We now consider the Gross-Pitaevskii equations

$$i\partial_t \psi - \Delta \psi + \frac{1}{\varepsilon^2} (|\psi|^2 - 1)\psi = 0, \qquad 0 < \varepsilon \ll 1$$

for $\psi : \mathcal{D} \times [0, T) \to \mathbb{C}$, where \mathcal{D} is bounded open sunset of \mathbb{R}^2 with $\partial \mathcal{D}$ smooth. **Notation:** For $v, w \in \mathbb{C}$, we will write

$$(\mathbf{v},\mathbf{w}) := Re(\mathbf{v}\bar{\mathbf{w}}) = \frac{1}{2}(\mathbf{v}\bar{\mathbf{w}} + \bar{\mathbf{v}}\mathbf{w}).$$

Given $v \in \mathbb{C}$, we will sometimes write $v_1 = Re(v)$ and $v_2 = Im(v)$. Note that

$$(iv, w) = (w, iv) = -(iw, v) = -(v, iw) = \begin{pmatrix} v_1 \\ v_2 \end{pmatrix}^{\perp} \cdot \begin{pmatrix} w_1 \\ w_2 \end{pmatrix} = \det \begin{pmatrix} v_1 & w_1 \\ v_2 & w_2 \end{pmatrix}$$

Physical quantities:

energy density

$$e_{\varepsilon}(\psi) := \frac{1}{2} |\nabla \psi|^2 + \frac{(|\psi|^2 - 1)^2}{4\varepsilon^2}$$

• mass density $|\psi|^2$.

current, or momentum density

 $j(\psi) := (i\psi, \nabla\psi) = \text{vector with } k\text{th component } (i\psi, \partial_k\psi).$

If one writes $\psi = \rho e^{i\phi}$, then $j(\psi) = \rho^2 \nabla \phi$.

The vorticity

$$\omega(\psi) := \frac{1}{2} \nabla^{\perp} \cdot j(\psi) = \det \nabla \psi = \frac{\partial(\psi_1, \psi_2)}{\partial(x_1, x_2)}$$

The quantities introduced above all satisfy conservation laws. We will write these in differential form.

$$\begin{split} \frac{\partial}{\partial_t} e_{\varepsilon}(\psi) &= \nabla \cdot (\partial_t \psi, \nabla \psi). \\ \frac{d}{dt} \frac{|\psi|^2}{2} &= \nabla \cdot j(\psi). \\ \frac{d}{dt} j(\psi) &= 2\nabla \cdot (\nabla \psi \otimes \nabla \psi) - \nabla \big[2e_{\varepsilon}(\psi) + (i\psi_t, \psi) \big] \\ \frac{d}{dt} \omega(\psi) &= \nabla^{\perp} (\nabla \cdot (\nabla \psi \otimes \nabla \psi)) \end{split}$$

Here $\nabla \psi \otimes \nabla \psi$ is the 2 × 2 matrix whose (k, ℓ) entry is $(\partial_k \psi, \partial_\ell \psi)$. We will write

$$E_{\varepsilon}(\psi) := \int_{\mathcal{D}} e_{\varepsilon}(\psi).$$

We will always consider situations where 0 $< \epsilon \ll 1$ and

 $E_{\varepsilon}(\psi)\leqslant C|{\rm log}\, \epsilon|\qquad {\rm and \ thus} \quad \|\,|\psi|^2-1\|_{L^2}\leqslant \epsilon|{\rm log}\, \epsilon|^{1/2}\ll 1.$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへで

Our goal is to prove a theorem decribing dynamocs of point vortices in solutions of $(GP)_{\varepsilon}$.

Main tools: theorems that describe connections between energy and vorticity.

A first such theorem states that vorticity concentration can be deduced from control over energy.

Theorem

Assume that $\psi \in H^1(\Omega; \mathbb{C})$, that $a = (a_1, \ldots, a_M) \in \Omega^M$ satisfies

$$ho_{a} := \min\left(\{|a_{i} - a_{j}|, i
eq j\} \cup \{\mathsf{dist}(a_{i}, \partial \mathcal{D}\}\right) >
ho_{0} > 0$$

and that $d_i = \pm 1$ for i = 1, ..., M. Suppose further that

$$\|\omega(\psi) - \sum_{i=1}^{M} d_i \delta_{a_i}\|_{\mathcal{F}} \leq \frac{1}{10} \rho_a,$$
$$E_{\varepsilon}(\psi) \leq M\pi \log \frac{1}{\varepsilon} + C.$$

Then there exists ε_0 , $\alpha > 0$ (depending on M, ρ_0 , C) and points $\xi_1, \ldots, \xi_M \in \Omega$ such that

$$\|\omega(\psi) - \sum_{i=1}^{M} d_i \delta_{\xi_i}\|_{\mathcal{F}} \leqslant \varepsilon^{\alpha}$$
$$\|\mu\|_{\mathcal{F}} := \sup\left\{ \int_{\mathcal{D}} \phi \mu : \phi \in W_0^{1,\infty}(\mathcal{D}), \quad Lip(\phi) \leqslant 1 \right\}.$$

Here

First: if $\psi \in C^1(\mathcal{D}; \mathbb{C})$ and O is a subset of \mathcal{D} with ∂O Lipschitz, and if in addition $|\psi| > 0$ on ∂O , then we define

$$deg(\psi; \partial O) := \frac{1}{2\pi} \int_{\partial O} \frac{j(\psi)}{|\psi|^2} \cdot \tau$$

where τ is the unit tangent to ∂O , oriented according to the standard left(?)-hand rule, that is, counterclockwise if O is simply connected.

