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APM 421/ MAT 1723 fall 2005, incomplete lecture notes

These notes probably have many misprints and typos. If something looks wrong, it
probably is!

1. Basics of Hilbert spaces

1.1. introductory material. definition of a Hilbert space, inner product, and other fun-
damental notions, orthogonality, existence of orthogonal projections, characterization of
bounded linear functionals..... existence of orthonormals bases; characterization of sepa-
rable Hilbert spaces as those admitting a finite or countable orthonormal basis

1.2. bounded and unbounded operators. In these notes all operators are linear. That
is, every operator S that we will consider satisfies

S(aψ + bφ) = aSψ + bSφ.

for all a, b ∈ C and ψ, φ ∈ H. We always assume that this holds, generally without explicitly
mentioning it. And when we write things like “bounded operator” we always mean “bounded
linear operator.”

A bounded operator S from H to H′ is a map H → H′ for which there exists a constant
C such that

(1) ‖Sψ‖H′ ≤ C‖ψ‖H
for all ψ ∈ H.
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An unbounded operator from H to H′ is an operator from a subspace D(A) ⊂ H to H′.
The subspace D(A) is called the domain of A. It is part of the definition of the operator; if A1

and A2 are unbounded operators such that D(A1) 6= D(A2) but A1 = A2 on D(A1)∩D(A2),
then A1, A2 are different operators.

If we say, “A is an operator”, then A could be either bounded or unbounded. If A is
bounded then D(A) = H.

An operator on H (bounded or unbounded) is an operator from H to itself.

example Let H be a Hilbert space, and let D be a subspace of H such that D(A) 6= H.
Define

D(A) = D, Aψ = ψ for ψ ∈ D(A).

For examples of this sort, our terminology is rather unsatisfactory. According to our defini-
tions, A is an unbounded operator. It cannot be a bounded operator, because for a bounded
operator, the domain is by definition the whole Hilbert space H. So, instead of writing things
like, “A is bounded”, we can only write things like “ A is clearly bounded in the sense that
‖Aψ‖H ≤ ‖ψ‖H for all ψ in the domain of A, and hence A extends to a bounded operator
on all of H.”

(This last fact about extending to a bounded operator on all of H is a consequence of
the Hahn-Banach Theorem. If D(A) is dense and ‖Aψ‖H ≤ C‖ψ‖H for all ψ in the domain
of A,, then an easy argument shows that A extends to a unique bounded operator on H.

An operator A is closed if its graph

{(φ,Aψ) ∈ H ⊕H : ψ ∈ D(A)}
is closed in H⊕H; in other words, A is closed if:

ψn ∈ D(A), ψn → ψ,Aψn → φ

imply that
ψ ∈ D(A) and Aψ = φ.

The nullspace of A, denoted N(A), is defined by

N(A) = {ψ ∈ D(A) : Aψ = 0}.
The range of A, denoted R(A), is defined by

N(A) = {Aψ : ψ ∈ D(A)}.
An operator A, bounded or unbounded, is said to be one-to-one if N(A) = {0}. If A is
one-to-one we define A−1 by

D(A−1) = R(A), A−1ψ = φ ⇐⇒ ψ = Aφ.

An operator A is said to be invertible if A−1 exists and is bounded.
Using the open mapping theorem (a basic result in functional analysis) one can show

the following:

Lemma 1. Suppose that A is a closed operator on H, bounded or unbounded, and that
N(A) = {0}. Then there exists some C such that

‖A−1ψ‖ ≤ C‖ψ‖ for all ψ ∈ D(A−1)

if and only if A is onto, i.e. D(A−1) = H.

1.3. operator adjoints.
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1.3.1. definitions. Let A be an operator from H to H′. If D(A) is dense then we define
A∗ : H′ → H by

(2) D(A∗) = {ψ ∈ H′ : ∃C <∞ such that 〈ψ,Aφ〉H′ ≤ C‖φ‖H for all φ ∈ D(A)}
and A∗ψ is defined by requiring that

〈A∗ψ, φ〉H = 〈ψ,Aφ〉H′ for all φ ∈ D(A).

It is easy to check that, in order for A∗ψ to be well-defined, it is necessary and sufficient
that D(A) be dense in H.

One can also check that the following definition is equivalent to the one we have given
above:

(3) D(A∗) = {ψ ∈ H′ : ∃ζ ∈ H such that 〈ψ,Aφ〉H′ ≤ 〈ζ, φ〉H for all φ ∈ D(A)}.
If D(A) is dense then such ζ is necessarily unique and we define A∗ψ = ζ.

The adjoint of an operator is always closed. One can also prove that

Lemma 2. An unbounded operator A has a closed extension if and only if D(A∗) is dense.
When these equivalent conditions are satisfied, the closure of A (i.e. the smallest closed
extension) is precisely A∗∗ := (A∗)∗.

An example of an operator that does not have a closed extension is given by

H = `2 = {x = (x1, x2, . . .) :
∑

|xn|2 <∞} with the standard inner product

D(A) = {x : ∃N such that xn = 0 for all n ≥ N}
and

Ax = (
∑
n

xn, 0, 0, 0, . . .).

One can check that in this example, the closure in H⊕H of the graph of A is not the graph
of an operator, since it contains the subspace

span{(0, e1)} ⊂ H ⊕H where e1 := (1, 0, 0, 0, . . .) ∈ H.
And if one computes the domain of A∗, one finds that D(A∗) = (span{e1})⊥. This hints at
why the above lemma is true.

1.3.2. some examples. Let H = L2(I) with the standard inner product, for I := [0, 1] ⊂ R.
We consider several operators on H. We define

D(A1) = {ψ ∈ H : ψ′ ∈ H, ψ(0) = ψ(1) = 0}

D(A2) = {ψ ∈ H : ψ′ ∈ H, ψ(0) = ψ(1)}
D(A3) = {ψ ∈ H : ψ′ ∈ H}

And for ψ ∈ D(Aj) we define

Ajψ = i~ψ′, j = 1, 2, 3.

Note: when we say that ψ′ ∈ H, it means that there exists some φ ∈ H and some c ∈ C
such that

ψ(x) = c+

∫ x

0

φ(s) ds
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for almost every x ∈ I. When we make statements about pointwise values of ψ, they are
understood to be statements about the function ψ̃(x) = c +

∫ x

0
φ(y) dy. This function is

continuous. In fact, we can estimate the modulus of continuity:

|ψ̃(x1)− ψ̃(x2)| ≤
∫ x2

x1

|φ(y)| dy ≤
(∫ x2

x1

|φ(y)|2 dy
)1/2 (∫ x2

x1

12 dy

)1/2

≤ ‖φ‖H |x2−x1|1/2.

In this sense, it is reasonable to talk about pointwise values of a function whose derivative
belongs to H.

We compute the adjoints of these operators. The start of the computation is the same;
we will only need to consider different i separately towards the end.

First, recall the definition

D(A∗j) = {ψ ∈ H : ∃η ∈ H such that 〈ψ,Ajφ〉 = 〈η, φ〉 for all φ ∈ D(Aj)}.
Fix ψ ∈ D(A∗j) and let η be as above, so that∫ 1

0

ψ̄(i~φ′) dx =

∫ 1

0

η̄φ dx

for all φ ∈ D(Aj). (Thus η = A∗jψ.) We let

(4) ζ(x) =

∫ x

0

η(y) dy =

∫ x

0

A∗jψ(y) dy.

so that ζ ∈ H (in fact ζ is continuous) and ζ ′ = η. Note also that ζ(0) = 0. Integration by
parts (which can be justified in this setting) yields∫ 1

0

η̄φ dx =

∫ 1

0

ζ̄ ′φ dx = (ζ̄φ)1
0 −

∫ 1

0

ζ̄φ′ dx

Comparing this with the above, we find that ψ ∈ D(Aj) if and only if

(5)

∫ 1

0

(i~ψ̄)φ′ dx = (ζφ)1
0 −

∫ 1

0

ζ̄φ′ dx

for all φ ∈ D(Aj).
adjoint of A1:
If φ ∈ D(A1) then φ(0) = φ(1) = 0, so (5) reduces to

(6) −
∫ 1

0

(i~ψ)φ′ dx = −
∫ 1

0

ζ̄φ′ dx for all φ ∈ D(A1).

Next, we claim that

{φ′ : φ ∈ D(A1)} = {f ∈ H :

∫ 1

0

f dx = 0}.

