
CSC2429 / MAT1304: Circuit Complexity March 14, 2019

Lecture 9: Monotone Lower Bounds for CLIQUE (continued)

Instructor: Benjamin Rossman

Note: In these notes I consider the (usual) k-clique function on n-vertex graphs (rather than k-
partite graphs on kn vertices, as in lecture). This changes nothing essential, but simplifies notation
in some places.

I have also revised the definition of approximator to avoid an issue that came up in lecture. (In
lecture I defined “approximator” as function that is both closed and trimmed; here approximators
are monotone functions of the form trim(cl(f)).) This fixes a small issue, but otherwise the proof
is the same.

The k-clique function

Graphs are simple graphs with no isolated vertices: G = (V (G), E(G)) where E(G) ⊆
(
V (G)

2

)
and

V (G) =
⋃
e∈E(G) e.

Let n be a growing parameter. Let G be the set of graphs G with V (G) ⊆ [n]. Since graphs
(with no isolated vertices) are determined by their edge sets, we may identify with graphs with G
with subsets of

(
[n]
2

)
. This allows us to identify G with the hypercube {0, 1}(

n
2). In this sense, we

view functions G → {0, 1} as boolean functions.

f, g, h shall always be monotone functions from G to {0, 1}. (Here monotone means that f(G1) ≤
f(G2) whenever G1 ⊆ G2.) A graph G is a minterm of f if f(X) = 1 and f(X ′) = 0 for all X ′ $ X.
Let Minterms(f) denote the set of minterms of f .

For X ∈ G, let IndX : G → {0, 1} be the X-subgraph indicator function

IndX(G) = 1
def⇐⇒ X ⊆ G.

Every monotone function f : G → {0, 1} is equivalent to the disjunction of subgraph indicators
over its minterms, that is, f =

∨
X∈Minterms(f) IndX .

For a fixed graph H with |V (H)| ≤ k, let GH := {G ∈ G : G is isomorphic to H}. For example,
letting Kk be the complete graph of order k (a.k.a. the k-clique graph), GKk

is the set of k-cliques
among vertices [n]. Let SubH : G → N be defined by

SubH(G) :=
∑
X∈GH

IndX .

That is, SubH(G) is the number of (not necessarily induced) subgraphs of G that are isomor-
phic to H. Finally, for a monotone function f , let MintermsH(f) := Minterms(f) ∩ GH ; that is,
MintermsH(f) is the set of minterms of f that are isomorphic to H.

For a fixed constant k ≥ 3, let k-CLIQUE : G → {0, 1} be the monotone function (i.e., sequence
of monotone functions k-CLIQUEn : Gn → {0, 1}) defined by Minterms(k-CLIQUE) = GKk

. That
is, k-CLIQUE(G) = 1 iff G has a complete subgraph of order k.
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Let Y be a uniform random graph in GKk
. We call Y a “positive test instance”.

Let N be the Erdos-Renyi random graph which includes each potential edge in
(

[n]
2

)
indepen-

dently with probability p = n−2/(k−1). With this choice of p, the probability that N contains a
k-clique is bounded away from 1. This justifies calling N a “negative test instance”.

Lemma 1. P[N contains a k-clique] < 3/4

Proof. By a union bound,

P[N contains a k-clique] ≤
(
n
k

)
p(

k
2) ≤ (en/k)k(n−2/(k−1))(

k
2) = (e/k)k ≤ (e/3)3 < 3/4.

Corollary 2. P[k-CLIQUE(Y) = 1] + P[k-CLIQUE(N ) = 0] > 5/4.

We will show (Theorem 15) that every monotone C satisfies

P[C(Y) = 1] + P[C(N ) = 0] ≤ 1 + o(1) +
size(C)

Ω(nk/4)
.

This implies an Ω(nk/4) lower bound on the monotone circuit size of k-CLIQUE. Moreover, this is
tight in the average-case (for monotone circuit which solve k-CLIQUE with probability 0.9 on the
distribution that is half the time Y and half the time N ).

Small and medium graphs

Definition 3. A graph H is:

• small if |V (H)| < k/2,

• medium if |V (H)| ≥ k/2 and there exist small graphs H1, H2 such that H = H1 ∪H2.

