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Abstract

A (p, ε)-approximate sunflower is a family of sets S with the property that a p-random
subset of the universe is 1 − ε likely to contain a set of the form A \ I where A ∈ S and I is
the intersection of all elements of S. In this note, we give a proof of the Approximate Sunflower
Theorem from [Ros14] (with a slightly sharper bound) showing that every `-uniform set system of
size ≥ `!((t+ 1

2 )/p)` contains a (p, e−t)-approximate sunflower. This result was originally applied
to obtain monotone circuit lower bounds for the clique problem on Erdős-Rényi random graphs.
The Approximate Sunflower Theorem has subsequently found applications in the sparsification
of DNF formulas [GMR13] and was recently connected to questions on randomness extractors
[LLZ18]. It has also been noted that improving the bound to f(p, t)` for any function f(p, t)
(which does not depend on `) would prove the notorious Sunflower Conjecture [LZ18, LSZ18].

Throughout this note, let t > 0 and p ∈ (0, 1) be arbitrary real numbers, let ` be a positive
integer, and let V be an arbitrary set. Let

(
V
`

)
denote the set of `-element subsets of V , and let(

V
<`

)
=
⋃`−1

j=0

(
V
j

)
.

We say that X is a p-random subset of V , written X ⊆p V , if X contains each element of V
independently with probability p.

A set system over V is a family S of subsets of V . For B ⊆ V , let SB denote the set system

SB := {A \B : B ⊆ A ∈ S}.

Borrowing terminology from the literature on sunflowers, we define the core of S as the intersection
C =

⋂
A∈S A of all elements of S; elements of SC are called petals of S.

A set system S is a sunflower if its petals are pairwise disjoint (equivalently: if all pairs of
distinct elements in S have the same intersection).

A set system S is `-uniform if |A| = ` for all A ∈ S (i.e., S ⊆
(
V
`

)
).

The Erdős-Rado Sunflower Theorem [ER60] establishes that every sufficiently large `-uniform
set system contains a sunflower of size k.

Theorem 1 (Sunflower Theorem). Every `-uniform set system of size > `!(k − 1)` contains a
sunflower of size k.

The following notion of approximate sunflowers was introduced in [Ros14]. (This was originally
called quasi-sunflower. The much better name “approximate sunflowers” was suggested by Lovett
and Zhang.)

Definition 2. A set system S over V is a (p, ε)-approximate sunflower if a p-random subset of V
contains a petal of S with probability > 1− ε.
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Note that S contains a (p, ε)-approximate sunflower if, and only if, there exists a set B ⊆ V
such that PX⊆pV [ (∃A ∈ SB) A ⊆X ] > 1−ε. In [Ros14] I showed that every `-uniform set system
of size ≥ `!(2.5t/p)` contains a (p, e−t)-approximate sunflower. This note proves a slightly stronger
bound by a more careful analysis of the argument in [Ros14].

Theorem 3 (Approximate Sunflower Theorem). Every `-uniform set system of size ≥ `!((t+ 1
2)/p)`

contains a (p, e−t)-approximate sunflower.

The proof of Theorem 3 is by induction on `, similar to the proof of the Sunflower Theorem.
A key tool in the argument is Janson’s Inequality (Theorem 6). As we explain in Remark 10, the
bound in Theorem 3 is essentially best possible by this method: obtaining a bound better than
`!(t/p)` (or any bound of the form f(p, t)` without the `! factor) appears to require a substantially
different proof technique. An approach via randomness extractors was recently suggested by Li,
Lovett and Zhang [LLZ18], who give an extractor-based proof of a quantitatively weaker version of
Theorem 3 with the bound 22`((`+ 1.5t)/p)c` for a constant c > 1.

Before presenting the proof of Theorem 3, we remark on the relationship between sunflowers
and approximate sunflowers.

Proposition 4 (Sunflower⇒ Approximate Sunflower). Every sunflower S of size k is a (p, e−kp
`
)-

approximate sunflower where ` is the size of largest petal in S.

Proof. Let S be an `-uniform sunflower over V with petals A1, . . . , Ak. For X ⊆p V , we have P[ X

contains no petal of S ] ≤
∏k

i=1P[ Ai * X ] ≤ (1− p`)k ≤ e−kp` .