This is easy. on the one hand, if φ ∈ D(A1) then
∫ 1

0
φ′(y) dy = φ(1)− φ(0) = 0. Conversely,

if f is any function such that
∫ 1

0
f(y) dy = 0, then φ(x) :=

∫ x

0
(f(y) dy defines an element of

D(A1). Thus (5) becomes:

(7)

∫ 1

0

(i~ψ − ζ)f dy = 0

for all f ∈ H such that
∫ 1

0
f(y) dy = 0.
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This says that i~ψ − ζ ⊥ f whenever f is orthogonal to all constants. This condition is
satisfied if and only if i~ψ − ζ is a constant function on (0, 1), so that

i~ψ = ζ + const.

Recalling that ζ ′ = η = A∗1ψ, we conclude that ψ ∈ D(A∗1) if and only if ψ has a derivative
in H, so that ψ ∈ D(A3); and moreover A1ψ = i~ψ′. Thus A∗1 = A3.

adjoint of A2:
If φ ∈ D(A2) then φ(0) = φ(1). In addition, ζ(0) = 0 by construction. So (5) reduces to

(8) −
∫ 1

0

(i~ψ)φ′ dx = ζ(1)φ(1)−
∫ 1

0

ζ̄φ′ dx, all φ ∈ D(A2).

Suppose that (8) holds. Then by taking φ to be a nonzero constant, we conclude that
ζ(1) = 0 = ζ(0). Then arguing as above, we see that (8) is equivalent to condition (7), which
in turn is equivalent to the condition that ψ′ ∈ H.

It follows that D(A∗2) ⊂ D(A3), and that i~ψ = ζ + constant . Then the condition
ζ(0) = ζ(1) implies that ψ(0) = ψ(1), so that D(A∗2) ⊂ D(A2).

On the other hand, if ψ ∈ D(A2) then (8) holds with ζ = ψ − ψ(0) (so that ζ(0) =
ζ(1) = 0.)

adjoint of A3: By similar arguments one can check that A∗3 = A1‘. This can also be
proved by showing that A1 is closed, so that A1 = ( closure of A1) = A∗∗1 = A∗3, using the
work we have already done above.

2. statement of Spectral Theorem

2.1. statement. The spectral theorem can be stated in a number of ways that are in some
sense equivalent but in many ways are really quite different. Here is the one that we will
focus on:

Theorem 1 (Spectral Theorem). Suppose that A is a self-adjoint operator on a Hilbert space
H. Then there exists a unique family {Eλ}λ∈R of orthogonal projection operators satisfying
the following:

(9) EλEµ = EµEλ = Eλ for λ ≤ µ

(10) Eλ = s-limµ↘λEµ

(11) s-limλ→−∞Eλ = 0, s-limλ→∞Eλ = I

and finally

A =

∫ ∞

−∞
λdEλ = s-limN→∞

∫ N

−N
λdEλ, with(12)

D(A) = {ψ ∈ H :

∫ ∞

−∞
λ2d〈ψ,Eλψ〉 <∞}.
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Eλ is interpreted as the projection onto the subspace of H generated by the set of
all eigenvectors (and “generalized eigenvectors”, about which more later) associated with
eigenvalues less than or equal to λ.

{Eλ}λ∈R is sometimes called the spectral family of projection operators for A.

2.2. physical interpretation of the theorem. Suppose that we have a physical system
(such as a hydrogen atom for example) that is described by a quantum mechanical model,
i.e., a Hilbert space H and various self-adjoint operators on H corresponding to physical
attributes of the system that we can observe and measure.

For now let us temporarily forget mathematics and think of an observable not as a self-
adjoint operator, but rather as something that we can measure in a laboratory. Let A denote
such an observable. We imagine that in our laboratory, we can prepare the Hilbert space to
be in state ψ, then perform a measurement to get a number, and repeat if we like.

Given any real number λ, we define a new observable1, which we denote Eλ, in the
following way: Every time we perform an experiment and measure A, we will say that
Eλ = 1 if A is measured to be less than or equal to λ, and Eλ = 0 otherwise. Then if we
perform numerous experiments and average, we will find that the expected value of Eλ is
the probability that A is less than or equal to λ.

It is clear that we can measure A if and only if we can measure Eλ for every λ.
We now remember our mathematics and think of A and {Eλ} as self-adjoint operators.

(As the notation suggests, the observables {Eλ} will turn out to be the spectral family from
the statement of Theorem 1.) Based on what we have said we want the physical interpretation
of Eλ to be, if ψ is a state (i.e. a nonzero element of H), then < Eλ >ψ should be the
probability that a measurement of the system in state ψ will yield a value less than or equal
to λ. Similarly, the probability that, for the system in state ψ, a measurement of A falls in
the interval (µ, λ] should correspond to < Eλ−Eµ >ψ, or equivalently < Eλ >ψ − < Eµ >ψ.
These statements, which make sense in view of the spectral theorem, constitute a precise
formulation of the measurement postulate in quantum mechanics.

We now demonstrate that (12) is consistent with the above physical considerations.
Indeed, it should be the case that

< A >ψ = expected valued of ψ

= lim
n→∞

∞∑
i=−∞

µni (Probability that i−1
n
< A ≤ i

n
)

= lim
n→∞

∞∑
i=−∞

µni (< Ei/n >ψ − < E(i−1)/n >ψ).

where for each i, n, µni is some point in the interval [ i−1
n
, i
n
]. When we write down the

definitions in a moment, we will see that the right-hand side is essentially an instance of the
integral appearing in (12), so that the above equality becomes

< A >ψ=

∫ ∞

−∞
λ d < Eλ >ψ .

The spectral theorem is ultimately a theorem about self-adjoint operators, and reasoning
about laboratory measurements is completely irrelevant to the proof of the theorem. But

1still using the word “observable” in the naive sense of a physical quantity that we can measure
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the theorem helps justify the postulate that self-adjoint operators are interpreted as phys-
ically observable quantities and it makes possible a precise statement of the measurement
hypothesis. It also facilitates the study of dynamics and related questions.

2.3. definition of terms. We now define all the terms and notation appearing in the state-
ment of the theorem.

An operator P is a projection operator if P 2ψ = Pψ for all ψ ∈ H. An orthogonal
projection operator means the same thing as a symmetric projection operator. The reason
for the word “orthogonal” is that P is symmetric if and only if the nullspace of P is orthogonal
to the range of P , i.e.

{ψ ∈ H : Pψ = 0} ⊥ {Pψ : ψ ∈ H}.
Every orthogonal projection operator is bounded. (In fact it is easy to check that ‖P‖ = 1 for
every such operator). Note that the statement that Eλ is a projection operator is redundant,
since it follows from (9).

A = limσ→σ0 Aσ means that Aσ → A in the operator norm, i.e. that limσ→σ0 ‖A−Aσ‖ =
0.

For bounded operators A = s-limAσ means that ‖Aλψ − Aψ‖ → 0 for every ψ ∈ H.
It is easy to see that if A = limσ→σ0 Aσ then A = s-limσ→σ0Aσ. The converse is not true:

Exercise 1: construct a sequence of bounded operators An such that s-limn→∞An = 0
but An does not converge to zero in the operator norm.

For unbounded operators, A = s-limn→∞An means that

if ψ ∈ D(A) then there exists n0 such that ψ ∈ D(An) for all n ≥ n0,

and limn→∞ ‖Aψ − Anψ‖ = 0 for every ψ ∈ D(A). The expression Aψ − Anψ makes sense
for sufficiently large n by the condition on the domains. The condition about the domains
is automatically satisfies if A is unbounded and An is bounded for every n.

The integral
∫ b

a
λdEλ is understood in the following way. Let P denote a partition of

the interval [a, b], that is, a sequence a = λ0 < x1 < . . . < λK = b. For a partition P , let |P |
denote the size of the largest subinterval |P | = maxKi=1 |λi − λi−1|. Then∫ b

a

λ dEλ = lim
|P |→0

∑
µi(Eλi

− Eλi−1
).

Here µi denotes a point in the interval [λi−1, λi]. When we write such an integral, we are
implicitly asserting that this limit exists and is independent of the particular sequence of
partitions P considered and of the points µi chosen. (The limit is understood to be in the
operator norm, consistent with the notational conventions introduced above.)

The integral appearing in the definition of D(A) is defined in an analogous way, i.e.∫ ∞

−∞
λ2d〈ψ,Eλψ〉 = lim

|P |→0

∑
µ2
i (〈ψ,Eλi

ψ〉 − 〈ψ,Eλi−1
ψ〉).

