(-#)n } (by (1))

I 1 0:I—{0,1}
<p /[ (21 < 9(-pn+1 v/ E 9D Taepth (f1e) 10
sp[ (et (B /> 10)
<P [ I 1 — P 9D Taeptn(f10) 10
1l 1> [ =p)n] ] + I |:Q:I~>{0,1}[ 1> }
< % + % B[ 2PTeern(fIR2) 1 (by (2) and Markov’s inequality)

11,
=570 tz_;? - P[ DTaeptn (/1R,) =1 |
- <exp(—t) by p-crit. of f
11
T2 10 1—(2/e)
< 1.
Therefore, DTgi,e(f) < 20 - 2(1=p)n O



Although not needed in this paper, we state another property of p-criticality.

Proposition 5.3. If f is a p-critical Boolean function, then for all 0 < q¢ <p andt >0,

P[ DTaeptn(fIRg) >t ] < O(q/p)".

Proof. Since the bound is trivial if ¢ > p, we assume that ¢ < p. Generate R, as the composition of
a random restriction g1 ~ Ry, (over the variables of f) and @2 ~ Ry, (over the variables of f[g1).
We have

IP[ DTdepth (f [RQ) > ]
=B [ P[ DTapun((f101)102) > 1] |

e1L @2
= Zg[ DTdepth(fol) =k ] E |: ‘Ig[ DTdepth((f[Ql)rQ2) >t ] DTdepth(fr ) =k i|
k=t
<exp(—k) by p-crit. of f <(2eqk/pt)t by Cor. 3.2
<) exp(—k) - (2eqk/pt)’
k=t
. t
= (4eq exp(—t — i) t+1)/2t
/p)’ Z xp( ((t+19)/2t)
<exp(i/2t)

< (4q/p)" Z exp(—i/2)

< 3(4q/p)". O

6 Criticality of AC" Circuits

Theorem 6.1. Every Boolean function computed by an ACC circuit of depth d and size s is p-
critical for p=1/0(log s)4~ 1.

Proof. Let C be a circuit of depth d and size s, which computes a Boolean function f. Let
s =81+ -+ sq where s; is the number of gates at depth ¢. Note that s; = 1, corresponding to
the output gate of C.

Let £ = [logs] + 1 and let p = 1/12800%+1¢9=1. Fori € {1,...,d}, let p; = 1/12800%¢%~1. Note
that p1 = p/pg = 1/12800 and p;/p;—1 = 1/12800¢ for all i € {2,...,d}.

We wish to show that

IP[ DTdepth(f er) >t ] < exp(—t)

for all ¢ > 1. For the case t < logs, we show this using Hastad’s Switching Lemma 4.1 in the
completely standard way. For the case t > log s, we show this using the Combined Multi-Switching
Lemma 4.3.



Case 1: t <logs.

Fori e {1,...,d—1}, let A; denote the event that DT geptn(9IRp,) < £ for every function g computed
by a depth-i subcircuit of C. By the Switching Lemma 4.1, we have

P[ A, | < s1(5p1)" = 51(1/2560)".
Again by the Switching Lemma 4.1, we have
P[ = Ay | A1 ] < s2(5(p2/p1)l)" = s2(1/2560)".

Here we view R;, as the composition of Ry, (over the variables of f) and R,, ,, (over the free
variables of R,).
Similarly, we have

Pl -A; | A A= AAiq ] < s5(1/2560)°
for i = 3,...,d — 1. Therefore,
SR A AL A AN A ]
s1+ -+ sq-1)(1/2560)"
s —1)(1/2560)"

(
= (
(1/1280)¢  (since £ > log s)
(1/1280)"  (since £ > t).

Pl - Ag-1 ]

IA A

<
<

By a final application of the Switching Lemma, we have

P[ DTgeptn (fIRp) >t | Ag—1 ] < (5(p/pa—1)0)"
— (1/32768000)".

Therefore, we get a final bound

IP[ DTdepth(er ) ] [ _‘Ad 1 ] + IP[ DTdepth(f[Rp) >t ‘ Ad—l ]

<
< (1/1280) + (1/32768000)"
< exp(—t).

Case 2: t > logs.

Initially, we have f € CKT(d; s1,...,54) o DT (1).
For i € {1,...,d}, let B; be the event

B; <5 fIR,, € DT(t—1)0CKT(d —i;8i41,--.,54) o DT(£).
In particular, note that
By <= fIRy, e DT(t+(—-1)

since DT (t —1) o CKT(0,0) o DT ({) = DT (t + ¢ —1).



By the Multi-Switching Lemma 4.2, we have
IP[ ﬁb’l ] S 51(50p1)t = 81(1/256)t
Next, for all ¢ = 2,...,d, by the Combined Multi-Switching Lemma 4.3 we have
]P[ -B; | BiN---ANB;_1 ] < 81(200(]91'/]9@;1)6)1”2 = Si(1/64)t/2 = 81(1/8)t.
Therefore,
P[ DTdeptn(f[Rp,) =t + €] =P[ By |
<SS P[-B; | BiA-ABiy ]
< 51(1/256)" + (s2 + -+ + 84)(1/8)"
s(1/8)’
(1/8)%1°g8+%t (since t > log s)

(1/4)".

As a last step, we apply the Semantic Decision Tree Shrinkage Lemma 3.2:

(2e(p/pay1)t/(t + €= 1))"
(e/3200)"

IN AN

IP[ DTdepth(f er) Z t ’ DTdepth(f erd) S t+ -1 ] S
<

using p/pa+1 = 1/12800 and t +¢ — 1 =1t + [logs| > 2t.
Putting things together, we have

IP[ DTdepth(erp) > t] < IP[ fprd > t"‘“"‘P[ DTdepth(fpr) >t ‘ erPd <t+{-1 ]
< (1/4)" + (e/3200)"
< exp(—t). O
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