Medium graphs will be responsible for the “bottlenecks” in our lower bound. Note that the
union of two small graphs is either small or medium.

It will be useful to understand the expected value of SubH(N ) when H is small or medium. By
linearity of expectations,

E[SubH(N )] = |GH | · p|E(H)| = |V (H)|!
|Aut(H)|

(
n

|V (H)|
)
p|E(H)| = Θ(n|V (H)|p|E(H)|) = Θ(n|V (H)|− 2

k−1
|E(H)|).

(The constants here depend on k.) If |V (H)| = λk where λ ∈ [0, 1], then we have

|V (H)| − 2
k−1 |E(H)| ≥ λk − 2

k−1

(
λk
2

)
= λk − λk(λk−1)

k−1 ≥ λ(1− λ)k.

It follows that SubH(N ) is close to Ω(nk/4) when |V (H)| is close to k/2. It turns out that Ω(nk/4)
is a lower bound on SubH(N ) for all medium graphs H (this is a simple calculation to work out,
which we omit).

Lemma 4. For every medium graph H,

E[SubH(N )] = Ω(nk/4+Ω(1/k)).
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Closed monotone functions

Definition 5. Set ε := n−3k. A monotone function f : G → {0, 1} is closed if, for every small-or-
medium X ∈ G,

P[f(N ∪X) = 1] ≥ 1− ε =⇒ f(X) = 1,

Note that if f and g are closed, then so is f ∧ g. It follows that every monotone function f has
a unique closure, denoted cl(f), defined as the minimum closed function such that f ≤ cl(f).

Lemma 6. If f is closed and H ⊆ Kk is small-or-medium, then

|MintermsH(f)| ≤ O(k2 log(1/ε))k
2

p|E(H)| =
no(1)

p|E(H)| .

Proof Sketch. Let M = MintermsH(f) and let t = |E(H)|. View elements of M as t-element
subsets of E0.

Erdos-Rado Sunflower Lemma: If |M| ≥ t!st, then M contains a sunflower of size s, that is,
there exist X1, . . . , Xs ∈M such that sets X1\Z, . . . ,Xs\Z are disjoint where Z := (X1∩· · ·∩Xs).

We use the Sunflower Lemma to prove an upper bound on |M| which is weaker than Lemma
6, but conveys the basic idea. Set s := ln(1/ε)/pt. We claim that |M| < t!st. For contradiction,
assume |M| ≥ t!st. Fix a sunflower X1, . . . , Xs ∈M with core Z.

Note that f(Z) = 0, since Z is a proper subset of a minterm of f . However,

P[f(N ∪ Z) = 0] = P[
∧s
i=1(Xi \ Z) * N ]

=
∏s
i=1P[(Xi \ Z) * N ]

= (1− p|Xi\Z|)s ≤ (1− pt)s < e−sp
t

= ε.

This contradicts the fact that f is closed.

This proves the bound

|MintermsH(f)| ≤ t!st ≤
(
t ln(1/ε)

pt

)t
≤ O(k2 ln(1/ε))k

2

p|E(H)|2

(using t = |E(H)| ≤
(
k
2

)
). To prove the stronger bound stated in the lemma (with p|E(H)| in place

of p|E(H)|2 , we use a generalization of the Sunflower Lemma called the “Approximate Sunflower
Lemma” (see http://www.math.toronto.edu/rossman/approx-sunflowers.pdf).

Lemma 7. For every monotone function f : G → {0, 1},

P[f(N ) = 0 and cl(f)(N ) = 1] ≤ O(εnk) = O(n−2k).

Proof. We form an increasing sequence of monotone functions f = h0 < h1 < · · · < ht = cl(f) as
follows. If hi−1 is not closed, then let Xi be any graph in

⋃
H⊆Kk

GH such that

P[hi−1(N ∪Xi) = 1] ∈ [1− ε, 1).

3



(Such Xi exists by definition of closed.) Let hi := hi−1 ∨ IndXi . Note that hi−1 < hi (since
hi−1(Xi) = 0 as a consequence of P[hi−1(N ∪Xi) = 1] < 1). Note that graphs X1, X2, . . . must be
distinct, therefore this process terminates with a closed function ht after t ≤ |

⋃
H⊆Kk

GH | = O(nk)
steps. Finally, by induction we have hi ≤ cl(f) for all i. Therefore, ht = cl(f) (since ht is closed
and ht ≤ cl(f)).

