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Abstract

A (p,e)-approximate sunflower is a family of sets S with the property that a p-random
subset of the universe is 1 — ¢ likely to contain a set of the form A\ I where A € § and I is
the intersection of all elements of S. In this note, we give a proof of the Approximate Sunflower
Theorem from [Ros14] (with a slightly sharper bound) showing that every ¢-uniform set system of
size > O1((t+ %) /p)* contains a (p, e~*)-approximate sunflower. This result was originally applied
to obtain monotone circuit lower bounds for the clique problem on Erdds-Rényi random graphs.
The Approximate Sunflower Theorem has subsequently found applications in the sparsification
of DNF formulas [GMRI3] and was recently connected to questions on randomness extractors
[LLZ18]. It has also been noted that improving the bound to f(p,t)’ for any function f(p,t)
(which does not depend on ¢) would prove the notorious Sunflower Conjecture [LZ18], [LSZ18§].

Throughout this note, let ¢ > 0 and p €
integer, and let V' be an arbitrary set. Let (
(X)) =Ui=o ()-

We say that X is a p-random subset of V, written X C, V, if X contains each element of V'
independently with probability p.

A set system over V is a family S of subsets of V. For B C V|, let Sp denote the set system

,1) be arbitrary real numbers, let ¢ be a positive

0
‘g) denote the set of f-element subsets of V', and let

Sp:={A\B:BC AeS}.

Borrowing terminology from the literature on sunflowers, we define the core of S as the intersection
C = \pecs A of all elements of S; elements of S¢ are called petals of S.

A set system S is a sunflower if its petals are pairwise disjoint (equivalently: if all pairs of
distinct elements in S have the same intersection).

A set system S is L-uniform if |A| =/ forall Ae S (ie., S C (‘é/))

The Erdés-Rado Sunflower Theorem [ER60] establishes that every sufficiently large ¢-uniform
set system contains a sunflower of size k.

Theorem 1 (Sunflower Theorem). Every (-uniform set system of size > £/(k — 1)¢ contains a
sunflower of size k.

The following notion of approzimate sunflowers was introduced in [Rosl4]. (This was originally
called quasi-sunflower. The much better name “approximate sunflowers” was suggested by Lovett
and Zhang.)

Definition 2. A set system S over V' is a (p, €)-approzimate sunflower if a p-random subset of V'
contains a petal of S with probability > 1 — €.



Note that S contains a (p,€)-approximate sunflower if, and only if, there exists a set B C V
such that Pxc,v[ (34 € Sp) A C X | > 1—¢. In [Ros14] I showed that every /-uniform set system
of size > £1(2.5t/p)¢ contains a (p, e~*)-approximate sunflower. This note proves a slightly stronger
bound by a more careful analysis of the argument in [Ros14].

Theorem 3 (Approximate Sunflower Theorem). Every -uniform set system of size > E!((tJr%) /)
contains a (p, e*t)—appmm'mate sunflower.

The proof of Theorem [3| is by induction on ¢, similar to the proof of the Sunflower Theorem.
A key tool in the argument is Janson’s Inequality (Theorem @ As we explain in Remark the
bound in Theorem (3] is essentially best possible by this method: obtaining a bound better than
0\(t/p)¢ (or any bound of the form f(p,t)’ without the ¢! factor) appears to require a substantially
different proof technique. An approach via randomness extractors was recently suggested by Li,
Lovett and Zhang [LLZ18], who give an extractor-based proof of a quantitatively weaker version of
Theorem [3| with the bound 22¢((¢ + 1.5t)/p)* for a constant ¢ > 1.

Before presenting the proof of Theorem [3] we remark on the relationship between sunflowers
and approximate sunflowers.

Proposition 4 (Sunflower = Approximate Sunflower). Every sunflower S of size k is a (p, e*kpl)—
approximate sunflower where € is the size of largest petal in S.

Proof. Let S be an (-uniform sunflower over V' with petals Ay,..., Ay. For X C,, V, we have P[ X
contains no petal of S | < Hle PlAEZX]|<(1-pHr< e—kp’ O

A cute relationship in the other direction was communicated to me by Jiapeng Zhang (an
unpublished observation of Lovett, Solomon and Zhang [LSZ18]).

Proposition 5 (Approximate Sunflower = Sunflower). Every (%, %)—approzimate sunflower con-
tains a sunflower of size k.

Proof. Let S be a (%, %)—approximate sunflower. Let X; U --- U X}, be a uniform random partition
of V. Note that each X individually is a %—random subset of V. Let I; € {0,1} be the indicator
1[ X; contains a petal of S |. Then E[ I; | > 1—% foralli € {1,...,k}. By linearity of expectations,
E[ I + -+ I ] > k — 1. Therefore, there exists a partition X7 U --- U X of V such that each
X, contains a petal of S. As this gives k disjoint petals, we conclude that S contains a sunflower

of size k. O

In light of Proposition [5| if the bound ¢!((t + 3)/p)* in the Approximate Sunflower Theorem
can be replaced by f(p,t)¢ for any function f(p,t) (which does not depend on ¢), then the bound
0!(k —1)* of the Sunflower Theorem can be replaced by f(+,Ink)*. This would prove the notorious
Sunflower Conjecture (see [ASU13|, [Juk11]). The hypothesis that such a function f(p,t) exists was

named the “Approximate Sunflower Conjecture” by Lovett and Zhang [LZ1§].

