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1 Introduction

Let k > 3 be a fixed constant. Let k-CLIQUE : {0, 1}(
n
2) → {0, 1} be the Boolean function which,

given a graph G represented by an element of {0, 1}(
n
2), outputs 1 if and only if G contains a clique

of k vertices. It is easy to build a (monotone) circuit of size O(nk) for k-CLIQUE by considering
a brute-force algorithm. It is widely conjectured that the non-monotone circuit size of k-CLIQUE
is nΩ(k).

The best algorithm known for k-CLIQUE in the worst-case runs on time O(ndk/3eω), where ω
is the matrix multiplication exponent, currently known to satisfy ω < 2.373. The algorithm gener-
alizes the observation that a graph G has a triangle if and only if Trace(A3

G) > 0, where AG is the
adjacency matrix of G.

Proposition 1. There exists an O(ndk/3eω) algorithm computing k-CLIQUE on the worst-case.

1.1 The average-case

Let G(n, p) the Erdös-Rnyi random graph on n vertices, where each edge appears independently
with probability p. It is widely known that there exists a probability pKk

c = pKk
c (n) = Θ(n−2/(k−1))

such that Pr[G(n, pKk
c ) contains a k-clique] = 1/2. It is also widely conjectured that the non-

monotone circuit size of k-CLIQUE is nΩ(k) in the average-case under the G(n, pKk
c ) distribution.

1.2 Why k constant?

When k is constant, clearly O(nk) is a polynomial bound. However, seeing k-CLIQUE as a problem
parametrized by k, one readily obtains the following.

Proposition 2. If there exists c(k), ε(k) such that limk→∞ ε(k) → ∞ and C(k-CLIQUEn) >
c(k)Ω(nε(k)), then P 6= NP.

1.3 The slice case

Let G(n,m) be the random graph chosen uniformly at random from the n-vertex graphs with
exactly m edges. Together with Proposition 2, one can easily see from Berkowitz’ argument from
previous lectures that, if the monotone circuit size of k-CLIQUE under G(n,m) is nΩ(k), then
P 6= NP.

2 A greedy algorithm for the average-case

We now consider a randomized greedy algorithm for finding cliques in the graph G∼G(n, pKk
c ).

First choose a vertex v1 of G uniformly at random, then choose among the neighbors of v1 a
vertex v2 uniformly at random, then choose among the common neighbors of v1, v2 a vertex v3
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uniformly at random, and keep doing this until you find a maximal clique of size, say, `. This takes
time ` · n, which is O(n) with high probability.

We claim that this algorithm produces a clique of size at least (k − 1)/2 almost surely.

Claim 3. If i < (k − 1)/2, then w.h.p there exists a common neighbor between v1, v2, . . . , vi.

Proof. We have

Pr[6∃ common neighbor] = (1− pi)n−i 6 en
−2i/(k−1)(n−i) = e−n

Ω(1)
= o(1).

By the same argument, one can also see that it suffices to run the greedy algorithm nε
2k times

to find a clique of size (1/2 + ε)k in G. By taking ε = 1/2, we obtain an algorithm running in time
nk/4+O(1) that computes k-CLIQUE on G(n, pKk

c ).

2.1 Karp’s conjecture

It can be seen by a calculation that the random graph G(n, 1/2) contains a clique of size ∼ 2 log n
with high probability. Therefore, the greedy algorithm finds a clique of size ∼ log n with high
probability. In light of this, Karp made the following conjecture.

Conjecture 4 (Karp’s conjecture). For every ε > 0, there does not exists a polynomial-time
algorithm which finds a clique of size (1 + ε) log n in G(n, 1/2) w.h.p.

One can “scale down” this conjecture to the G(n, pKk
c ) case in the following way.

Conjecture 5. For every 0 < ε < 1/2, there does not exist an algorithm running in time O(nε
2k)

which finds a clique of size (1/2 + ε)k in G(n, pKk
c ) w.h.p.

3 Razborov’s lower bound

Theorem 6 (Razborov ’85). For every constant k, we have

C(k-CLIQUE) = Ω

(
n

(log n)2

)k

.

