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Lecture 8: Monotone lower bounds for CLIQUE

Instructor: Benjamin Rossman Scribe: Bruno Pasqualotto Cavalar

1 Introduction

Let k > 3 be a fixed constant. Let k-CLIQUE : {0, 1}(3) — {0,1} be the Boolean function which,

given a graph G represented by an element of {0, 1}(2), outputs 1 if and only if G contains a clique
of k vertices. It is easy to build a (monotone) circuit of size O(n*) for k-CLIQUE by considering
a brute-force algorithm. It is widely conjectured that the non-monotone circuit size of k-CLIQUE
is nf(k),

The best algorithm known for k-CLIQUE in the worst-case runs on time O(n!*/31w), where w
is the matrix multiplication exponent, currently known to satisfy w < 2.373. The algorithm gener-
alizes the observation that a graph G has a triangle if and only if Trace(A?é) > 0, where Ag is the

adjacency matrix of G.

Proposition 1. There exists an O(n““/:ﬂw) algorithm computing k-CLIQUE on the worst-case.

1.1 The average-case

Let G(n,p) the Erdés-Rnyi random graph on n vertices, where each edge appears independently
with probability p. It is widely known that there exists a probability p&r = p&k(n) = ©(n=2/(k=1))

such that Pr[G(n,pX*) contains a k-clique] = 1/2. It is also widely conjectured that the non-
monotone circuit size of k-CLIQUE is n®**) in the average-case under the G(n, pXr) distribution.

1.2 Why k constant?

When k is constant, clearly O(n*) is a polynomial bound. However, seeing k-CLIQUE as a problem
parametrized by k, one readily obtains the following.

Proposition 2. If there exists c(k),e(k) such that limg_,. (k) — oo and C(k-CLIQUE,) >
c(k)Q(ne®), then P # NP.

1.3 The slice case

Let G(n,m) be the random graph chosen uniformly at random from the n-vertex graphs with
exactly m edges. Together with Proposition 2, one can easily see from Berkowitz’ argument from
previous lectures that, if the monotone circuit size of k-CLIQUE under G(n,m) is nf2k)  then
P # NP.

2 A greedy algorithm for the average-case

We now consider a randomized greedy algorithm for finding cliques in the graph G ~G(n, p&*).
First choose a vertex vy of G uniformly at random, then choose among the neighbors of v a
vertex ve uniformly at random, then choose among the common neighbors of vi,vs a vertex ws



uniformly at random, and keep doing this until you find a maximal clique of size, say, £. This takes
time £ - n, which is O(n) with high probability.
We claim that this algorithm produces a clique of size at least (k — 1)/2 almost surely.

Claim 3. Ifi < (k—1)/2, then w.h.p there exists a common neighbor between vi,va,. .., v;.

Proof. We have

Pr[Z common neighbor] = (1 — p")" ™" < en i) o o o(1). O
By the same argument, one can also see that it suffices to run the greedy algorithm ne’k times

to find a clique of size (1/2+¢)k in G. By taking ¢ = 1/2, we obtain an algorithm running in time
nk/4+O0) that computes k-CLIQUE on G(n, p&*).

2.1 Karp’s conjecture

It can be seen by a calculation that the random graph G(n,1/2) contains a clique of size ~ 2logn
with high probability. Therefore, the greedy algorithm finds a clique of size ~ logn with high
probability. In light of this, Karp made the following conjecture.

Conjecture 4 (Karp’s conjecture). For every ¢ > 0, there does not exists a polynomial-time
algorithm which finds a clique of size (1 + ¢)logn in G(n,1/2) w.h.p.

One can “scale down” this conjecture to the G(n,pZ*) case in the following way.

Conjecture 5. For every 0 < & < 1/2, there does not exist an algorithm running in time O(nezk)
which finds a clique of size (1/2 + ¢)k in G(n,pX*) w.h.p.

3 Razborov’s lower bound

Theorem 6 (Razborov ’85). For every constant k, we have

k
n
C(k-CLIQUE) = Q ((logn)2> .

The proof uses the “sunflower-plucking approximation method”, which will be unfolded in the
next lectures. Observe that this lower bound is bigger than the upper bound given in Proposition 1,
which evidences a gap between monotone and non-monotone complexity.

Let Y be the distribution on n-vertex graphs which chooses a set K € ([Z]) uniformly at random
and outputs a graph with a clique in K and no other edges. Let A be the distribution on n-vertex
graphs which chooses a function ¢ : [n] — [k — 1] uniformly at random and outputs a graph with
edges between vertices i,j € [n] if and only if ¢(i) # ¢(j). Clearly, graphs in the support of N
are k-clique-free. Razborov’s lower bound can be interpreted as considering the distribution which
is half of the time Y and half of the time N, and proving a 1/2 4+ o(1) correlation bound with
k-CLIQUE for small circuits.



3.1 The approximation method

Razborov’s lower bound introduces a technique known as the “approximation method”, which we
outline here. Let BT denote the set of all monotone function G — {0,1}. For f,g € Bt, we write
f<giff f(X) < g(X) for all X € G. Note that B is a lattice under the partial order <: the least
upper bound and greatest lower bound of f and g are given by fV g and f Ag.

The idea of the approximation method is to replace B* with a subset A C Bt which is also a
lattice under <. We call functions in A approzimators, and we denote by f1lg and f Mg the Lu.b.
and g.L.b. of two approximators f and g. (Note: For general f,g € A, functions flUg,fMNg € A
need not coincide with f VvV g and f A g.) We also require A to contain all coordinate functions
x — x; (that is, edge-indicator functions in the case of k-CLIQUE).

For any monotone DeMorgan circuit C' (with binary V and A gates and inputs labeled by edge-
indicators), we may now consider the “approximator circuit” C** obtained from C' by replacing each
V (resp. A) gate with a U (resp. 1) gate. (Whereas C' could be computing an arbitrary monotone
function, the function computed by C is always an approximator. )

The key to the approximation method is defining an appropriate approximator lattice A. We
require the following properties of A:

1. For every approximator f € A,
Pr[f(¥) =1] + Pr[f(N) = 0] < 1+ o(1).

(In contrast, Pr[k-CLIQUE(Y) = 1] + Pr[f(N) = 0] = 2. It follows that k-CLIQUE has
correlation at most % + o(1) with any approximator under the distribution X" which is ) half
of the time and N half of the time.)

2. For all approximators f,g € A,

Pr[(fVg)(¥) =1and (fUg)(Y) =0] <4,
Pr((f Ag)(Y)=T1and (fMg)(Y) =0] <4,
Pr[(f Vv g)(N)=0and (fUg)(N)=1] <9,
Pr[(f Ag)(N) =0and (fMg)(N)=1] <4,

for some small constant § (which equals O(M)k in Razborov’s proof, in the regime where

k is a fixed constant).
Property 2 bounds the approximation error per gate when we replace C with C: that is,
Pr[C(Y) =1 and CA(Y) = 0]
Pr[C(N) =0 and CA(N) = 1]
It follows that
Pr[C(Y) = 1] + Pr[C(N) = 0] < Pr[C(Y) = 1 and CA(Y) = 0] + Pr[CA(Y) = 1]

+ Pr[C(N) = 0 and CHN) = 1] + Pr[CA(N) = 0]
<1+o0(1)+ 9 - size(C).



This implies a lower bound €2(1/6) on the monotone circuit size of k-CLIQUE (or whatever the
target function f, provided the distribution )} and N satisfy Pr[f(Y) = 1] + Pr[f(N) = 0] >
1+Q(1)).

In the next lecture, we will use the approximation method to prove a different lower bound for
k-CLIQUE.
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