
CSC2429 / MAT1304: Circuit Complexity January 10, 2019

Lecture 1: DeMorgan Circuits and Formulas

Instructor: Benjamin Rossman Scribe: Lily Li

Overview

Section 1: Administrivia.

Section 2: Basic Definitions. Define Boolean function f , DeMorgan circuits, circuits size C(f), leaf
size L(f), and depth of a circuit.

Section 3: Uniform vs. Concrete Models of Computation. Define uniform and non-uniform models
of computation. Circuits can efficiently simulate Turing Machines.

Section 4: Balancing Formulas. Spira 1971, relates leaf-size of a formula and its depth.

Section 5: Circuit Size of Almost All Boolean Functions. Lupanov 1958, upper bound of O(2n/n)
for all n-ary Boolean functions. Shannon 1949, proved matching lower bound for almost all
functions.

1 Administrivia

• Instructor: Ben Rossman.

• Course Info: Available at the course website. Just in case the website is down: lectures are
Thursdays from 16:00 to 18:00 in Bahen B026. Office hours are by appointment.

• Textbook: Boolean Function Complexity by Stasys Junkha. This is available as a free eBook
through the University of Toronto library.

• Prerequisites: No formal course prerequisites. Please read Appendix A.1 of the textbook
(background on probability) and make sure you understand the material.

• Workload: Homework assignment(s), scribe notes, short paper report (max 10 pages), and
optional class presentation.

2 Basic Definitions

Definition 1. A n-ary Boolean function f is a function of the form f : {0, 1}n → {0, 1}.
Usually we interpret (0, 1) as (FALSE,TRUE) or as (1,−1) — this makes sense if you think of it
as (−1)0 and (−1)1.
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Let {0, 1}∗ = ∪n∈N{0, 1}n. We typically refer to a (family of) Boolean function(s) f : {0, 1}∗ →
{0, 1}. This corresponds to a sequence of functions fn : {0, 1}n → {0, 1} and to a language
L ⊆ {0, 1}∗ described by its characteristic function fL : {0, 1}∗ → {0, 1}.

Example 2. The following are some examples of n-ary Boolean functions:

1. PARITY (x1, ..., xn) =
∑n

i=1 xi mod 2.

2. MODp(x1, ..., xn) = 1 ⇐⇒
∑n

i=1 xi ≡ 0 mod p.

3. MAJORITYn(x1, ..., xn) = 1 ⇐⇒
∑n

i=1 xi ≥ dn/2e.

4. k − CLIQUE : {0, 1}(
n
2) → {0, 1}. Think of each graph G as an indicator vector 1G over its(

n
2

)
edges. Then k − CLIQUE(1G) = 1 if and only if G has a k-clique.

Let us consider DeMorgan circuits. These contain logical connectives {∨,∧,¬}, input variables
{x1, ..., xn}, and constants {0, 1}.

Definition 3. A n-ary DeMorgan circuit is a finite directed acyclic graph (DAG) with nodes
labelled as follows:

• Nodes of in-degree zero (“inputs”) are labelled by a variable or a constant.

• Non-input nodes (“gates”) of in-degree one are labelled with ¬. Gates of in-degree two are
labelled with ∨ or ∧.

• A subset of the nodes are designated as “outputs” (default assumption: there is a single output
node with out-degree zero).

An n-ary circuit with m output gates computes a function {0, 1}n → {0, 1}m. Two circuits are
equivalent if they compute the same function.

Formulas are tree-like circuits. Since different branches in a formula depend on different copies
of the variables, formulas are memory-less. See Figure 1. Proving that formulas are polynomially
weaker than circuits is still an open problem.

Definition 4. The size of a circuit is the number of ∨ and ∧ gates it contains.

The leaf-size of a formula is the number of leaves in its associated DAG. This is one more than
the circuit size as defined above.

The circuit size of an n-ary Boolean function f : {0, 1}n → {0, 1}, written C(f), is the minimum
size of a circuit computing f . Similarly, the formula (leaf) size of f , written L(f), is the
minimum size of a formula computing f .

The depth of a circuit is the maximum number of ∧ and ∨ gates on any input to output path.

