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Abstract

We show that the decision tree size of a function f : {0, 1}n → {0, 1} computed by an AC0

circuit of depth d and size s is at most O(2(1−p)n) where p = 1/O(log s)d−1. This result follows
from an exponential tail bound on the decision tree depth of the randomly restricted function
f�Rp: for all t ≥ 0, we show that

P[ DTdepth(f�Rp) ≥ t ] ≤ exp(−t).

For t ≤ log s, this is a straightforward consequence of H̊astad’s Switching Lemma (1986); for
t ≥ log s, we combine H̊astad’s Multi-Switching Lemma (2014) with a shrinkage lemma for
decision trees.

Qualitatively, our bound on DTsize(f) improves a similar bound on the subcube partition
number of f due to Impagliazzo, Matthews and Paturi (2011). Our bound on DTdepth(f�Rp)
improves a similar bound of Tal (2014) on the degree of f�Rp as a real polynomial.

1 Introduction

For every Boolean function f , there is a sufficiently small value of p > 0 such that the random
variable DTdepth(f�Rp) (i.e. the decision tree depth of f under the random restriction Rp) obeys an
exponential tail bound. To give a name to this phenomenon, let’s say that f is p-critical if for all
t ≥ 0,

P[ DTdepth(f�Rp) ≥ t ] ≤ exp(−t).

We observe that criticality implies an upper bound on decision tree size. Namely, we show that if
f : {0, 1}n → {0, 1} is p-critical, then DTsize(f) ≤ O(2(1−p)n) (Proposition 5.2).

The main result in this note (Theorem 6.1) shows every function f computable by an AC0 circuit
of depth d and size s is p-critical for p = 1/O(log s)d−1. The argument is based on a combination
of H̊astad’s Switching Lemma [2] (for t ≤ log s) and Multi-Switching Lemma [3] (for t ≥ log s).1

As a corollary, we get a bound of O(2(1−p)n) on the decision tree size of f . Qualitatively, this
improves a similar bound of Impagliazzo, Matthews and Paturi [4] on the subcube partition number

∗Supported by NSERC.
1The argument is a slight extension of H̊astad’s methods. The main technical novelty is a tweak in the application

of the Multi-Switching Lemma (see Lemma 4.3).
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of f .2 Our bound on DTsize(f) is moreover effective in the following sense: there is a randomized
algorithm which, given the circuit computing f , outputs a decision tree of size O(2(1−p)n) in time
poly(s) · O(2(1−p)n). We omit the details of this algorithm, but note that it gives an AC0-SAT
algorithm that essentially matches the running time of the algorithm of [4].

Our result on the criticality of AC0 circuits also qualitatively strengthens recent results of Tal
[7], who considers a different property of Boolean functions f that we will call p-degree-criticality:
for all t ≥ 0,

P[ deg(f�Rp) ≥ t ] ≤ exp(−t).

(Note that p-criticality implies p-degree-criticality since deg(·) ≤ DTdepth(·).) By a similar combi-
nation of the Switching and Multi-Switching Lemmas, Tal shows that every function f computable
by a depth-d size-s AC0 circuit is p-degree-critical for p = 1/O(log s)d−1. Tal further shows that
p-degree-criticality (called the “switching lemma type property” in [7]) implies tight bounds on the
Fourier tails of AC0 functions, improving the bounds given by the LMN Theorem [5].

2 Preliminaries

log(·) denotes the base-2 logarithm.
DTdepth(f) and DTsize(f) denote the decision tree depth and decision tree size of a Boolean

function f (i.e. the minimum depth/size of a decision tree that computes f).
A restriction w.r.t. a Boolean function f is a function % from the variables of f (w.l.o.g. the set

{1, . . . , n}) to {0, 1, ?}. The restricted Boolean function is denoted f�% : {0, 1}%−1(?) → {0, 1}.
For p ∈ [0, 1], Rp denotes the random restriction which maps each variable independently to ?

with probability p and to 0 and 1 with probability (1− p)/2.
Circuit refers to single-output AC0 circuits. Depth of a circuit is the maximum number of AND

and OR gates on any input-to-output path. Size of a circuit is the total number of gates. Under
this definition, depth-0 circuits have size 0 and depth-1 circuits have size 1.