We now have the following bound

P[f(N ) = 0 and cl(f)(N ) = 1] = P[h0(N ) = 0 and ht(N ) = 1]

=
∑t

i=1P[hi−1(N ) = 0 and (hi−1 ∨ IndXi)(N ) = 1]

=
∑t

i=1P[hi−1(N ) = 0 and (Xi ⊆ N )]

≤
∑t

i=1P[hi−1(N ∪ Xi) = 0]

≤ tε (since P[hi−1(N ∪ Xi) = 1] ≥ 1− ε)
= O(εnk)

≤ O(n−2k).

Trimmed monotone functions

Definition 8. A monotone function f : G → {0, 1} is trimmed if every minterm of f is small. For
any f , let trim(f) : G → {0, 1} be the monotone function

trim(f)(G) = 1
def⇐⇒ (∃X ⊆ G)(X is small and f(X) = 1).

Note that trim(f) ≤ f , with equality if and only f is trimmed.

Lemma 9. If f and g are trimmed monotone functions, then all minterms of cl(f ∧g) and cl(f ∨g)
are small-or-medium.

Proof. For any monotone functions f and g, every minterm of f ∧ g is the union of a minterm of
f and a minterm of g. If f are g are trimmed, this means that every minterm of f ∧ g is the union
of two small graphs and is therefore small or medium. Finally, as the proof of Lemma 7 shows,
cl(f∧g) = (f∧g)∨IndX1∨· · ·∨IndXt for some sequence of small-or-medium graphs X1, . . . , Xt ∈ G.
Therefore, every minterm of cl(f ∧ g) is small or medium. Similarly, since all minterms of f ∨ g are
small, the minterms of cl(f ∨ g) are small-or-medium.

Lemma 10. Suppose f is closed and every minterm of f is small or medium. Then

P[f(Y) = 1 and trim(f)(Y) = 0] ≤ 1

Ω(nk/4)
.

Proof. If f(Y) = 1 and trim(f)(Y) = 0, then it must be the case that some medium minterm of f
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is a subgraph of Y. Therefore,

P[f(Y) = 0 and trim(f)(Y) = 1]

≤ P[
∨

medium graphs H
(up to isomorphism)

∨
X∈MintermsH(f∧g)

(X ⊆ Y)]

≤
∑

medium graphs H
(up to isomorphism)

∑
X∈MintermsH(f∧g)

P[X ⊆ Y]

=
∑

medium H⊆Kk

∑
X∈MintermsH(f∧g)

(n−|V (H)|
k−|V (H)|

)(
n
k

)
≤

∑
medium H⊆Kk

|MintermsH(f ∧ g)| · 1

Ω(n|V (H)|)

≤
∑

medium H⊆Kk

no(1)

p|E(H)| ·
1

Ω(n|V (H)|)
(by Lemma 6)

=
∑

medium H⊆Kk

no(1)

Ω(E[SubH(N )])

≤
∑

medium H⊆Kk

no(1)

Ω(nk/4+Ω(1/k))
(by Lemma 4).

Since there are at most 2(k2) = O(1) medium graphs up to isomorphism (each has at most k vertices),
and since nΩ(1/k) dominates no(1), we conclude that this bound is at most 1/Ω(nk/4).

Approximators

Definition 11. Let A := {trim(cl(h)) : h is a monotone function}. Functions in A are called
approximators. We define operations t,u : A×A → A as follows: for approximators f, g ∈ A, let

f t g := trim(cl(f ∨ g)),

f u g := trim(cl(f ∧ g)).

Note that every edge-indicator function Inde (where e ∈ E0) is an approximator.

Definition 12. If C is a monotone {∨,∧}-circuit (with inputs labeled by edge-indicators Inde), let
CA be the corresponding {t,u}-circuit, which computes an approximator.

