Classification of noncollapsed translators in \mathbb{R}^4

Robert Haslhofer

(joint work with Kyeongsu Choi, Or Hershkovits)

In the analysis of mean curvature flow it is crucial to understand ancient noncollapsed flows. We recall that a mean curvature flow M_t is called ancient if it is defined for all $t \ll 0$, and noncollapsed if it is mean-convex and there is an $\alpha > 0$ such that every point $p \in M_t$ admits interior and exterior balls of radius at least $\alpha/H(p)$. In particular, thanks to the work of White [14] it is known that all blowup limits of mean-convex mean curvature flow are ancient noncollapsed flows.

In a recent breakthrough, Brendle-Choi [2, 3] and Angenent-Daskalopoulos-Sesum [1] classified all ancient noncollapsed flows in \mathbb{R}^3 (and similarly in \mathbb{R}^{n+1} under a uniform two-convexity assumption). Specifically, they showed that any such flow is either a flat plane, a round shrinking sphere, a round shrinking cylinder, a translating bowl soliton, or an ancient oval. This in turn has been generalized in our recent proof of the mean-convex neighborhood conjecture [5, 9]. In stark contrast, the classification of ancient noncollapsed flows in higher dimensions without two-convexity assumption has remained a widely open problem.

As an important first step towards overcoming this dimension barrier, we recently classified all ancient noncollapsed flows in \mathbb{R}^4 assuming self-similarity:

Theorem (Choi-H.-Hershkovits [7, 8]). Every noncollapsed translator in \mathbb{R}^4 is either $\mathbb{R} \times 2d$ -bowl, or the 3d round bowl, or belongs to the one-parameter family of 3d oval-bowls $\{M_k\}_{k \in (0,1/3)}$ constructed by Hoffman-Ilmanen-Martin-White [12].

As a corollary we obtain a classification of certain blowup limits in \mathbb{R}^4 :

Corollary (Choi-H.-Hershkovits [7, 8]). For mean-convex mean curvature flow in \mathbb{R}^4 (or more generally in any 4-manifold), every type I blowup limit (ala Huisken) is either a round shrinking S^3 , or a round shrinking $\mathbb{R} \times S^2$, or a round shrinking $\mathbb{R}^2 \times S^1$, and every type II blowup limit (ala Hamilton) is either $\mathbb{R} \times 2d$ -bowl, or the 3d round bowl, or belongs to the one-parameter family of 3d oval-bowls.

To sketch the main steps of the proof given a noncollapsed translator $M \subset \mathbb{R}^4$, that is neither $\mathbb{R} \times 2d$ -bowl nor 3d-bowl, we normalize without loss of generality such that $\mathbf{H} = e_4^{\perp}$. To begin with, by our no-wings theorem from [6], we have

(1)
$$\lim_{\lambda \to 0} \lambda M = \{ \mu e_4 | \mu \ge 0 \}.$$

In particular, together with a recent result of Zhu [15] this yields SO(2)-symmetry. Hence, the level sets $\Sigma^h = M \cap \{x_4 = h\}$ can be described by a renormalized profile function $v(y,\tau)$, where $\tau = -\log h$, whose analysis is governed by the one-dimensional Ornstein-Uhlenbeck operator $\mathcal{L} = \partial_y^2 - \frac{y}{2}\partial_y + 1$. Next, we show that $v(y,\tau)$ satisfies similar sharp asymptotics as the 2d ancient ovals in \mathbb{R}^3 . We then establish a spectral uniqueness theorem, which says that if for two (suitably normalized) translators the difference of the profile functions $v_1 - v_2$ is perpendicular

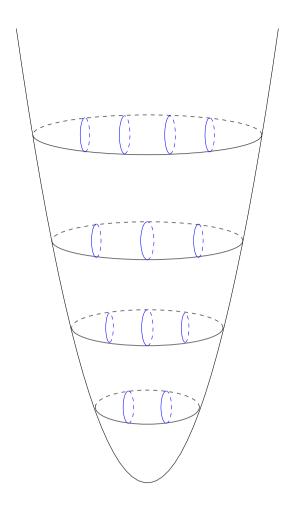


FIGURE 1. The oval-bowls $\{M_k\}_{k\in(0,1/3)}$ are 3-dimensional translators in \mathbb{R}^4 , whose level sets look like 2d ovals in \mathbb{R}^3 . They are parametrized in terms of the smallest principal curvature at the tip, and interpolate between the 3d round bowl and $\mathbb{R}\times 2$ d-bowl.

to the unstable and neutral eigenspace of \mathcal{L} , then the translators agree. We arrange this spectral condition using a delicate continuity argument. Finally, we relate the eccentricity at high levels and the tip curvature using a Rado-type argument and Lyaponov-Schmidt reduction and linearized variants of our estimates.