For example, note that C(ANDn) = n−1 and L(ANDn) = n. The upper bounds are obvious and the
lower bounds follow from the fact that any circuit of size n− 1 or formula of leaf-size n depends on
at most n variables (easy exercise). In the next lecture, we will show that C(PARITYn) = 3(n− 1)
and L(PARITY) = Θ(n2).
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Figure 1: (Left) Formula computing x⊕ y. (Right) Circuit computing x⊕ y⊕ z.

2.1 Other ways of measuring size

Other ways of counting the size of a circuit include: (1) counting the number of wires and (2)
counting all gate types (including ¬ gates). It turns out that the result of these calculations differ
from our definition above by at most a factor of two.

It is often convenient to consider circuits and formulas where negations appear only above variables.

Definition 5. A circuit is in negation normal form if the input to every ¬ gate is a variable.
See Figure 2.
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Figure 2: Apply DeMorgan’s Law to all ¬ gates whose inputs are not literals on the left circuit to
get the equivalent right circuit in negation normal form.

Every circuit can be put into negation normal form by repeatedly applying DeMorgan’s Law to
push all ¬ gates to the bottom. Once a circuit is in negation normal form, we can forget about ¬
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gates if we instead interpret inputs as literals (variables or their negations).

Claim 6. Every formula F is equivalent to a formula of the same leaf-size in negation normal
form. Every circuit C of size m is equivalent to a circuit in negation normal form of size ≤ 2m.

The factor 2 blow-up for circuits comes from the fact that for each gate g in C, we need gates
representing the functions g and 1 − g (in the case where g has outgoing wires to both a ¬ gate
and a ∧ or ∨ gate).

2.2 General Bases (sets of gates)

A basis B is a set of Boolean functions (or “gate types”). Examples of basis include:

• DeMorgan basis: {∧,∨,¬}.

• Full binary basis: all Boolean functions {0, 1}2 → {0, 1} (for example, you would get ⊕).

• Monotone basis: {∧,∨} (NOT universal).

• AC0 basis: {∧k,∨k,¬ : k ∈ N} which are unbounded fan-in ∧ and ∨ gates.

For a function f , let LB(f) and CB(f) be the leaf and circuit size of f with formulas and circuits built
from gates of basis B. A basis is universal if it computes all functions. For any two universal bases
B1 and B2 it is possible to build a circuit using gates from B1 which simulates any gate from B2. If
all functions in B1 and B2 have constant arity, it follows that CB2(f) = O(CB1(f)); for formula size,
the relation is LB2(f) = LB1(f)O(1). (Exercise: Make sure you understand why.) This polynomial
blow-up is unavoidable in some cases. Recall the function PARITYn: in the DeMorgan basis
L{∧,∨,¬}(PARITYn) = Θ(n2), whereas Lfull binary basis(PARITYn) = L{⊕}(PARITYn) = n− 1.

3 Uniform vs. Concrete Models of Computation

Definition 7. A uniform model of computation is a single machine/program with a finite
description which operates on all inputs in {0, 1}∗. Examples range from simple finite automata
(where we have lower bounds ala the pumping lemma) to complex Turing Machines (lower bounds
much harder to come by).

Recall that a language L ⊆ {0, 1}∗ can be interpreted as a sequence of functions (f0, f1, ...) where
fn : {0, 1}n → {0, 1} and fn(x) = 1 ⇐⇒ x ∈ L for any x ∈ {0, 1}n. A non-uniform (concrete)
model of computation is a sequence (C0, C1, ...) of combinatorial objects (namely circuits) where
Cn computes fn. Examples include: circuits in the DeMorgan basis, restricted class of circuits
(formulas, monotone model), decision trees, etc.

Observe that the non-uniform model of computation is more powerful than the uniform one since
the finite program can be used as every combinatorial objects in the sequence. It follows that
lower bounds in the non-uniform model also imply lower bounds in the uniform model. While

4



upper bounds in the uniform model imply upper bounds in the non-uniform model. We want:
unconditional lower bounds.

Circuits efficiently simulate Turing Machines.

Lemma 8. Any Turing Machine (TM) M with running time t(n) can be simulated by a circuit
(family of) of size O

(
t(n)2

)
.

Exercise for the reader. Hint: think about configurations of the Turing Machines as a t(n)×t(n) grid
and construct a circuit for every grid cell. Fischer and Pipenger (1979) proved an O(t(n) log t(n))
upper bound on oblivious Turing Machines1. It is unknown if we can do better.