It is not hard to check from (9) that λ→ 〈ψ,Eλψ〉 is a bounded, nondecreasing function for
every fixed ψ. Thus this integral has the general form

(13)

∫ ∞

−∞
f(λ) dg(λ) = lim

|P |→0

∑
f(µi)(g(λi)− g(λi−1)).
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It is a theorem from real analysis that such an integral is well-defined (that is, the limit exists,
though it may be infinite) whenever g is a nondecreasing function and f is a nonnegative,
continuous (though possibly unbounded) function. Thus the definition of D(A) makes sense.

Incidentally, the integral appearing in (13) is called a Stieltjes integral. The integral∫
λdEλ in (12) should be viewed as an operator-valued version of the Stieltjes integral. One

can also define
∫
f(λ)dEλ for more general functions f . We will discuss some of this later.

2.4. examples. In all the following examples one can see directly that Eλ is the projection
onto the subspace of H associated with (−∞, λ] ∩ σ(A), where σ(A) denotes the spectrum
of A.

In finite-dimensional cases and some infinite-dimesional examples, σ(A) is the collection
of all eigenvalues of A, and “subspace associated with” means, the corresponding eigenspaces.
In general, the situation is more complicated in the infinite-dimensional setting. Later on
we will give precise definitions of terms such as spectrum.

2.4.1. some finite-dimensional examples. First, let A be the self-adjoint operator on the
Hilbert space H = Cn. We know from linear algebra that for such an operator, there are
real eigenvalues {λ1, . . . , λn} (repeated according to multiplicity) and an orthonormal basis
{v1, . . . , vn} of Cn consisting of eigenvectors of A, so that

〈vi, vj〉 = δij, Avi = λivi.

And A is completely determined by these eigenvalues and eigenvectors. In fact

(14) Aw =
n∑
i=1

〈vj, w〉λjvj.

We next give a different description of A, in terms of a spectral family as in Theorem 1. It
will be clear that (in the finite dimensional case) this is just a different way of encoding all
the information about eigenvalues and eigenvectors.

For each j, let Pj be the orthogonal projection operator onto the span of the jth eigen-
vector vj, so that

Pjw = 〈vj, w〉vj.
Then for every λ ∈ R, define

Eλ :=
∑

{j:λj≤λ}

Pj.

We claim that this family Eλ is the spectral family of projection operators for A.

Exercise 2: Verify that {Eλ} is a spectral family for the operator A:
a. Prove (in 1-2 lines) that PjPk = 0 if j 6= k and P 2

j = Pj. Use this to give a concise
(1-2 additional lines) proof of (9).

b. Prove (in one short line) that each Pj is symmetric, and deduce (in one short line)
that each Eλ is symmetric.

c. Note (without writing anything down) that (10), (11) are obvious.
d. Use the definition of the integral to verify, by taking the limit of the sequence of

approximating sums, that

A =

∫ ∞

−∞
λdEλ

where A is defined in (14).
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Exercise 3: A very concrete example: suppose that A is the self-adjoint operator on
H = C4 represented in the standard basis by the 4 by 4 matrix

A =


2 0 0 0
0 −3 0 0
0 0 7 0
0 0 0 2

 .

What is the spectral family {Eλ} for A?
(Please just write down the answer, without giving any more justification than an appeal

to Exercise 2. This is all that is needed, and if you try to justify it in detail, you will only
end up repeating in this concrete setting the arguments from Exercise 2 .)

2.4.2. an infinite-dimensional examples with discrete spectrum. Even in infinite-dimensional
Hilbert spaces, as long as A is an operator with a complete, orthonormal basis of eigenvectors,
then the situation is a lot like the finite-dimensional case, in that we can represent A either
in some way analogous to (14), or via a spectral family as in Theorem 1.

For example, let I be the unit interval I = (0, 1) ⊂ R, and let H = L2(I) be the space
of square integrable functions I → C. Define

D(A) = {ψ ∈ H : ψ′ ∈ H, ψ(0) = ψ(1)}

and

(Aψ) = iψ′(x).

Let ej(x) = e−2πijx, for j ∈ Z, and note that

Aej = 2πjej.

Thus each ej is an eigenfunction, with eigenvalue λj = 2πj. It is a basic fact from fourier
series (mentioned several times in this class) that {ej}∞j=−∞ form a complete orthonormal
basis forH. Thus we have found a complete orthonormal basis ofH consisting of eigenvectors
of A, putting us in the situation discussed above.

We now discuss different ways of using this spectral information (eigenvalues and eigen-
vectors) to represent A. The analog of (14) is the formula

Aψ =
∞∑

j=−∞

〈ej, ψ〉λjej

for ψ ∈ D(A). This is easy to check if one knows the relevant background from analysis.
And (exactly as in the finite-dimensional case) we can rewrite the above in terms of a

spectral family: define

Pjw = 〈ej, ψ〉ej.
Then for every λ ∈ R, define

Eλ :=
∑

{j:λj≤λ}

Pj.

(Note, these are exactly the same formulas as before.) Then one can check that {Eλ} is a
spectral family for A. The verification is similar to that in the finite-dimensional case, except
that one has to be a bit careful about domains. I am not going to call this an exercise, but
I suggest that you think about it.......
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2.4.3. an infinite-dimensional examples with continuous spectrum. Now let H = L2(R), and
let define an operator A by

D(A) = {ψ ∈ H :

∫
R
x2|ψ(x)|2 dx <∞},

(Aψ)(x) = xψ(x).

This is an operator that does not have any eigenvalues and eigenfunctions; that is, for every
real number λ, there is no solution ψ ∈ H of the equation Aψ = λψ. However, we will later
see (after we define “spectrum”) that the spectrum of A is the whole real line R.

Because there are no eigenvalues and eigenfunctions, we cannot hope to write A in a
form similar to (14). However, we can represent it in terms of a spectral family.

For each λ ∈ R, define an operator Eλ on H by:

(Eλψ)(x) =

{
ψ(x) if x ≤ λ,

0 otherwise.

Thus Eλ is the multiplication operator associated with the multipliermλ(x) =

{
1 if x ≤ λ,

0 otherwise.

Exercise 4: Verify that {Eλ} is a spectral family for the operator A. In other words,
verify that conditions (9) through (12) are satisfied.

Verifying conditions (9) through (11) should be quick and easy. The hard part is using
the definition of the integral to check that (12) holds.

Note that for this operator A, recalling that A is normally understood as the “position”
operator, the physical interpretation from Section 2.2 reduces to this: If the system is in
state ψ (normalized so that ‖ψ‖ = 1) then the probability of measuring the position in the
interval (a, b] is given by

〈ψ, (Eb − Ea)ψ〉 =

∫ b

a

|ψ|2dx.

This is of course consistent with our earlier discussions.

3. Sketch of the proof of the Spectral Theorem

There are a number of proofs of the spectral theorem. Most of them start by proving the
theorem first for bounded symmetric operators, and then deducing the general result from
the bounded case. The general case can also be deduced from a similar spectral theorem
that applies to unitary operators. This is the approach followed by von Neumann,2 who gave
the first proof of the theorem, and it is the one I will sketch below.

3.1. the spectral theorem for bounded symmetric operators.

2Von Neumann’s motivation was precisely to provide a firm mathematical foundation for quantum
mechanics.
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3.1.1. motivation. To understand the idea, let us first consider a self-adjoint operator A on
a finite dimensional Hilbert space H = Cn. Given arbitrary λ ∈ R, we will construct the
operator Eλ corresponding to the projection onto the subspace of H spanned by all eigen-
vectors with eigenvalues ≤ λ. Moreover, we would like to have a proceduce for constructing
Eλ that we can use in the infiinte-dimensional setting.

If A is a self-adjoint operator on Cn, then we know from linear algebra that there exists
a unitary operator U such that D := UAU∗ is diagonal, with real entries λ1, . . . , λn along
the diagonal. (Here U∗ is the complex conjugate of the transpose of U . Because U is unitary,

U∗ = U−1.) For any polynomial p(x) =
∑M

k=0 akx
k, it is clear that

p(A) = p(U∗DU) = U∗ p(D) U.