Depth of a decision tree is the maximum number of variables queried on a branch. Size of a
decision tree is the number of branches (i.e. the number of leaves).

3 Decision Trees

For a decision tree T , random variable W(T ) is the number of variables read on a uniform random
input (in other words, the length of a random walk down T ). This random variable has density
function

P[ W(T ) = ` ] = 2−` ·#{leaves of T at distance ` from the root}.

For a decision tree T and a restriction %, let T �% be the syntactically restricted decision tree
(defined in the obvious way).

2Impagliazzo, Matthews and Paturi show that there is a partition of {0, 1}n into at most 2(1−ε)n subcubes on
which f is constant, where ε = 1/O(log(s/n) + d log d)d−1. Our bound on decision tree size implies an equivalent
O(2(1−p)n) bound on the subcube partition number of f . Note that p and ε are within a factor of O(1)d−1 when
s ≥ n1+Ω(1).
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Lemma 3.1 (Syntactic Decision Tree Shrinkage Lemma). If T is a depth-k decision tree, then

P[ T �Rp has depth ≥ ` ] ≤ (2epk/`)`.

Proof. Without loss of generality, assume that no variable is queries more than once on any branch
of T . Observe that random variables W(T �Rp) and Bin(W(T ), p) are identically distributed.
Using this observation, we have

P[ T �Rp has depth ≥ ` ] = P
%∼Rp

[ P[ W(T �%) ≥ ` ] ≥ 2−` ]

≤ 2`P[ W(T �Rp) ≥ ` ]

= 2`P[ Bin(W(T ), p) ≥ ` ]

≤ 2`P[ Bin(k, p) ≥ ` ]

≤ (2p)`
(
k

`

)
≤ (2epk/`)`.

Corollary 3.2 (Semantic Decision Tree Shrinkage Lemma). If DTdepth(f) ≤ k, then

P[ DTdepth(f�Rp) ≥ ` ] ≤ (2epk/`)`.

4 Switching Lemmas

We consider the following classes.

• DT (k) is the class of [Boolean functions computed by] depth-k decision trees.

• CKT (d, s) is the class of single-output depth-d size-s circuits. CKT (d; s1, . . . , sd) is the sub-
class of circuits in CKT (d, s) which have si depth-i subcircuits for all i ∈ {1, . . . , d} (where
s1 + · · ·+ sd = s and sd = 1).

• CKT (d, s) ◦ DT (k) is the class of circuits in CKT (d, s) whose inputs are labeled by decision
trees in DT (t) over a common set of variables.

• DT (t)◦CKT (d, s)◦DT (k) is the class of depth-t decision trees with leaves labeled by circuits
in CKT (d, s) ◦ DT (k) over a common set of variables.

Note that CKT (d, s) = CKT (d, s) ◦ DT (1) = DT (0) ◦ CKT (d, s) ◦ DT (1).

4.1 H̊astad’s Switching and Multi-Switching Lemmas

We state the Swiching Lemma of H̊astad (1986) and Multi-Swiching Lemma of H̊astad (2014) in
the form we will use. (The original statements speak about k-DNF/CNFs. Lemma 4.1, below,
includes a union bound over depth-1 subcircuits.)

Lemma 4.1 (Switching Lemma [2]). If f ∈ CKT (d; s1, . . . , sd) ◦ DT (k), then

P[ f�Rp /∈ CKT (d− 1; s2, . . . , sd) ◦ DT (t− 1) ] ≤ s1(5pk)t.

Lemma 4.2 (Multi-Switching Lemma [3]). If f ∈ CKT (d; s1, . . . , sd) ◦ DT (k) and ` ≥ log s1 + 1,
then

P[ f�Rp /∈ DT (t− 1) ◦ CKT (d− 1; s2, . . . , sd) ◦ DT (`) ] ≤ s1(50pk)t.
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4.2 Combined Multi-Switching Lemma

Key to our main result is the following lemma, which combines the Multi-Switching Lemma 4.2
with the Syntactic Decision Tree Shrinkage Lemma 3.1.