Corollary 9. If there is a super polynomial lower-bound (better than Ω(nc) for all constants c > 0)
on the circuit size of any language in NP, then P 6= NP.

Finding the lower-bound would actually show NP 6⊆ P/poly where P/poly is the class of languages
decidable by poly(n)-size circuits.

We will see some polynomial lower bounds for formulas in the DeMorgan basis later on. As a
historical curio, the following is a catalogue of lower bound results for an explicit Boolean function:

1. Ω(n1.5) Subboboskay ’61

2. Ω(n2) Khrapchenko ’71

3. Ω(n2.5−o(1)) Andreev ’83

4. Ω(n3−o(1)) H̊astad ’98 (this is the state of the art until very recently).

4 Balancing Formulas

Next we consider the relationship between depth and formula leaf-size (in the DeMorgan basis).
First observe that every circuit of depth d is equivalent to a formula of depth d and size at most
2d. To see this, take the circuit and duplicate any branches that get reused. The resulting binary
tree has at most as many nodes as a perfect binary tree of depth d, namely 2d.

The next theorem shows the converse: that every formula of size s can be “balanced” to obtain a
formula of depth O(log s).

Theorem 10. (Spira 1971). Every formula with leaf-size s is equivalent to a formula of depth
O(log s) (2 log3/2(s) to be exact) and thus size at most sO(1) (s2/ log2(3/2)).

Proof. By induction on s. The base case is trivial. Let F be the original formula and g be some gate.
Let Fg be the sub-formula rooted at g. For b ∈ {0, 1}, let F (g←b) be the formula with g replaced
with the constant value b. See Figure 3. Note that L(F ) = L (Fg) +L

(
F (g←b)

)
. Minimize L(F ) by

balancing the two terms on the RHS. By Claim 11, we can find a gate g such that s
3 ≤ L(Fg) ≤ 2s

3 .

1An oblivious TM is one whose head motion depends only on the size of the input and not its particular bits.

5



g

F F (g b)Fg

b

Figure 3: Illustration of gate g and formulas Fg and F g←b.

Note that F ≡
(
Fg ∧ F (g←1)

)
∨
(
(¬Fg) ∧ F (g←0)

)
; Fg must evaluate to 0 or 1 and the formula does

just that. Apply the induction hypothesis to the four formulas Fg, F (g←1), ¬Fg, and F (g←0) to get
formulas of depth ≤ 2 log3/2(2s/3). The original formula F can only grow by at most depth two so

depth(F ) ≤ max
{

depth (Fg) ,depth
(
F (g←1)

)
,depth (¬Fg) , depth

(
F (g←0)

)}
+ 2

≤ 2 log3/2
2s

3
+ 2

= (2 log3/2 s− 2) + 2

= 2 log3/2 s

Thus there exists a formula equivalent to F of depth at most O(log s).

Claim 11. There exists a gate g such that Fg has leaf-size between s
3 and 2s

3 leaves.

Proof. Let r  ` be a root to leaf path in the DAG containing the most ∧/∨ gates. At the root
r, L(Fr) = L(F ) = s and at the leaf `, L(F`) = 1. Starting at r and moving down to `, the
successive leaf-sizes can at most halve after each step. Thus there must exists a gate g for which
s
3 ≤ L(Fg) ≤ 2s

3 .

5 Circuit Size of Almost All Boolean Functions

5.1 Upper Bound

Given a function f : {0, 1}n → {0, 1}, let us consider some upper bounds for C(f).

1. Brute force DNF: O(n2n). There are 2n rows in the truth table of f . Each row specifies the
output given the n inputs. Thus a clause with n− 1 ∧ gates represents each row of the table.
Formally we consider the expression

f(x) =
∨

a∈f−1(1)

(x = a) =
∨

a∈f−1(1)

(l1 ∧ l2 ∧ · · · ∧ ln−1 ∧ ln)

where li = xi if ai = 1 and li = xi otherwise.
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2. Function decomposition: O(2n). Observe that

f(x) ≡ (xn ∧ f1(x)) ∨ (xn ∧ f0(x)) .

where f1 = f(x1, ..., xn−1, 1) and f0 = f(x1, ..., xn−1, 0). Thus

C(f) ≤ C(f1) + C(f0) + 3.