And P (D) is a diagonal matrix with p(λ1), . . . , p(λn) along the diagonal.
We might suppose that if u : R → R is any function that can be approximated well by

polynomials, then (by some sort of approximation procedure) we should be able to define
u(A), and we should have the identity

u(A) = U∗ u(D) U

for A as above.
Suppose we are given λ ∈ R and we want to construct Eλ. We will try to prove that the

function eλ : R → R, defined by

(15) eλ(x) =

{
1 if x ≤ λ,

0 otherwise.

can be approximated sufficiently well by polynomials, so that eλ(A) makes sense. If we can
do this, we can define Eλ = eλ(A), and we will have

Eλ = eλ(A) = U∗eλ(D)U,

with eλ(D) a diagonal matrix with 1s and 0s along the diagonal, 1s for the eigenvectors with
eigenvalue ≤ λ, and 0s for the other eigenvectors. Thus, recalling (from linear algebra) that
the rows of U form an orthonormal basis of H consisting of eigenvectors of A, we see that
Eλ is exactly the projection operator that we seek.

Note that, although our reasoning involved diagonalizing matrices, the construction of
Eλ that we have suggested in the end does not require that we know how to diagonalize A,
only that we have a consistent way of defining functiong u(A) for a large class of functions
including eλ as defined above.

3.1.2. a crucial proposition. Thus a main point in the proof of the spectral theorem in the
case of bounded operators (but infinite-dimensional Hilbert spaces) is the following:

Proposition 1. Let A be a bounded symmetric operator on a Hilbert space H, and suppose
that

(16) m‖ψ‖2 ≤ 〈ψ,Aψ〉 ≤M‖ψ‖2 for all ψ ∈ H.
for −∞ < m ≤ M <∞. Let Cu(m,M) denote the class of upper semicontinuous functions
on [m,M ]. Then for any u ∈ Cu(m,M) there exists a unique bounded, symmetric operator
u(A). Moreover, for any u, v ∈ Cu(m,M) and a ∈ R, the map u 7→ u(A) is:

homogeneous : (au)(A) = au(A)
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additive : (u+ v)(A) = u(A) + v(A)

multiplicative : (uv)(A) = u(A) v(A)

monotone : u ≥ v =⇒ u(A) ≥ v(A)

Finally, the mapping u 7→ u(A) is continuous in the following senses: first

if un(x) ↘ u(x) for all x ∈ [m,M ], then u(A) = s-limn→∞un(A).

And second,
‖u(A)‖ ≤ max

x∈m,M
|u(x)|,

so that in particular, if un → u uniformly in [m,M ], then limn→∞ ‖u(A)− un(A)‖ = 0.

If A,B are symmetric operators, then A ≥ B means that 〈ψ,Aψ〉 ≥ 〈ψ,Bψ〉 for all ψ.
Thus condition (16) can be written as mI ≤ A ≤MI, or still more concisely as m ≤ A ≤M .

The idea of the proof is as follows.
1. First, check that homgeneity, additivity etc hold when u, v are polynomial functions.

All of these except monotonicity are almost immediate. To establish monotonicity, it suffices
to show that if p is a polynomial such that p(x) ≥ 0 for x ∈ [m,M ], then p(A) ≥ 0. This
can be done by factoring p to write p(A) as a product of nonnegative operators, then using
Lemma 5 below.

To factor p as a product of nonnegative operators, we claim that any polynomial p with
real coefficients which is nonnegative on [m,M ] can be written in the form

(17) p(λ) = c(λ− a1) · · · (λ− aj)(b1 − λ) · · · (bk − λ)qi(λ) · · · q`(λ)

with c a nonnegative number, ai ≤ m, bi ≥ M , and qi a nonnegative quadratic for all i.
The point is that, first, there can be no real roots of odd multiplicity in the interval (m,M);
and second, if zi is a complex root, then so is z̄i, and hence qi(λ) := (λ − zi)(λ − z̄i) is a
nonnegative quadratic.

Having factored p as in (17), it is not hard to check that, for m ≤ A ≤ M , each factor
(A− aiI), (biI − A) and qi(A), is a positive operator.

2. Recall that a function u : R → R is upper semicontinuous if u(x) ≥ lim supy→x u(y) for
every x ∈ R. A lemma states that if u ∈ Cu(m,M), then there is a sequence qn of polynomials
such that qn(x) decreases monotonically to u(x) as n→∞, for every x ∈ [m,M ]. The proof
of this uses the (nontrivial) Stone-Weierstrass theorem from real analysis, as well as some
elementary arguments. 3

3. Given u ∈ Cu(m,M), we can thus select a sequence of polynomials qn such that qn(x)
decreases monotonically to u(x) for all x ∈ [m,M ]. In view of the monotonicity property
of the map A → u(A) when u is a polynomial, already established at this point in the
argument, it follows that Qn = qn(A) is a monotonically decreasing sequence of operators.
We can then use Lemma 3 below to find a limit of this sequence of operators, and then to
check that the limit is independent of the particular sequence of polynomials chosen. We
define u(A) to be this limit.

4. Once u(A) is defined for all u ∈ Cu(m,M) by this limiting procedure, the last step is
to check that the properties of homogeneity etc are still satisfied by this expanded definition.
This is straightforward.

3This step is the place in the proof where we use the assumption that u is upper semicontinuous. If
we wished, we could replace this by the assumption of lower semicontinuity, and instead use monotonically
increasing sequence of approximating polynomials.
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5. The first continuity assertion (monotone convergence of functions implies strong
convergence of operators) follows from the monotonicity property of the map u 7→ u(A) and
Lemma 3.

The second continuity assertion follows again from the monotonicity property of u 7→
u(A), which implies that

−(max
[m,M ]

|u|) I ≤ u(A) ≤ (max
[m,M ]

|u|) I

and Lemma 4 below. This completes the proof.
Here are the lemmas needed above. They are mostly quite fundamental and used very

often.

Lemma 3. If {An}∞n=1 is a sequence of bounded, symmetric operators such that

mI ≤ An ≤ An+1 ≤MI

for all n, then there exists a symmetric operator A such that s-limn→∞An = A.

Proof. We use the generalized Cauchy-Schwarz inequality

〈Aψ, φ〉 ≤ 〈Aψ,ψ〉1/2 〈Aφ, φ〉1/2 ∀ψ, φ ∈ H, when A ≥ 0.

The proof of this inequality exactly follows the usual proof of the Cauchy-Schwarz inequality,
starting from the positivity of A, which implies that 〈A(ψ − λφ), ψ − λφ〉 ≥ 0. Using the
above inequality, one easily checks that for every m ≤ n say, and any ψ ∈ H,

‖(An − Am)ψ‖4 ≤ 〈(An − Am)ψ, ψ〉 〈(An − Am)2ψ, (Am − An)ψ〉
≤ 〈(An − Am)ψ, ψ〉 ‖Am − An‖3‖ψ‖2.

Also, 0 ≤ Am − An ≤ (M −m)I, so Lemma 4 below implies that ‖Am − An‖ ≤ M −m. It
follows that

‖(An − Am)ψ‖4 ≤ (〈Anψ, ψ〉 − 〈Amψ, ψ〉) ‖Am − An‖3‖ψ‖2.

The assumptions imply that {〈Anψ, ψ〉} is a bounded monotone sequence, and hence con-
vergent, and the above inequality thus implies that {Anψ} is a Cauchy sequence in H. �

Lemma 4. If A is a bounded symmetric operator, then

sup
‖ψ‖=1

|〈Aψ,ψ〉| = sup
‖ψ‖=1

‖Aψ‖

In particular, if mI ≤ A ≤MI, then ‖A‖ ≤ max{−m,M} ≤ max{|m|, |M |}.

Proof. It follows from the Cauchy-Schwarz inequality that 〈Aψ,ψ〉 ≤ ‖A‖ whenever ‖ψ‖ ≤ 1.
The other inequality in the above lemma is quite easy to obtain once one notices that

‖Aψ‖2 =
1

4

[〈
A(λψ +

Aψ

λ
), λψ +

Aψ

λ

〉
−

〈
A(λψ − Aψ

λ
), λψ − Aψ

λ

〉]
for any λ ∈ R. This is verified by expanding the right-hand side. If we let NA :=
sup‖ψ‖=1 |〈Aψ,ψ〉|, then the right-hand side above is bounded by

1

4

(
NA‖λψ +

Aψ

λ
‖2 +NA‖λψ −

Aψ

λ
‖2

)
=

1

2
NA

(
λ2‖ψ‖2 +

‖Aψ‖2

λ2

)
.

In particular, if we set λ2 = ‖ψ‖−1‖Aψ‖, we finally find that ‖Aψ‖2 ≤ NA‖ψ‖ ‖Aψ‖ for all
ψ, which proves the lemma. �
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Next, in the sketch of the proof of the proposition we also have used

Lemma 5. If A,B are bounded symmetric operators such that A ≥ 0, B ≥ 0, and AB = BA,
then AB ≥ 0.