Lemma 4.3 (Combined Multi-Switching Lemma). If f ∈ DT (t− 1) ◦ CKT (d; s1, . . . , sd) ◦ DT (k)
and ` ≥ log s1 + 1, then

P[ f�Rp /∈ DT (t− 1) ◦ CKT (d− 1; s2, . . . , sd) ◦ DT (`) ] ≤ s1(200pk)t/2.

Note that Lemma 4.3 has a stronger hypothesis than Lemma 4.2, but gives a weaker bound of
s1(200pk)t/2 compared to s1(50pk)t; these bounds are comparable when t ≥ log s1 and pk � 1.

Proof. Suppose f is computed by a depth t− 1 decision tree T in which each leaf λ is labeled by a
circuit Cλ ∈ CKT (d, s,m) ◦ DT (k). Consider events

A def⇐⇒ T �Rp has depth ≤ dt/2e − 1,

B def⇐⇒ Cλ�Rp ∈ DT (dt/2e − 1) ◦ CKT (d− 1; s2, . . . , sd) ◦ DT (`) for every leaf λ of T .

Observe that

A ∧ B =⇒ f�Rp ∈ DT (t− 1) ◦ CKT (d− 1; s2, . . . , sd) ◦ DT (log s+ 1).

By the Syntactic Decision Tree Shrinkage Lemma 3.1, we have

P[ ¬A ] = P[ T �Rp has depth ≥ dt/2e ]

≤ (2ep(t− 1)/dt/2e)dt/2e

≤ (4ep)t/2.

By a union bound and the Multi-Switching Lemma 4.2, we have

P[ ¬B ] ≤
∑
λ

P[ Cλ�Rp /∈ DT (dt/2e − 1) ◦ CKT (d− 1; s2, . . . , sd) ◦ DT (`) ]

≤
∑
λ

s1(50pk)dt/2e

≤ 2t−1s1(50pk)dt/2e.

Putting things together, we have

P[ f�Rp /∈ DT (t− 1) ◦ CKT (d− 1; s2, . . . , sd) ◦ DT (log s+ 1) ] ≤ P[ ¬A ] + P[ ¬B ]

≤ (4ep)t/2 + 2t−1s1(50pk)t/2

≤ 1
2(16ep)t/2 + 1

2s1(200pk)t/2

≤ s1(200pk)t/2.
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5 Criticality

Definition 5.1. We say that a Boolean function f is p-critical if for all t ≥ 0,

P[ DTdepth(f�Rp) ≥ t ] ≤ exp(−t).

Observe that every n-variable Boolean function f : {0, 1}n → {0, 1} is 1/en-critical, since

P[ DTdepth(f�R1/en) ≥ t ] ≤ P[ Bin(n, 1/en) ≥ t ] ≤ exp(−t).

Every Boolean function is thus p-critical for some p > 0. (Note that the original Switching Lemma
of [2] implies that every k-DNF (or k-CNF) is 1/5ek-critical.)

A key property of criticality is that it implies an bound on decision tree size.

Proposition 5.2. Every p-critical function {0, 1}n → {0, 1} has a decision tree of size O(2(1−p)n).

Proof. Suppose f : {0, 1}n → {0, 1} is p-critical. Let I be a random (1−p)-binomial random subset
of [n] (with density function P[ I = I ] = (1 − p)|I|pn−|I| for every I ⊆ [n]). Let %%% : I → {0, 1} be
a uniform random function. Note that %%% has distribution Rp when viewed on its own as a random
restriction [n]→ {0, 1, ?}.

We obtain a decision tree for f by querying all variables in I and considering the decision tree
depth of f�% for each % : I → {0, 1}. We show that the resulting decision tree has size at most
20 · 2(1−p)n with probability < 1. Therefore, f has a decision tree of this size (by the magic of the
probabilistic method).