The rest of this note contains the proof of Theorem [3| The key tool from probabilistic combi-
natorics is Janson’s Inequality (a.k.a. the Extended Janson’s Inequality).



Theorem 6 (Janson’s Inequality [Jan90]). Let S be any set system over a set V and let X be a
random subset of V' such that events {v € X} are independent over v € V. Let

pi=Y PIACX]  A:= > P[A;UA; C X ).
AeS (Al,AQ)ESQ :A1NAg#D

Then P| (VA€ S) A¢ X | <exp(—u?/A).

(In many statements of this inequality, the definition of A includes the condition A; 7é Ay in
the summation; in this case, one writes %/(pu + A) instead of %/A.) Rather than ¢1((t + 1)/p)’,
we shall prove a stronger version of Theorem [3 I with the bound ¢,(t)/p’ for a certain sequence of
polynomials ¢g(t).

Definition 7. Let cy(t),c1(t),... be the sequence of polynomials defined by

-1
co(t) :==1, —tZ( ) ) for £> 1.
=

For ¢ > 1, we have the explicit expression

e x i)

k=1 O=jo<ji<-<jp=~{ i=1

Lemma 8. For allt > 0, we have
O < cp(t) < O+ 1)

Proof. For the lower bound, we have

co(t) ztf(£f1> (ﬁ:;) (é) S

For the upper bound, we have the following proof by induction that ¢, (t) < €!(1/1n(% +1))%

=3, (o< 5 ()

J
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Finally, we use the fact that l/ln(% +1)<t+ % for all ¢ > 0. O

In light of Lemma [§] Theorem [3] follows from the following theorem.
Theorem 9. For every S C (‘e/) with |S| > ¢y(t)/pt, there exists B € (Zé) such that

—t
KBS AgX]<e



Proof. Induction on ¢. In the base case, let S C V' with |S| > ¢/p. We have

XIQPPV[ (VweS)veg X ]|=(1-p)Sl <eSl =t

For the induction step, let £ > 2 and let S C (‘2) with |S| > ¢(t)/p’. We consider two cases.
Case 1: There exists j € {1,...,/ —1} and B € (‘2) such that |Sp| > co—;(t)/p*~7. By the
induction hypothesis, there exists C' € ( <X_j) such that

XIQPPV[ (VA€ (Sp)c) A 7¢_ X< et

Since (Sp)c = Spuc, we are done.

Case 2: Forall j € {1,...,/—1} and B € (‘2), we have |Sp| < ¢, (t)/p"™7. As in Theorem@
let

= P [ACX A= P [AfUA; C X |.
I %XCPV[ CX], QZ Xgpv[ 1UA C X |
(Al,AQ)GS .A1ﬂA27$Q)

It suffices to show that u?/A > t.
First, we have the lower bound

p=p'IS| = elt).
We next upper bound A:

-1
A=p+> p"7 Y [{(A1,49) € 87 Ay N Ay = BY

=1 Be()
/-1
<p+ Y p ) S
=1 Be(})
-1
<p+p" ) e t) Y ISkl
=1 Be(})
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=p+p" ) e ()Y < )
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=1,
= u+p|S| Z (j) co—;(t)
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Therefore,
2 ce(t
% Z i1 Me = eqﬁ(e) -
ijo (j)cj(t) ijo (3) j(t)
Janson’s Inequality now yields the desired bound Pxc,v[ (VA€ S) AZ X | <e™. O
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Remark 10. This bound on A is essentially tight. For ¢ € {1,...,¢} and C € (‘Z/), instead of
upper bounding the number of pairs (A, As) € S? with A; N Ay = C by |S¢|? (in our bound on
A), we can instead use inclusion-exclusion to get an equality:

¢
{(A1, 42) € 8% AN Ay =CH =D (-1 > S
J=i Be(‘;) :CCB
This gives the following exact expression for A:
Z .
A=Y "p"" Y {(A1,42) € 8% : Ay N Ay = C}
= o))
‘ . ‘ -
— Zp%fl Z Z(_l)]fl Z ISB|2
=1 ce(V)i=i Be(Y):ccB
tJ A e
=S () X sl
j=1i=1 Be(Y)
¢ I g
=S Y (1) X Il
7j=1 =1 BE(‘;)
=S (A=p = (V) Y ISs
= Be(})

For small p, the value of (1 — p)/ — (—p)? is very close to 1. Even in the case p = %, we get no
significant improvement; in this case we have

A= > (1/2)*7 > |Spl

J€{1,3,5,....2[¢/2] -1} Be(Y)
This allows us to replace ¢y(t) in Theorem |3| with the polynomial

dy(t) =t 2 ﬁ (jjil)

k=1 0=jo<j1<-<jr=C: i=1
Jji—Ji—1 is odd for all :€{1,....k}

However, dy(t) is still lower bounded by £!t¢ for ¢ > 0. For this reason, it appear that any improve-
ment to Theorem [3| beyond £!t¢ will require a substantially different proof technique.
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