Proof. The proof uses Lemma 6 below, which asserts the existence of a positive symmetric
square root A1/2 of a positive symmetric operator A, which commutes with every operator
that commutes with A. Then

〈ABψ,ψ〉 = 〈A1/2A1/2Bψ,ψ〉 = 〈A1/2Bψ,A1/2ψ〉 = 〈BA1/2ψ,A1/2ψ〉 ≥ 0

using the positivity of B at the end. �

Lemma 6. If A is a positive symmetric bounded operator, the A has a unique positive
symmetric square root, i.e., an operator, denoted A1/2 or

√
A, such that A1/2 is positive

and symmetric and satisfies (A1/2)2 = A. This operator commutes with every operator that
commutes with A.

Proof. existence: The idea is to construct A1/2 as a limit of a sequence of polynomials
pn(A). We would like to construct this sequence such that pn(A) can be shown to converge
using Lemma 3, and so we have to be able to verify that pn+1(A)− pn(A) ≤ 0. Note that we
cannot argue that this follows from checking that pn+1(x) − pn(x) ≤ 0 for x ∈ [m,M ]; this
is actually what we are trying to prove. (The fact in question is established in Step 1 of the
proof of the Proposition 1. The argument there relies on Lemma 5, which in turn relies on
the lemma that we are currently proving.)

However, it is easy to check directly that if A ≥ 0, then Ak ≥ 0 for every k. So we can
make sure that pn(A) − pn+1(A) ≥ 0 by arranging for pn − pn+1 to be a polynomial with
nonnegative coefficients.

It is convenient to modify the above plan slightly by arguing as follows: First, we may
assume that 0 ≤ A ≤ I. Second, to construct a solution X = A1/2 of the equation X2 = A,
let us look for Y = I −X, and let us write B = I − A. Then the equation we are trying to
solve becomes

Y =
1

2
(Y 2 +B)

We define a sequence of operators {Yn} by

Y0 = 0, Yn+1 =
1

2
(Y 2

n +B).

In other words, Yn = qn(B), where q0 = 0 and qn+1(x) = 1
2
q2
n(x) + x. We will show that this

is an increasing sequence of operators. (Clearly Lemma 3 implies to increasing sequences as
well as decreasing.) Thus

qn+1 − qn =
1

2
(qn − qn−1)(qn + qn−1)

and it follows easily by induction that qn+1 − qn, and hence qn+1, are polynomials with
nonnegative coefficients for every n. It follows from our earlier discussion that Yn+1 ≥ Yn for
every n. Also, since B ≤ I, it is easy to check that Yn ≤ I for all n.

Thus lemma 3 implies that Y := s-limn∈∞Yn exists. From the definition of Yn, it follows
that

Y =
1

2
(Y 2 +B)
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and hence that
√
A = X = I−Y solves X2 = A. Note that

√
A commutes with all operators

that commute with A, as it is a limit of polynomials in A.
uniqueness: Suppose A ≥ 0, and let X denote the positive square root constructed

above. Let X ′ be another positive operator such that X ′2 = A. We must show that X = X ′.
Note that X ′A = X ′3 = AX ′, so that X ′ commutes with X.
Let Z and Z ′ denote the positive square roots constructed by the argument given above,

so that Z2 = A and Z ′2 = X ′. For ψ ∈ H, let φ = (X −X ′)ψ. Then

‖Zφ‖2 + ‖Z ′φ‖2 = 〈Z2φ, φ〉+ 〈Z ′2φ, φ〉 = 〈Xφ, φ〉+ 〈X ′φ, φ〉
= 〈(X +X ′)(X −X ′)ψ, φ〉 = 〈(X2 −X ′2)ψ, φ〉 = 0.

Hence Zφ = Z ′φ = 0. As a result, Xφ = X ′φ = 0. So

‖(X −X ′)ψ‖2 = 〈(X −X ′)ψ, (X −X ′)ψ〉 = 〈φ, (X −X ′)ψ〉 = 〈(X −X ′)φ, ψ〉 = 0.

�

We end this section with a remark: we assumed in Lemma 5 that A,B are bounded,
positive, symmetric operators. In fact, the last assumption was redundant:

Lemma 7. If A is bounded and 〈Aψ,ψ〉 is a real number for all ψ, then A is symmetric. In
particular, a positive bounded operator is symmetric.

Proof. Suppose that 〈Aη, η〉 is a real number for all η. Then by expanding

〈A(ψ + λφ), ψ + λφ〉 = 〈Aψ,ψ〉+ |λ|2〈Aφ, φ〉+ 〈Aψ, λφ〉+ 〈λAφ, ψ〉
we find that

〈Aψ, λφ〉+ 〈λAφ, ψ〉 = λ〈Aψ, φ〉+ λ̄〈ψ,Aφ〉
is a real number for all λ ∈ C. This easily implies that 〈Aψ, φ〉 = 〈ψ,Aφ〉 for all ψ, φ. �

3.1.3. statement and proof in the bounded case. The statement below is almost exactly like in
the unbounded case, except that the we assume the operator is bounded, and we strengthen
the conclusions slightly.

Theorem 2 (Spectral Theorem). Suppose that A is a bounded, self-adjoint operator on a
Hilbert space H, and assume that mI ≤ A ≤ MI for some m,M ∈ R. Then there exists a
unique family {Eλ}λ∈R of orthogonal projection operators satisfying the following:

(18) EλEµ = EµEλ = Eλ for λ ≤ µ

(19) Eλ = s-limµ↘λEµ

(20) Eλ = 0 for λ < m, Eλ = I for λ ≥M.

and finally, if u : [m−,M ] → C is any continuous function (i.e., u is continuous on (m−δ,M ]
for some δ > 0), then

u(A) =

∫ M

m−
u(λ)dEλ(21)

where the Stieltjes integral denotes a limit in the operator norm of approximating sums, and the lower limit
of integration m− indicates that the approximating sums are based on partitions that begin at some number
λ0 < m. In particular (21) holds for u(λ) = λ.
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Proof. Existence: For λ ∈ R, define Eλ = eλ(A), where eλ is defined in (15). The definition
makes sense, as a consequence of Proposition 1. We must then verify that this family {Eλ}
satisfies properties (18) - (21). The first conclusion follows directly from the fact that

eλeµ = eµeλ = emin{µ,λ}

and the multiplicative property in Proposition 1. The second conclusion follows from the
same proposition, after observing that

eλ = lim
µ↘λ

eµ.

To prove (20), note that if λ < m, then 0 ≤ eλ ≤ 0 in [0,M ], so that the monotonicity
property of he map u 7→ u(A) implies that 0 ≤ eλ(A) = Eλ ≤ 0 for λ < m. Similarly one
can check that if λ ≥M , the I ≤ Eλ ≤ I.

It only remains to prove (21). To do this, fix a continuous function µ. Fix a partition
P ; that is, fix λ0 < λ1 < . . . < λN with λ0 < m ≤ λ1 and ΛN ≥M , and fix
mui ∈ [λi, λi+1]. Define

uP (λ) =
M∑
i=0

u(µi)[eλi+1
(λ)− eλi

(λ)].

Then from the definition, one can check that the sum

uP (A) =
M∑
i=0

u(µi)[eλi+1
(A)− eλi

(A)]

is just an approximating sum for the Stieltjes integral
∫M

m− u(λ)dEλ. Moreover,

‖uP (A)− u(A)‖ ≤ max
λ∈[m,M ]

|uP (λ)− u(λ)|

= max
λ∈[m,M ]

∣∣∣∣∣
M∑
i=0

u(µi)− u(λ)[eλi+1
(λ)− eλi

(λ)]

∣∣∣∣∣
= max

λ∈[m,M ]

M∑
i=0

|u(µi)− u(λ)| [eλi+1
(λ)− eλi

(λ)]

= max
i

max
λi≤λ≤λi+1

|u(µi)− u(λ)|.

This latter quantity tends to zero as the partition is refined, since a continuous function is
uniformly continuous on any compact set. This proves (21).