Lemma

Assume that $\psi \in C^1(\mathfrak{D}; \mathbb{C})$ and that B_1, \ldots, B_K are balls such that

$$S := \{x \in \mathcal{D} : |\psi(x)| \leq \frac{1}{2}\} \subset \bigcup_k B_k.$$

Then

$$\|\omega(\psi) - \pi \sum_{k=1}^{K} d_k \delta_{\xi_k} \|_{\mathcal{F}} \leq C(\varepsilon + \sum r_k) E_{\varepsilon}(\psi)$$
(we can set $d_{k=0}$ if $\mathcal{B}_k \wedge \partial \mathcal{O} \neq \emptyset$.)

where

 r_k is the radius of B_k , $d_k = \deg(\psi; \partial(B_k \cap D))$,

and ξ_k is any point in $B_k \cap \mathcal{D}$ (for example the center, if it belongs to \mathcal{D}).

Since for us, it will always be the case that $E_{\varepsilon}(\psi) \approx |\log \varepsilon|$, the lemmaprovides a good estimate if $\sum r_k \ll |\log \varepsilon|^{-1}$.

0

Ô

Lemma Assume that $\psi \in C^{1}(\mathcal{D}; \mathbb{C})$ and that $B_{r}(x) \subset \mathcal{D}$ is a ball such that $r \ge \varepsilon$ and $d = \deg(\psi; \partial B_{r}) \neq 0.$ $|\psi| > 0 \implies \partial B_{r}(\omega)$

Then

$$\int_{\partial B_r} e_{\varepsilon}(\psi) d\mathcal{H}^{\mathbf{1}} \geq \lambda_{\varepsilon}(\frac{r}{|d|}),$$

where

$$\lambda_{\varepsilon}(s) := \min_{m \in [0,1]} \left(\frac{m^2 \pi}{s} + \frac{(1-m^2)^2}{C\varepsilon} \right) = \begin{cases} \frac{\pi}{s} - \frac{C\varepsilon\pi^2}{4s^2} & \text{if } s \ge \frac{C\pi\varepsilon}{2} \\ \frac{1}{C\varepsilon} & \text{if } s \le \frac{C\pi\varepsilon}{2} \end{cases}$$
for a suitable constant C.

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Lemma Define

$$\Lambda_{\varepsilon}(s) := \int_{0}^{s} \lambda_{\varepsilon}(r) dr$$
Then the following hold.
1. $\Lambda_{\varepsilon}(r+s) \leq \Lambda_{\varepsilon}(r) + \Lambda_{\varepsilon}(s)$
2. $\sigma \mapsto \frac{1}{\sigma} \Lambda_{\varepsilon}(\sigma)$ is nonincreasing, and is always bounded by $\frac{1}{c_{\varepsilon}}$.
3. $\Lambda_{\varepsilon}(r) \geq \pi \log \frac{r}{\varepsilon} - C$ for all $r \geq 0$.
4. If $\psi \in \mathfrak{f}^{1}(\mathfrak{D}; \mathbb{C})$ and
 $|\psi| \geq \frac{1}{2}$ in $B_{R} \setminus B_{r}(a)$, $\deg(\psi; \partial B_{r}(a)) = d \neq 0$
then

$$\int_{B_{R} \setminus B_{r}(a)} e_{\varepsilon}(\psi) dx \geq d \left(\Lambda_{\varepsilon}(\frac{R}{|d|}) - \Lambda_{\varepsilon}(\frac{r}{|d|})\right).$$

$$\int_{\varepsilon} \mathcal{L}_{\varepsilon}(r) dx = \int_{\varepsilon} \mathcal{L}_{\varepsilon}(\mathfrak{L}) dx \leq \int_{\varepsilon} \mathcal{$$