A cute relationship in the other direction was communicated to me by Jiapeng Zhang (an
unpublished observation of Lovett, Solomon and Zhang [LSZ18]).

Proposition 5 (Approximate Sunflower ⇒ Sunflower). Every ( 1k ,
1
k )-approximate sunflower con-

tains a sunflower of size k.

Proof. Let S be a ( 1k ,
1
k )-approximate sunflower. Let X1 ∪̇ · · · ∪̇Xk be a uniform random partition

of V . Note that each Xi individually is a 1
k -random subset of V . Let Ii ∈ {0, 1} be the indicator

1[ Xi contains a petal of S ]. Then E[ Ii ] > 1− 1
k for all i ∈ {1, . . . , k}. By linearity of expectations,

E[ I1 + · · · + Ik ] > k − 1. Therefore, there exists a partition X1 ∪̇ · · · ∪̇ Xk of V such that each
Xi contains a petal of S. As this gives k disjoint petals, we conclude that S contains a sunflower
of size k.

In light of Proposition 5, if the bound `!((t + 1
2)/p)` in the Approximate Sunflower Theorem

can be replaced by f(p, t)` for any function f(p, t) (which does not depend on `), then the bound
`!(k− 1)` of the Sunflower Theorem can be replaced by f( 1k , ln k)`. This would prove the notorious
Sunflower Conjecture (see [ASU13, Juk11]). The hypothesis that such a function f(p, t) exists was
named the “Approximate Sunflower Conjecture” by Lovett and Zhang [LZ18].

The rest of this note contains the proof of Theorem 3. The key tool from probabilistic combi-
natorics is Janson’s Inequality (a.k.a. the Extended Janson’s Inequality).

2



Theorem 6 (Janson’s Inequality [Jan90]). Let S be any set system over a set V and let X be a
random subset of V such that events {v ∈X} are independent over v ∈ V . Let

µ :=
∑
A∈S

P[ A ⊆X ], ∆ :=
∑

(A1,A2)∈S2 :A1∩A2 6=∅

P[ A1 ∪A2 ⊆X ].

Then P[ (∀A ∈ S) A * X ] ≤ exp(−µ2/∆).

(In many statements of this inequality, the definition of ∆ includes the condition A1 6= A2 in
the summation; in this case, one writes µ2/(µ + ∆) instead of µ2/∆.) Rather than `!((t + 1

2)/p)`,
we shall prove a stronger version of Theorem 3 with the bound c`(t)/p

` for a certain sequence of
polynomials c`(t).

Definition 7. Let c0(t), c1(t), . . . be the sequence of polynomials defined by

c0(t) := 1, c`(t) := t
`−1∑
j=0

(
`

j

)
cj(t) for ` ≥ 1.

For ` ≥ 1, we have the explicit expression

c`(t) =
∑̀
k=1

tk
∑

0=j0<j1<···<jk=`

k∏
i=1

(
ji
ji−1

)
.

Lemma 8. For all t > 0, we have

`!t` ≤ c`(t) ≤ `!(t+ 1
2)`.

Proof. For the lower bound, we have

c`(t) ≥ t`
(

`

`− 1

)(
`− 1

`− 2

)
· · ·
(

1

0

)
= `!t`.

For the upper bound, we have the following proof by induction that c`(t) ≤ `!(1/ ln(1t + 1))`:

c`(t) = t

`−1∑
j=0

(
`

j

)
cj(t) ≤ t

`−1∑
j=0

(
`

j

)
j!

(
1

ln(1t + 1)

)j

= `!

(
1

ln(1t + 1)

)`

t
`−1∑
j=0

(ln(1t + 1))`−j

(`− j)!

≤ `!
(

1

ln(1t + 1)

)`

t

(
−1 +

∞∑
k=0

(ln(1t + 1))k

k!

)
= `!

(
1

ln(1t + 1)

)`

.

Finally, we use the fact that 1/ ln(1t + 1) < t+ 1
2 for all t > 0.

In light of Lemma 8, Theorem 3 follows from the following theorem.

Theorem 9. For every S ⊆
(
V
`

)
with |S| ≥ c`(t)/p`, there exists B ∈

(
V
<`

)
such that

P
X⊆pV

[ (∀A ∈ SB) A * X ] < e−t.
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Proof. Induction on `. In the base case, let S ⊆ V with |S| ≥ t/p. We have

P
X⊆pV

[ (∀v ∈ S) v /∈X ] = (1− p)|S| < e−p|S| = e−t.