Uniqueness: The uniqueness proof requires quite a lot of analysis to do in full detail,
but here is the outline: Given two spectral families {E1

λ} and {E2
λ} for the same operator A,

we fix ψ ∈ H, and we let f i(λ) = 〈Ei
λψ, ψ〉 for i = 1, 2. Then for any continuous function u

on [m,M ], (12) implies that

〈u(A)ψ, ψ〉 =

∫
u(λ) df i(λ)

for both i = 1, 2, and hence that∫
u(λ) df1(λ) =

∫
u(λ) df2(λ).
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for all continuous u. (These are scalar-valued Stieltjes integrals, as discussed in Section 1).
From this one can conclude that f 1− f 2 is constant; here a certain amount of work with the
definition of Stieltjes integrals is required. Since (11) implies that f 1 and f 2 are equal when
λ ≤ m, it follows that f 1(λ) = f 2(λ) for all λ. And from this one can finally deduce that
E1
λ = E2

λ for all λ. �

For the record, the lemma we omitted in the proof of uniqueness of the spectral decom-
position is:

Lemma 8. Supppose that f : R → R is a function of bounded variation (that is, a difference
f 1 − f 2 of two monotone nondecreasing functions) that is right-continuous, so that f(λ) =
limµ↘λ f(µ) for all µ. If ∫

g(λ) df(λ) = 0

for all continuous g, then f is constant.

The proof is easy if f is C1. The lemma can be proved in the generality stated here by
approximating f by smooth functions, for example by mollification, a standard technique
which can be found in any respectable analysis book.

3.2. the spectral theorem for unitary operators. The spectral theorem for unitary
operators is this:

Theorem 3 (Spectral Theorem for Unitary Operators). Suppose that U is a unitary operator
on a Hilbert space H. Then there exists a unique family {Eϕ}0≤ϕ≤2π of orthogonal projection
operators satisfying the following:

(22) Eϕ1Eϕ2 = Eϕ2Eϕ1 = Eϕ1 for ϕ1 ≤ ϕ2

(23) Eϕ0 = s-limϕ↘ϕ0Eϕ

(24) E0 = 0, E2π = I

and finally

(25) U =

∫ 2π

0

eiϕdEϕ

The proof is very much like the proof of the spectral theorem in the bounded, self-
adjoint case. A crucial point there was the monotonicity assertion of Proposition 1. The
corresponding point here is supplied by the following

Lemma 9. Suppose that p is a polynomial such that p(eiϕ) ≥ 0 for all ϕ ∈ R, and let U be
a unitary operator on a Hilbert space. Then p(U) ≥ 0.

The proof of this lemma hinges on the fact that if p is a polynomial satisfying the
hypotheses of the theorem, then there exists a polynomial q such that p(eiϕ) = |q(eiϕ)|2 for
all real ϕ. From this one can check that p(U) = q(U)∗q(U), which implies that

〈Pψ, ψ〉 = 〈q(U)∗q(U)ψ, ψ〉 = 〈q(U)ψ, q(U)ψ〉 = ‖q(u)ψ‖2 ≥ 0

for all ψ.
Once Lemma 9 is known, the proof of the theorem exactly follows the arguments in the

bounded symmetric case.
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3.3. the spectral theorem for unbounded self-adjoint operators. We will sketch a
proof the spectral theorem for unbounded self-adjoint operators that deduces it from the
corresponding result for unitary operators. One could also deduce it from the spectral
theorem for bounded operators, for example by using the approximators Aλ used in Chapter
2 of GS in the proof of “existence of dynamics”.

Our basic plan will be to construct a bijection between self-adjoint operators and unitary
operators such that, if A is a self-adjoint operator and U is the unitary operator onto which
A is mapped, then the spectral families of U and A are related in some natural way.

In the simplest case of a 1-dimensional Hilbert space, a unitary operator can be identified
with a complex number u (or 1 by 1 matrix, if you prefer) such that ū = u−1 (so that |u|2 = 1)
and a self-adjoint operator can be identified with a complex number a such that a = ā (so
that a is in fact real.) The map v : C → C defined by

(26) v(a) =
a− i

a+ i

has the property that it maps real numbers (i.e., self-adjoint operators) onto the unit circle
(i.e., unitary operators) and in fact is a bijection of R and {eiθ : 0 < θ < 2π}; the inverse
is given by a(v) = iv+1

v−1
. .

Similarly, one can check by diagonalizing that if A is a self-adjoint operator on H = Cn,
then V := (A−i)(A+i)−1 is a unitary operator onH. Moreover, the map A 7→ V is a bijection
between the set of self-adjoint operators and the set {V unitary : I − V is invertible}, with
inverse A(V ) = i(I +V )(I −V )−1. Finally, to understand the proof of the spectral theorem,
it is useful to note that if {λi}ni=1 are the eigenvalues of A, then {v(λi)}ni=1 are the eigenvalues
of V , for v as defined above in (26). The latter can also be written in the form {eiϕ(λ)} for
ϕ(λ) = 2 cot−1 λ.

The observations motivate the

proof of Theorem 1 (sketch). Let A be self-adjoint.
1. Define V = (A− i)(A + i)−1. Check, using Lemma 10 below, that V is well-defined

and in fact unitary.
2. Let {Fϕ}0≤ϕ≤2π be a spectral family for the unitary operator V . For λ ∈ R, define

ϕ : R → (0, 2π) by ϕ(λ) = 2 cot−1 λ, so that v(λ) = eiϕ(λ) for all λ ∈ R. Then define

Eλ = Fϕ(λ)

3. The remainder of the proof consists in verifying that {Eλ} is a spectral family for
A. It is clear from corresponding properties of {Fϕ} that (9) and (10) hold, so it is only
necessary to check the other two conditions. In checking (11), the main point is show that
(I − V ) is invertible, and that A = i(I + V )(I − V )−1.

4. Use Lemma 11 below to verify (12). Thus, for σ > 0 define

Pσ = Eσ − E−σ, Aσ =

∫
(−σ,σ]

λdEλ

and verify that these satisfy the hypotheses of the lemma, and so determine a unique self-
adjoint operator s-limσ→∞Aσ. It only remains to check that this operator in fact equals A,
and to do this it suffices to show that (29) is satisfied.

�
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Lemma 10. Suppose that A is a symmetric operator on a Hilbert space H. Then the fol-
lowing are equivalent:

(1) A is self-adjoint
(2) A is closed4 and N(A∗ + i) = N(A∗ − i) = {0}.
(3) Ran(A+ i) = R(A− i) = H.

Proof. Preliminaries: For any operator A with dense domain (so that A∗ is defined), if
φ ∈ D(A) and ψ ∈ N(A∗ ± i), then

0 = 〈(A∗ ± i)ψ, φ〉 = 〈ψ, (A∓ i)φ〉.
Thus N(A∗ ± i) ⊂ R(A− i)⊥. By reversing the reasoning we obtain the opposite inclusion.
Thus

(27) N(A∗ ± i) = R(A− i)⊥.

Next, if A is symmetric, then

(28) ‖(A± i)ψ‖2 = ‖Aψ‖2 ± 〈Aψ, iψ〉 ± 〈iψ,Aψ〉+ ‖ψ‖2 = ‖Aψ‖2 + ‖ψ‖2

for ψ ∈ D(A).
(1) ⇒ (2): Now assume that A is self-adjoint. Since A = A∗ and A∗ is closed, it is clear

that A is closed.
And if ψ ∈ N(A∗ ± i), then (since A is self-adjoint) (A ± i)ψ = 0, so that (28) implies

that ψ = 0. Thus N(A∗ + i) = N(A∗ − i) = 0.
(2) ⇒ (3): Assume that A is symmetric and (2) holds. Then (27) implies that R(A±

i)⊥ = {0}, which means that R(A+ i) and R(A− i) are dense in H. Thus, given any ψ ∈ H,
there exists a sequence ψn ∈ R(A + i) say, such that ψn → ψ as n → ∞. That is, there
exists a sequence φn ∈ D(A) such that (A+ i)φn = ψn → ψ. Then (28) implies that

‖ψn − ψm‖2 = ‖(A+ i)(φn − φm)‖2 = ‖A(φn − φm)‖2 + ‖φn − φm‖2.

Thus, because {ψn} is a Cauchy sequence, it follows that {φn} and {Aφn} are both Cauchy
sequences. So there exists φ, η ∈ H such that

φn → φ, Aφn → η

as n→∞. Since A is closed by assumption (2), we conclude that η = Aφ, and hence that

ψ = limψn = limAφn + iφn = (A+ i)φ.

since ψ was arbitrary, this proves that R(A+i) = H. The proof that R(A−i) = H is exactly
the same.

(3) ⇒ (1): Assume that A is symmetric and (3) holds. Note that A ⊂ A∗; this is the
definition of symmetric. Thus we only need to prove that A∗ ⊂ A. To do this, fix ψ ∈ D(A∗),

and let η = (A∗ + i)ψ. Since A + i is onto, there exists an element ψ̃ ∈ D(A + i) = D(A)

such that (A+ i)ψ̃ = η.