The result is part of a larger classification program for ancient noncollapsed flows in \mathbb{R}^4 that I recently introduced in joint work with Choi-Hershkovits [6]

and Du [10]. In particular, in another paper with Du [11] we constructed a oneparameter family of $\mathbb{Z}_2^2 \times O(2)$ -symmetric ancient ovals in \mathbb{R}^4 , which can be viewed as compact counterpart of the HIMW-family. In forthcoming work we prove:

Theorem (Choi-Daskalopoulos-Du-H.-Sesum [4]). Every bubble-sheet oval for the mean curvature flow in \mathbb{R}^4 , up to scaling and rigid motion, either is the $O(2) \times O(2)$ -symmetric ancient oval from [14], or belongs to the one-parameter family of $\mathbb{Z}_2^2 \times O(2)$ -symmetric ancient ovals constructed in [11].

Finally, it is tempting to conjecture that similar results hold for κ -solutions in 4d Ricci flow. In particular, concerning self-similar solutions I believe:

Conjecture. Every noncollapsed 4d steady Ricci soliton with nonnegative curvature operator is either $\mathbb{R} \times 3d$ -Bryant soliton, or the 4d Bryant soliton, or belongs to the one-parameter family of noncollapsed examples constructed by Lai [13].

References

- [1] S. Angenent, P. Daskalopoulos, N. Sesum, *Uniqueness of two-convex closed ancient solutions to the mean curvature flow*, Ann. of Math. **192** (2020), 353–436.
- [2] S. Brendle, K. Choi, Uniqueness of convex ancient solutions to mean curvature flow in R³, Invent. Math. 217 (2019), 35-76.
- [3] S. Brendle, K. Choi, Uniqueness of convex ancient solutions to mean curvature flow in higher dimensions, Geom. Topol. 25 (2021), 2195–2234.
- [4] B. Choi, P. Daskalopoulos, W. Du, R. Haslhofer, N. Sesum, Classification of bubble-sheet ovals in R⁴, in preparation.
- [5] K. Choi, R. Haslhofer, O. Hershkovits, Ancient low entropy flows, mean convex neighborhoods, and uniqueness, Acta Math. (to appear)
- [6] K. Choi, R. Haslhofer, O. Hershkovits, A nonexistence result for wing-like mean curvature flows in R⁴, preprint.
- [7] K. Choi, R. Haslhofer, O. Hershkovits, Classification of noncollapsed translators in R⁴, preprint.
- [8] K. Choi, R. Haslhofer, O. Hershkovits, The linearized translator equation in \mathbb{R}^4 , in preparation.
- [9] K. Choi, R. Haslhofer, O. Hershkovits, B. White, Ancient asymptotically cylindrical flows and applications, Invent. Math. 229 (2022), 139–241.
- [10] W. Du, R. Haslhofer, Hearing the shape of ancient noncollapsed flows in R⁴, Comm. Pure Appl. Math. (to appear)
- [11] W. Du, R. Haslhofer, On uniqueness and nonuniqueness of ancient ovals, preprint.
- [12] D. Hoffman, T. Ilmanen, F. Martin, B. White, Graphical translators for mean curvature flow Calc. Var. Partial Differential Equations 58 (2019), Art. 117.
- [13] Y. Lai, A family of 3d steady gradient solitons that are flying wings, J. Differential. Geom. (to appear)
- [14] B. White, The nature of singularities in mean curvature flow of mean-convex sets, J. Amer. Math. Soc. 16 (2003), 123–138.
- [15] J. Zhu, SO(2)-symmetry of translating solitons of the mean curvature flow in \mathbb{R}^4 , preprint.