First, we observe that, for any fixed I ⊆ [n],

DTsize(f) ≤
∑

%:I→{0,1}

2DTdepth(f�%) = 2|I| E
%%%:I→{0,1}

[ 2DTdepth(f�%%%) ].(1)

Using the fact that every median of Bin(n, p) is at least bpnc, we have

P
[
|I| > d(1− p)ne

]
= P

[
Bin(n, 1− p) > n− bpnc

]
= P

[
Bin(n, p) < bpnc

]
≤ 1

2
.(2)

Putting things together, we have

P
I
[ DTsize(f) > 20 · 2(1−p)n ] ≤ P

I

[
2|I| E

%%%:I→{0,1}
[ 2DTdepth(f�%%%) ] > 20 · 2(1−p)n

]
(by (1))

≤ P
I

[ (
2|I| > 2(1−p)n+1

)
∨
(

E
%%%:I→{0,1}

[ 2DTdepth(f�%%%) ] > 10
) ]

≤ P
I

[
|I| > d(1− p)ne

]
+ P

I

[
E

%%%:I→{0,1}
[ 2DTdepth(f�%%%) ] > 10

]
≤ 1

2
+

1

10
E[ 2DTdepth(f�Rp) ] (by (2) and Markov’s inequality)

=
1

2
+

1

10

∞∑
t=0

2t · P[ DTdepth(f�Rp) = t ]︸ ︷︷ ︸
≤exp(−t) by p-crit. of f

=
1

2
+

1

10
· 1

1− (2/e)

< 1.

Therefore, DTsize(f) ≤ 20 · 2(1−p)n.
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Although not needed in this paper, we state another property of p-criticality.

Proposition 5.3. If f is a p-critical Boolean function, then for all 0 ≤ q ≤ p and t ≥ 0,

P[ DTdepth(f�Rq) ≥ t ] ≤ O(q/p)t.

Proof. Since the bound is trivial if q ≥ p, we assume that q ≤ p. Generate Rq as the composition of
a random restriction %%%1 ∼ Rp (over the variables of f) and %%%2 ∼ Rq/p (over the variables of f�%%%1).
We have

P[ DTdepth(f�Rq) ≥ t ]

= E
%%%1

[
P
%%%2

[ DTdepth((f�%%%1)�%%%2) ≥ t ]
]

=

∞∑
k=t

P
%%%1

[ DTdepth(f�%%%1) = k ]︸ ︷︷ ︸
≤exp(−k) by p-crit. of f

·E
%%%1

[
P
%%%2

[ DTdepth((f�%%%1)�%%%2) ≥ t ]︸ ︷︷ ︸
≤(2eqk/pt)t by Cor. 3.2

∣∣∣ DTdepth(f�%%%1) = k
]

≤
∞∑
k=t

exp(−k) · (2eqk/pt)t

= (4eq/p)t ·
∞∑
i=0

exp(−t− i) ·
(

(t+ i)/2t︸ ︷︷ ︸
≤exp(i/2t)

)t
≤ (4q/p)t ·

∞∑
i=0

exp(−i/2)

< 3(4q/p)t.

6 Criticality of AC0 Circuits

Theorem 6.1. Every Boolean function computed by an AC0 circuit of depth d and size s is p-
critical for p = 1/O(log s)d−1.

Proof. Let C be a circuit of depth d and size s, which computes a Boolean function f . Let
s = s1 + · · · + sd where si is the number of gates at depth i. Note that sd = 1, corresponding to
the output gate of C.

Let ` = dlog se+ 1 and let p = 1/12800d+1`d−1. For i ∈ {1, . . . , d}, let pi = 1/12800i`d−1. Note
that p1 = p/pd = 1/12800 and pi/pi−1 = 1/12800` for all i ∈ {2, . . . , d}.