It suffices to prove that ψ̃ = ψ.

4An operator A is closed if and only if

ψn ∈ D(A)
ψn → ψ
Aψn → φ

 ⇒ ψ ∈ D(A) and Aψ = φ.



20

To do this, note that, since A ⊂ A∗,

(A∗ + i)ψ = η = (A+ i)ψ̃ = (A∗ + i)ψ̃.

Thus (A∗ + i)(ψ − ψ̃) = 0. Moreover, since R(A − i) = H, we deduce from (27) that

N(A∗ + i) = {0}, and it follows that ψ̃ − ψ = 0 as desired. �

Finally, the proof of Theorem 1 also uses the following lemma:

Lemma 11. Assume that {Pσ}σ>0 is a family of orthogonal projection operators, and that
{Aσ}σ>0 is a family of bounded, symmetric operators, and that the following conditions hold:

PσPτ = PτPσ = Pσ whenever σ ≤ τ ;

s-limσ→∞Pσ = I;

PσAτ ⊂ AτPσ = Aσ whenever σ ≤ τ.

(The notation B ⊂ C means that D(B) ⊂ D(C) and that B = C on D(B).) Then there
exists a unique self-adjoint A such that

D(A) = {ψ ∈ H : lim
σ→∞

‖Aσψ‖ <∞}

and Aψ = limσ→∞Aσψ for all ψ ∈ D(A). In particular, A is the unique self-adjoint operator
that satisfies

(29) PσA = APσ = Aσ

for all σ.

3.4. further remarks. The proof of Lemma 10 also shows that

Lemma 12. Suppose that A is a symmetric operator on a Hilbert space H. Then the fol-
lowing are equivalent:

(1) A is esssentially self-adjoint (i.e. A∗ is self-adjoint)
(2) N(A∗ + i) = N(A∗ − i) = {0}.
(3) Ran(A+ i) and R(A− i) are dense in H.

Also, it follows immediately from Lemma 10 that (A±i) are invertible if A is self-adjoint.
In fact, it follows from (28) that ‖(A± i)−1‖ ≤ 1 for A self-adjoint.

(Actually, if A is only symmetric, it is still true, as a result of (28), that A±i are injective,
and hence have inverses, and moreover that with ‖(A ± i)−1 ≤ ‖ ≤ ‖ψ‖ for ψ ∈ D(A ± i).
But if A is not self-adjoint, these domains are not dense, and thus A ± i are not invertible
in this case.)

One can easily deduce from the above considerations that

Lemma 13. If A is self-adjoint and µ ∈ C has nonzero imaginary part, then A − µ is
invertible, and

‖(A− µ)−1‖ ≤ |Imµ|−1.
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4. the spectrum of a self-adjoint operator

main results of this section: resolvent, point spectrum, continuous spectrum can be
characterized in terms of spectral family {Eλ}.

Let A be a operator on a Hilbert space H.
The resolvent set of A, denoted ρ(A), is defined by

ρ(A) := {λ ∈ C : A− λI is invertible }.
Recall that an operator is invertible if its inverse exists and is bounded, or equivalently, if it
is one-to-one and onto.

The spectrum of A, denoted σ(A) is defined by

σ(A) := C \ ρ(A) = {λ : A− λI is not invertible}.

Lemma 14.

First we show that the spectrum and the resolvent can be characterized in terms of the
spectral family {Eλ}:

Proposition 2. Suppose that A is a self-adjoint operator on a Hilbert space H, and let {Eλ}
denote its spectral family.

(1) If λ 7→ Eλ is constant for all λ in an interval (a, b) then (a, b) ⊂ ρ(A). In addition,
‖(A− λI)−1‖ ≤ max{|a− λ|−1, |b− λ|−1}.

(2) If λ0 is such that λ 7→ Eλ is not constant in any interval containing λ0 (so that
Fε := Eλ+ε − Eλ−ε is a nonzero projection for every ε > 0) then λ0 ∈ σ(A).

(3) For every λ, Eλ− := s− limµ↗λEµ exists and is a projection operator.
(4) λ is an eigenvalue if and only if Eλ− 6= Eλ

We further define the point spectrum of an operator A on a Hilbert space H, denoted
σp(A), is defined by

σp(A) := {λ ∈ C : λ is an isolated eigenvalue of finite multiplicity}.
Here “isolated” means that there exists ε > 0 such that σ(A) ∩ (λ − ε, λ + ε) = {λ}. Easy
examples show that the inclusion σp(A) ⊂ {eigenvalues of A} can be strict.

If λ ∈ C then a Weyl sequence for A and λ is a sequence {ψn} ⊂ D(A) ⊂ H satisfying

‖ψn‖ = 1 for all n,

‖(A− λ)ψn‖ → 0 as n→∞
and

ψn → 0 weakly as n→∞.

The last condition means that for every φ ∈ H, 〈ψn, φ〉 → 0 as n→∞.
The continuous spectrum of A, denoted σc(A), is defined by

σc(A) := {λ ∈ C : there exists a Weyl sequence for A and λ.}.
It is always true that σp(A) ∪ σc(A) ⊂ σ(A), regardless of whether or not A is self-adjoint.
If A is self-adjoint, a stronger conclusion holds:

Proposition 3. If A is self-adjoint, then σ(A) = σc(A) ∪ σp(A), and σp(A) ∩ σc(A) = ∅.
Moreover

σp(A) = {λ ∈ σ(A) : R(Eλ+ε − Eλ−ε) is finite-dimensional for some ε > 0}
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and

σc(A) = {λ ∈ R : R(Eλ+ε − Eλ−ε) is infinite-dimensional for all ε > 0}.

An operator can easily be diagonalized if we can find a complete set of eigenfunctions.
Hence the following lemma is often useful.

Lemma 15. Let A be a self-adjoint operator on a Hilbert space H. If σ(A) is countable,
then there exists an orthonormal basis H consisting of eigenfunctions of A.

Proof. The spectrum is �

5. Compact operators

Here we use the spectral theorem and related machinery to prove some facts about
compact operators. It should be mentioned that these facts about compact operators can be
proved without appealing to the spectral theorem. Indeed, it is much easier to prove them
directly, than first to prove the spectral theorem and then deduce from things about the
behavior of compact operators.

definition : If X and Y are Banach spaces, then an operators K : X → Y is compact
if, for every sequence {xn} ⊂ X such that ‖xn‖X ≤ C for all n, the sequence {Axn} ⊂ Y
has a convergent subsequence.

An operator is said to have finite rank if the dimension of the range is finite.
An operator is said to be rank-one if its range is 1-dimensonal.

Lemma 16. If K is a compact operator and B is a bounded operator, then the following are
true:

(1) Every compact operator is bounded.
(2) The space of compact operators is closed in the norm topology. In other words, if Kn

and K are operators such that Kn is compact for every n and such that ‖Kn−K‖ → 0
as n→∞, then K is compact.

(3) Every operator with finite rank is compact.

Proof. The first and third assertions are almost immediate. The second assertion can be
proved using a diagonal argument for example. �

Proposition 4. If H is an infinite-dimensional Hilbert space and K : H → H is a compact
self-adjoint operator, then σc(A) = {0}.

Proof. (sketch) 1. Take a Weyl sequence for A, λ, and prove (using the definition of compact)
that the associated eigenvalue λ must equal zero. So σc(A) ⊂ {0}.

2. On the other hand, one can check (using the definition of compact) that every
sequence {ψn} such that ‖ψn‖ = 1 for all n and ψn → 0 weakly is a Weyl sequence for K, 0.
In other words, every such sequence satisfies ‖Kψn‖ → 0. Thus {0} ⊂ σc(A). �

Proposition 5. If K is compact and symmetric, K has a countable sequence of eigenvalues
λk (repeated according to multiplicity) with λk → 0 as k → ∞ and a (finite or) countable
orthonormal set {ψk} such that Kφ =

∑
λk〈ψk, φ〉ψk.

For a general compact operator (not necessarily symmetric) K on H, there exist a
sequence of positive numbers µk → 0 and orthonormal bases {ψk} and {ηk} such that
Kφ =

∑
µk〈ψk, φ〉ηk.
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Proof. 1. In the symmetric case, this follows chiefly from Lemma 15 and Proposition 4. These
imply that the spectrum is countable, and hence that there exists a (possibly uncountable)
orthonormal basis, say {ψα}α∈A of eigenvectors. From this it follows that

Kφ =
∑
A

〈ψα, φ〉λαψα

where Aφα = λαψα. So to finish the proof, it remains to show that there are at most
countably many eigenvectors with nonzero eigenvalues, and that they accumulate only at
zero. Since the point spectrum is necessarily at most countable, and each eigenvalue in the
point spectrum has only finite multipplicity,, these follow from Proposition 4 and the that
that the continuous spectrum by definition contains all accumulation points of the point
spectrum.