The proof uses the “sunflower-plucking approximation method”, which will be unfolded in the
next lectures. Observe that this lower bound is bigger than the upper bound given in Proposition 1,
which evidences a gap between monotone and non-monotone complexity.

Let Y be the distribution on n-vertex graphs which chooses a set K ∈
([n]
k

)
uniformly at random

and outputs a graph with a clique in K and no other edges. Let N be the distribution on n-vertex
graphs which chooses a function c : [n] → [k − 1] uniformly at random and outputs a graph with
edges between vertices i, j ∈ [n] if and only if c(i) 6= c(j). Clearly, graphs in the support of N
are k-clique-free. Razborov’s lower bound can be interpreted as considering the distribution which
is half of the time Y and half of the time N , and proving a 1/2 + o(1) correlation bound with
k-CLIQUE for small circuits.
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3.1 The approximation method

Razborov’s lower bound introduces a technique known as the “approximation method”, which we
outline here. Let B+ denote the set of all monotone function G → {0, 1}. For f, g ∈ B+, we write
f 6 g iff f(X) 6 g(X) for all X ∈ G. Note that B+ is a lattice under the partial order 6: the least
upper bound and greatest lower bound of f and g are given by f ∨ g and f ∧ g.

The idea of the approximation method is to replace B+ with a subset A ⊆ B+ which is also a
lattice under 6. We call functions in A approximators, and we denote by f t g and f u g the l.u.b.
and g.l.b. of two approximators f and g. (Note: For general f, g ∈ A, functions f t g, f u g ∈ A
need not coincide with f ∨ g and f ∧ g.) We also require A to contain all coordinate functions
x 7→ xi (that is, edge-indicator functions in the case of k-CLIQUE).

For any monotone DeMorgan circuit C (with binary ∨ and ∧ gates and inputs labeled by edge-
indicators), we may now consider the “approximator circuit” CA obtained from C by replacing each
∨ (resp. ∧) gate with a t (resp. u) gate. (Whereas C could be computing an arbitrary monotone
function, the function computed by CA is always an approximator.)

The key to the approximation method is defining an appropriate approximator lattice A. We
require the following properties of A:

1. For every approximator f ∈ A,

Pr[f(Y) = 1] + Pr[f(N ) = 0] 6 1 + o(1).

(In contrast, Pr[k-CLIQUE(Y) = 1] + Pr[f(N ) = 0] = 2. It follows that k-CLIQUE has
correlation at most 1

2 + o(1) with any approximator under the distribution X which is Y half
of the time and N half of the time.)

2. For all approximators f, g ∈ A,

Pr[(f ∨ g)(Y) = 1 and (f t g)(Y) = 0] 6 δ,

Pr[(f ∧ g)(Y) = 1 and (f u g)(Y) = 0] 6 δ,

Pr[(f ∨ g)(N ) = 0 and (f t g)(N ) = 1] 6 δ,

Pr[(f ∧ g)(N ) = 0 and (f u g)(N ) = 1] 6 δ,

for some small constant δ (which equals O( (logn)2

n )k in Razborov’s proof, in the regime where
k is a fixed constant).

Property 2 bounds the approximation error per gate when we replace C with CA: that is,

Pr[C(Y) = 1 and CA(Y) = 0] 6 δ · size(C),
Pr[C(N ) = 0 and CA(N ) = 1] 6 δ · size(C).

It follows that

Pr[C(Y) = 1] + Pr[C(N ) = 0] 6 Pr[C(Y) = 1 and CA(Y) = 0] + Pr[CA(Y) = 1]

+ Pr[C(N ) = 0 and CA(N ) = 1] + Pr[CA(N ) = 0]

6 1 + o(1) + δ · size(C).
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This implies a lower bound Ω(1/δ) on the monotone circuit size of k-CLIQUE (or whatever the
target function f , provided the distribution Y and N satisfy Pr[f(Y) = 1] + Pr[f(N ) = 0] >
1 + Ω(1)).

In the next lecture, we will use the approximation method to prove a different lower bound for
k-CLIQUE.
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