We wish to show that

P[ DTdepth(f�Rp) ≥ t ] ≤ exp(−t)

for all t ≥ 1. For the case t ≤ log s, we show this using H̊astad’s Switching Lemma 4.1 in the
completely standard way. For the case t ≥ log s, we show this using the Combined Multi-Switching
Lemma 4.3.
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Case 1: t ≤ log s.

For i ∈ {1, . . . , d−1}, let Ai denote the event that DTdepth(g�Rpi) ≤ ` for every function g computed
by a depth-i subcircuit of C. By the Switching Lemma 4.1, we have

P[ ¬A1 ] ≤ s1(5p1)` = s1(1/2560)`.

Again by the Switching Lemma 4.1, we have

P[ ¬A2 | A1 ] ≤ s2(5(p2/p1)`)
` = s2(1/2560)`.

Here we view Rp2 as the composition of Rp1 (over the variables of f) and Rp2/p1
(over the free

variables of Rp1).
Similarly, we have

P[ ¬Ai | A1 ∧ · · · ∧ Ai−1 ] ≤ si(1/2560)`

for i = 3, . . . , d− 1. Therefore,

P[ ¬Ad−1 ] ≤
∑d−1

i=1 P[ ¬Ai | A1 ∧ · · · ∧ Ai−1 ]

≤ (s1 + · · ·+ sd−1)(1/2560)`

= (s− 1)(1/2560)`

≤ (1/1280)` (since ` > log s)

≤ (1/1280)t (since ` > t).

By a final application of the Switching Lemma, we have

P[ DTdepth(f�Rp) ≥ t | Ad−1 ] ≤ (5(p/pd−1)`)
t

= (1/32768000)t.

Therefore, we get a final bound

P[ DTdepth(f�Rp) ≥ t ] ≤ P[ ¬Ad−1 ] + P[ DTdepth(f�Rp) ≥ t | Ad−1 ]

≤ (1/1280)t + (1/32768000)t

≤ exp(−t).

Case 2: t ≥ log s.

Initially, we have f ∈ CKT (d; s1, . . . , sd) ◦ DT (1).
For i ∈ {1, . . . , d}, let Bi be the event

Bi
def⇐⇒ f�Rpi ∈ DT (t− 1) ◦ CKT (d− i; si+1, . . . , sd) ◦ DT (`).

In particular, note that

Bd ⇐⇒ f�Rpd ∈ DT (t+ `− 1)

since DT (t− 1) ◦ CKT (0, 0) ◦ DT (`) = DT (t+ `− 1).
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By the Multi-Switching Lemma 4.2, we have

P[ ¬B1 ] ≤ s1(50p1)
t = s1(1/256)t.

Next, for all i = 2, . . . , d, by the Combined Multi-Switching Lemma 4.3 we have

P[ ¬Bi | B1 ∧ · · · ∧ Bi−1 ] ≤ si(200(pi/pi−1)`)
t/2 = si(1/64)t/2 = si(1/8)t.

Therefore,

P[ DTdepth(f�Rpd) ≥ t+ ` ] = P[ ¬Bd ]

≤
∑d

i=1P[ ¬Bi | B1 ∧ · · · ∧ Bi−1 ]

≤ s1(1/256)t + (s2 + · · ·+ sd)(1/8)t

≤ s(1/8)t

≤ s(1/8)
1
3
log s+ 2

3
t (since t ≥ log s)

= (1/4)t.

As a last step, we apply the Semantic Decision Tree Shrinkage Lemma 3.2:

P[ DTdepth(f�Rp) ≥ t | DTdepth(f�Rpd) ≤ t+ `− 1 ] ≤ (2e(p/pd+1)t/(t+ `− 1))t

≤ (e/3200)t

using p/pd+1 = 1/12800 and t+ `− 1 = t+ dlog se ≥ 2t.
Putting things together, we have

P[ DTdepth(f�Rp) ≥ t ] ≤ P[ f�Rpd ≥ t+ ` ] + P[ DTdepth(f�Rp) ≥ t | f�Rpd ≤ t+ `− 1 ]

≤ (1/4)t + (e/3200)t

≤ exp(−t).
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