For the induction step, let ` ≥ 2 and let S ⊆
(
V
`

)
with |S| ≥ c`(t)/p`. We consider two cases.

Case 1: There exists j ∈ {1, . . . , ` − 1} and B ∈
(
V
`

)
such that |SB| ≥ c`−j(t)/p

`−j . By the

induction hypothesis, there exists C ∈
(

V
<`−j

)
such that

P
X⊆pV

[ (∀A ∈ (SB)C) A * X ] < e−t.

Since (SB)C = SB∪C , we are done.

Case 2: For all j ∈ {1, . . . , `− 1} and B ∈
(
V
`

)
, we have |SB| < c`−j(t)/p

`−j . As in Theorem 6,
let

µ :=
∑
A∈S

P
X⊆pV

[ A ⊆X ], ∆ :=
∑

(A1,A2)∈S2 :A1∩A2 6=∅

P
X⊆pV

[ A1 ∪A2 ⊆X ].

It suffices to show that µ2/∆ > t.
First, we have the lower bound

µ = p`|S| ≥ c`(t).

We next upper bound ∆:

∆ = µ+
`−1∑
j=1

p2`−j
∑

B∈(Vj )

|{(A1, A2) ∈ S2 : A1 ∩A2 = B}|

≤ µ+

`−1∑
j=1

p2`−j
∑

B∈(Vj )

|SB|2

< µ+ p`
`−1∑
j=1

c`−j(t)
∑

B∈(Vj )

|SB|

= µ+ p`
`−1∑
j=1

c`−j(t)
∑
A∈S

(
`

j

)

= µ+ p`|S|
`−1∑
j=1

(
`

j

)
c`−j(t)

= µ

`−1∑
j=0

(
`

j

)
cj(t).

Therefore,

µ2

∆
>

µ∑`−1
j=0

(
`
j

)
cj(t)

≥ c`(t)∑`−1
j=0

(
`
j

)
cj(t)

= t.

Janson’s Inequality now yields the desired bound PX⊆pV [ (∀A ∈ S) A * X ] < e−t.

4



Remark 10. This bound on ∆ is essentially tight. For i ∈ {1, . . . , `} and C ∈
(
V
i

)
, instead of

upper bounding the number of pairs (A1, A2) ∈ S2 with A1 ∩ A2 = C by |SC |2 (in our bound on
∆), we can instead use inclusion-exclusion to get an equality:

|{(A1, A2) ∈ S2 : A1 ∩A2 = C}| =
∑̀
j=i

(−1)j−i
∑

B∈(Vj ) :C⊆B

|SB|2.

This gives the following exact expression for ∆:

∆ =
∑̀
i=1

p2`−i
∑

C∈(Vi )

|{(A1, A2) ∈ S2 : A1 ∩A2 = C}|

=
∑̀
i=1

p2`−i
∑

C∈(Vi )

∑̀
j=i

(−1)j−i
∑

B∈(Vj ) :C⊆B

|SB|2

=
∑̀
j=1

j∑
i=1

p2`−i(−1)j−i
(
j

i

) ∑
B∈(Vj )

|SB|2

=
∑̀
j=1

p2`−j
j∑

i=1

(−p)j−i
(
j

i

) ∑
B∈(Vj )

|SB|2

=
∑̀
j=1

p2`−j
(

(1− p)j − (−p)j
) ∑

B∈(Vj )

|SB|2.

For small p, the value of (1 − p)j − (−p)j is very close to 1. Even in the case p = 1
2 , we get no

significant improvement; in this case we have

∆ =
∑

j∈{1,3,5,...,2b`/2c−1}

(1/2)2`−j
∑

B∈(Vj )

|SB|2.

This allows us to replace c`(t) in Theorem 3 with the polynomial

d`(t) =
∑̀
k=1

tk
∑

0=j0<j1<···<jk=` :
ji−ji−1 is odd for all i∈{1,...,k}

k∏
i=1

(
ji
ji−1

)
.

However, d`(t) is still lower bounded by `!t` for t > 0. For this reason, it appear that any improve-
ment to Theorem 3 beyond `!t` will require a substantially different proof technique.
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