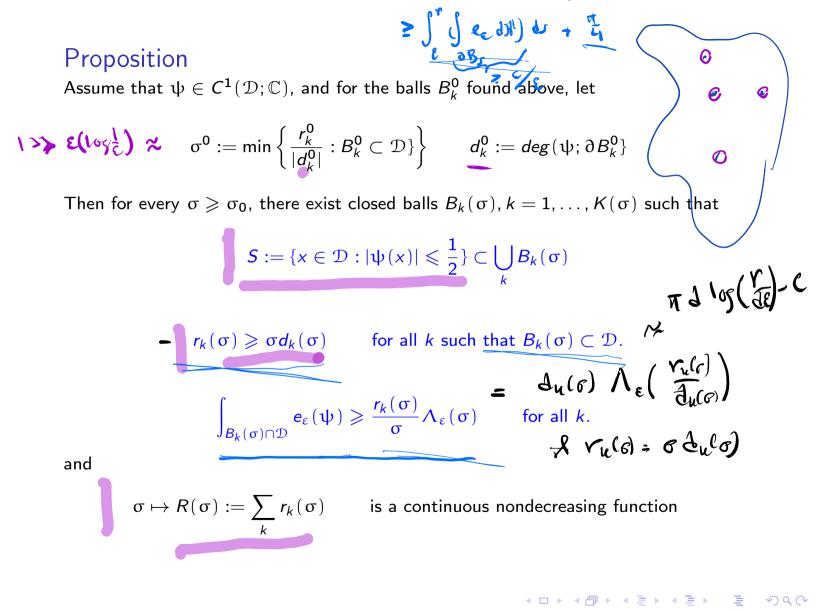
$$J\left[\Lambda_{\varepsilon}\left(\frac{1}{2}\right)-\Lambda_{\varepsilon}\left(\frac{1}{2}\right)\right]$$

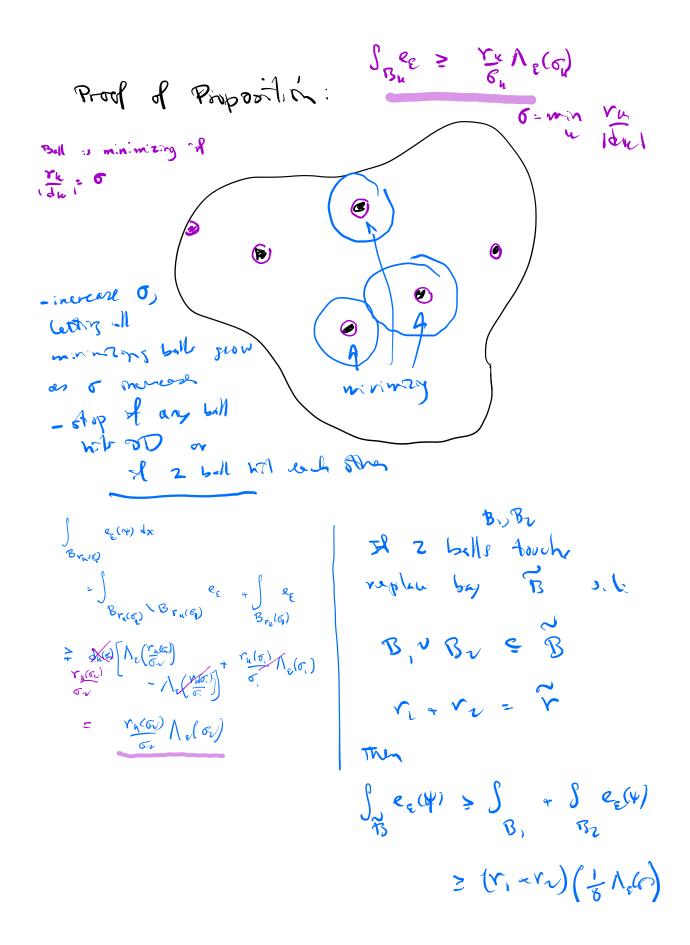
At this point, to convey the spirit of the proof, I am sweeping certain technical details under the carpet.

"Lemma" (not 100% correct as stated!) Assume that $\psi \in C^1(\mathcal{D}; \mathbb{C})$. Then there exist closed balls $B_k^0, k = 1, ..., K$ such that $S := \{x \in \mathcal{D} : |\psi(x)| \leq \frac{1}{2}\} \subset \bigcup_k B_k^0$ $r_k^0 := \text{ radius of } k\text{th ball } \geq \varepsilon \quad \text{for all } k$ $B_k^0 \cap S \neq \emptyset \quad \text{for all } k$ $\int_{B_k^0 \cap \mathcal{D}} e_{\varepsilon}(\psi) \geq \frac{r_k^0}{C\varepsilon} \geq \frac{r_k^0}{\sigma} \Lambda_{\varepsilon}(\sigma) \quad \text{for all } k \text{ and all } \sigma > 0.$

Let's pretend the lemma is correct, then see what one can do with it.

Idens 1)
$$\mathbb{Z}$$
 deg $(\mathcal{A}, \mathbb{S}) \neq 0 \Rightarrow \int_{\mathbb{R}} \mathcal{R}_{\varepsilon}(\mathcal{A}) \geq \mathbb{I}_{\mathcal{A}}$
2) \mathbb{S} \mathcal{C} , the
 $\int_{\mathbb{R}} \frac{1}{1-\varepsilon} = \int_{\mathbb{R}} \frac{1}{1-\varepsilon} \int_{\mathbb{R}} \mathbb{R}_{\varepsilon}(\mathbb{R}) = \mathbb{R} = \mathbb{R}$





> F A.(G) 2 = d, + dr = [] < 12, 1 + 1d2/