Apply the decomposition recursively to f1 and f0. Generally at step k,

C(f) ≤
∑

a∈{0,1}k
C(fa) + 3(2k − 1)

where fa(x) = f(x1, ..., xn−k, a1, ..., ak). Since f(a) is a constant at the nth step, 3(2n − 1) is
an upper bound on the circuit size of f .

3. Computation reuse: O(2n/n). See Theorem 13 below.

Let ALLn : {0, 1}n → {0, 1}22
n

be the function which calculates all the n-ary Boolean functions at
the same time2. That is (ALLn(x))f := f(x) for any n-ary Boolean function f .

Claim 12. C(ALLn) ≤ O(22
n
).

Proof. Similar to the function decomposition analysis. For every function f in the output of ALLn,
f(x) ≡ (xn ∧ f1(x)) ∨ (xn ∧ f0(x)) where f1 = f(x1, ..., xn−1, 1) and f0 = f(x1, ..., xn−1, 0). Note
that f1 and f0 are outputs of ALLn−1. See Figure 4. Since ALLn has 22

n
outputs,

C(ALLn) ≤ C(ALLn−1) + 3
(
22

n)
= c

(
22

n−1
)

+ 3
(
22

n) ∈ O
(
22

n)
for some constant c.

Theorem 13. (Lupanov 1958) Every n-ary Boolean function has circuit size O(2n/n)

Proof. The key idea is to use ALLn−k in place of {fa : a ∈ {0, 1}k} in the analysis of function
decomposition. Formally, we have

C(f) ≤
∑

a∈{0,1}k
C(fa) + 3(2k − 1) ≤ C(ALLn−k) + 3(2k − 1) ≤ O

(
22

n−k
)

+ O(2k)

where the last inequality follows from Claim 12. Observe that the two terms on the RHS are
balanced when k = n− log(n− log n) since

O
(

22
n−k
)

+ O
(

2k
)

= O
(

22
log(n−logn)

)
+ O

(
2n−log(n−logn)

)
= O

(
2n−logn

)
= O (2n/n)

It follows that the circuit complexity of all n-ary Boolean function is bounded above by O(2n/n).

2To see that the range of ALLn is indeed 22
n

, recall that the domain of every n-ary Boolean function is 2n. There
is a bijection between the set of functions and the power set of {0, 1}n (of size 22

n

).
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Figure 4: Obtaining a circuit for ALLn from a circuit for ALLn−1.

5.2 Lower Bound

Prior to Lupanov’s result above, Shannon showed a matching lower bound.

Theorem 14. (Shannon 1949) Almost all n-ary Boolean functions (as n → ∞) have circuit size
O(2n/n).

Proof. Use a counting argument. Recall the number of n-ary Boolean functions is 22
n

and let
s = 2n

n . We will show that the number of Boolean functions which can be computed by circuits
of size s is � 22

n
. Let A be the set of all n-ary circuits with 2n literals, x1, ..., xn, x1, ..., xn, and

s gates, denoted g1, ..., gs. We obtain an upper bound on the number of circuits in A as follows.
Each circuit can use any subset of the s gates. Each ∧/∨ gate can pick two inputs from the 2n
literals and s− 1 other gates. If n is sufficiently large (say n ≥ 100), then s + 2n < 3s so

|A| ≤ 2s(s + 2n)2s ≤ 18ss2s.

Observe that every n-ary function with C(f) ≤ s is computed by at least s! distinct circuits in A,
since we can permute the labels on the s gates. (Exercise: Complete this observation by showing
that f is computed by some C ∈ A which has no symmetries under permutations of gate labels
g1, . . . , gs.) Thus the total number of Boolean functions computed by circuits in A is at most |A|s! .
Recall that s! ≥

(
s
e

)s
. For s = 2n

n ,

|A|
s!
≤ 18ss2s

(s/e)s
≤ 50sss = 502

n/n

(
2n

n

)2n/n

=

(
50

n

)2n/n

(2n)2
n/n ≤ 22

n−2n/n

since n ≥ 100. Thus at least 2s Boolean formulas have circuit size greater than s.
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