We now show that CA closely approximates C (with one-sided error) on both distributions Y
and N .
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First, we bound the error on Y:

P[(f ∧ g)(Y) = 1 and (f u g)(Y) = 0]

= P[(f ∧ g)(Y) = 1 and trim(cl(f ∧ g))(Y) = 0]

≤ P[cl(f ∧ g)(Y) = 1 and trim(cl(f ∧ g))(Y) = 0] (since f ∧ g ≤ cl(f ∧ g))

≤ 1/Ω(nk/4) (by Lemmas 9 and 10),

P[(f ∨ g)(Y) = 1 and (f t g)(Y) = 0]

= P[(f ∨ g)(Y) = 1 and trim(cl(f ∨ g))(Y) = 0]

≤ P[cl(f ∨ g)(Y) = 1 and trim(cl(f ∨ g))(Y) = 0] (since f ∨ g ≤ cl(f ∨ g))

≤ 1/Ω(nk/4) (by Lemmas 9 and 10).

It follows that

P[C(Y) = 1 and CA(Y) = 0] ≤ size(C)

Ω(nk/4)
.

Next, we bound the error on N :

P[(f ∧ g)(N ) = 0 and (f u g)(N ) = 1]

= P[(f ∧ g)(N ) = 0 and trim(cl(f ∧ g))(N ) = 1]

≤ P[(f ∧ g)(N ) = 0 and cl(f ∧ g)(N ) = 1] (since trim(cl(f ∧ g)) ≤ cl(f ∧ g))

≤ 1/Ω(n2k) (by Lemma 7),

P[(f ∨ g)(N ) = 0 and (f t g)(N ) = 1]

= P[(f ∨ g)(N ) = 0 and trim(cl(f ∨ g))(N ) = 1]

≤ P[(f ∨ g)(N ) = 0 and cl(f ∨ g)(N ) = 1] (since trim(cl(f ∨ g)) ≤ cl(f ∨ g))

≤ 1/Ω(n2k) (by Lemma 7).

It follows that

P[C(N ) = 0 and CA(N ) = 1] ≤ size(C)

Ω(n2k)
.

Combining these bounds, the denominator Ω(nk/4) dominates and we get

Lemma 13. P[C(Y) = 1 and CA(Y) = 0] + P[C(N ) = 0 and CA(N ) = 1] ≤ size(C)

Ω(nk/4)
.

It remains to show that every approximator makes many one-sided errors on at least one of Y
and N :

Lemma 14. For every approximator f ∈ A, we have

P[f(Y) = 1] + P[f(N ) = 0] ≤ 1 + o(1).
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Proof. If f ≡ 1, we are done. So we assume f 6≡ 1 and will show that P[f(Y) = 1] = o(1).

By definition of A, there exists a closed monotone function h such that f = trim(h). Note that
h 6≡ 1, since trim(1) = 1 (this is because 1 has the small minterm ∅). Therefore,

f = trim(h) =
∨

nonempty small graphs H
(up to isomorphism)

∨
X∈MintermsH(h)

IndX .

Therefore,

P[f(Y) = 1] ≤
∑

nonempty small graphs H
(up to isomorphism)

∑
X∈MintermsH(f∧g)

P[X ⊆ Y]

≤
∑

nonempty small graphs H
(up to isomorphism)

|MintermsH(f ∧ g)| ·

(n−|V (H)|
k−|V (H)|

)(
n
k

)

≤
∑

nonempty small graphs H
(up to isomorphism)

no(1)

p|E(H)| ·
1

Ω(n|V (H)|)
(by Lemma 6)

=
∑

nonempty small graphs H
(up to isomorphism)

no(1)

Ω(E[SubH(N )])
.

This bound is o(1), since E[# of H-subgraphs of N ] ≥ nΩ(1) (in fact, ≥ Ω(n2−2/(k−1))) for every
nonempty small H.

Combining Lemma 13 and 14, we get

Theorem 15. For every monotone circuit C,

P[C(Y) = 1] + P[C(N ) = 0] ≤ P[C(Y) = 1 and CA(Y) = 0] + P[CA(Y) = 1]

+ P[C(N ) = 0 and CA(N ) = 1] + P[CA(N ) = 0]

≤ 1 + o(1) +
size(C)

Ω(nk/4)
.

Since P[k-CLIQUE(Y) = 1] + P[k-CLIQUE(N ) = 0] > 5/4, it follows that:

Corollary 16. Monotone circuits computing k-CLIQUE require size Ω(nk/4).
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