2. If K is compact but not symmetric, then it follows from Lemma 16 that K∗K is
compact, and it is clear that K∗K is symmetric. It is also clear that K∗K ≥ 0, so that all
eigenvalues of K∗K are nonnegative. Applying the proposition in the symmetric case, we
obtain a sequence {ψk} of eigenvectors for K∗K, with positive eigenvalues λk tending to zero
as k →∞, such that K∗Kφ =

∑
λk〈ψk, φ〉ψk

Let ηk = Kψk/‖Kψk‖, and let µk = ‖Kψk‖ = λ
1/2
k . Then it is easy to check that

Kφ =
∑

λk〈ψk, φ〉ηk.

Moreover,

µkµ`〈ηk, η`〉 = 〈Kψk, Kψ`〉 = 〈ψk, K∗Kψ`〉 = λk〈ψk, ψ`〉 = λkδk`

so that {ηk} form an orthonormal set. �

Corollary 1. The space of compact operators on a Hilbert space H is the closure, in the
operator norm, of the space of finite rank operators.

Proof. It follows from Lemma 16 that the space of compact operators contains the closure
of the finite-rank operators.

On the other hand, if K is a compact operator, then writing Kφ =
∑
µk〈ψk, φ〉ηk as in

Lemma 5, we can define KNφ =
∑N

k=1 µk〈ψk, φ〉ηk, and one can easily check, using the fact
that µk → 0 as k →∞, that ‖KN −K‖ → 0 as N →∞. �

6. Dynamics

6.1. Stone’s Theorem.

6.1.1. statement. In this section we discuss some elements of the proof of

Theorem 4. Suppose that A is a self-adjoint operator on a Hilbert space H. Then there
exists a family {Ut}t∈R of operators satisfying

(30) Us+t = UsUt = UtUs, U∗t = U−t for all s, t

(31) t 7→ Ut is strongly continuous. In other words, s-limτ→tUτ = Ut for all t.

(32) if ψ ∈ D(A) then lim
h→0

1

h
(Ut+h − Ut)ψ = iUtAψ = iAUtψ.
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(In particular, Ut maps D(A) into D(A), for every t.)

(33) D(A) = {ψ ∈ H : lim
h→0

1

h
(Ut+h − Ut)ψ exists}.

Conversely, if {Ut}t∈R is a one-parameter family of operators satisfying (30), (31), then there
exists a self-adjoint operator A such that (32), (33) hold. In fact, this is still true if instead
of (31) we assume only the weaker condition

(34) t 7→ Ut is weakly continuous, i.e., lim
τ→t
〈Uτψ, φ〉 = 〈Utψ, φ〉 for all t ∈ R, ψ, φ ∈ H.

Note that (30) implies that Ut is unitary for every t. A family of operators {Ut} satisfying
(30), (31) (respectively (34) is called a strongly continuous (resp., weakly continuous) one
parameter unitary group.

We often write eitA instead of Ut. Note that if A is bounded and symmetric, then one
can define

Ut = eitA :=
∞∑
n=0

1

n!
(itA)n.

Then the power series is easily seen to be convergent, and properties (30)–(33) can be verified
with varying amounts of difficulty.

The statement that (30) and (34) imply the existence of a self-adjoint A satisfying (32)
(33) is known as Stone’sTheorem.

It is easy to see that if Ut is unitary for every t and (34) holds, then in fact (31) holds.
Indeed, under these assumptions,

lim
τ→t

‖(Uτ − Ut)ψ‖2 = lim
τ→t

(
‖(Uτψ‖2 − 2Re〈Uτψ,Utψ〉+ ‖Utψ‖2

)
= lim

τ→t
2
(
‖Utψ‖2 − Re〈Uτψ,Utψ〉

)
= 2

(
‖Utψ‖2 − Re〈Utψ,Utψ〉

)
by (34)

= 0.

6.1.2. some ingredients in the proof. A main point in the proof of existence of the one-
parameter unitary group {Ut}, given a self-adjoint operator A, is the following

Lemma 17. Let A be a self-adjoint operator, and suppose that f : R → C is continuous and
bounded. Then there is an operator f(A), characterized uniquely by the property

(35) 〈f(A)ψ, φ〉 :=

∫
R
f(λ)d〈Eλψ, φ〉

for ψ, φ ∈ H. Moreover,

(36) (af + bg)(A) = af(A) + bg(A) for a, b ∈ C and f, g continuous;

(37) f1(A)f2(A) = (f1f2)(A)

(38) f̄(A) = f(A)∗

(39) ‖f(A‖ ≤ sup
λ∈R

|f(λ)|
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In fact one can make sense of f(A) for a larger class of functions than merely f continuous
and bounded, but we will not pursue this here.

We have proved other results of a similar character, see in particular Proposition 1.
In that earlier result, the operator A was assumed to be bounded and symmetric, so that
polynomials p(A) automatically make sense, and expressions of the form u(A) for u up-
persemicontinuous were eventually defined via approximating u by polynomials uniformly
on a compact interval containing the spectrum of A.

In the present setting it would be much more difficult to carry out this sort of polyno-
mial approximation argument. For example, if A is unbounded then polynomials p(A) are
in general still more unbounded (ie, smaller domains). Also, continuous functions can be
approximated only locally uniformly by polynomials.

sketch of the proof of Lemma 17. Step 1. We want to take (35) as the definition of f(A).
We first need to check that f(A) is uniquely defined by this identity. Check, using the
definition of the Stieltjes integral, that∣∣∣∣∫

R
f(λ)d〈Eλψ, φ〉

∣∣∣∣ ≤ |f(A)| ‖ψ‖ ‖φ‖.

Conclude that for ψ fixed, the map

φ 7→
∫

R
f(λ)d〈Eλψ, φ〉

is a bounded linear functional, and thus there exists a unique element of H — let us call it
f(A)ψ, such that

〈f(A)ψ, φ〉 =

∫
R
f(λ)d〈Eλψ, φ〉

for all φ ∈ H. This shows that f(A) is well-defined.
2. It is easy to check that (36), (38), and (39) follows from (35). To verify (37), it

suffices (by polarization) to check that

(40)

∫
R
f1(λ)d〈Eλf2(A)ψ, ψ〉 =

∫
R
f1(λ)f2(λ)d〈Eλψ, ψ〉

for arbitrary ψ ∈ H. To do this, rewrite the left-hand side as follows:∫
R
f1(λ)d〈Eλf2(A)ψ, ψ〉 =

∫
R
f1(λ)d〈f2(A)ψ,Eλψ〉

=

∫
R
f1(λ)d

(∫
R
f2(µ)d〈Eµψ,Eλψ〉

)
.

Let g(λ) = 〈Eλψ, ψ〉. Using the continuity of f2, the definition of Stieltjes integrals and
the fact that 〈Eµψ,Eλψ〉 = g(min{λ, µ}), one checks that for every λ1 < λ2, there exists a
µ ∈ [λ1, λ2] such that∫

R
f2(µ)d〈Eµψ,Eλ2ψ〉 −

∫
R
f2(µ)d〈Eµψ,Eλ1ψ〉 = f2(µ)(g(λ2)− g(λ1)).

From this point it is not so hard to complete the verification of (40). �
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sketch of the proof of Theorem 4. 1. self-adjoint operator generates 1-parameter uni-
tary group:

Let A be self-adjoint. Define

Ut = eitA

and verify that Ut has all the required properties. The easiest is (30), which is an immediate
consequence of (37). We omit the proof of (31), which is similar to that of (32) but easier.
For (32), we claim that

‖(Ut+h − Ut
h

− iUtA)ψ‖2 =

∫
R
|e
i(t+h)λ − eitλ

h
− ieitλλ|2d〈Eλψ, ψ〉(41)

=

∫
R
|e
ihλ − 1

h
− iλ|2d〈Eλψ, ψ〉.

This formally follows from (37) and (38), which, when they hold, imply that

‖f(A)ψ‖2 = 〈f̄(A)f(A)ψ, ψ〉 = 〈|f |2(A)ψ, ψ〉 =

∫
R
|f(λ)|2d〈Eλψ, ψ〉.

We have not verified that (37), (38) hold for unbounded functions such as the ones we
consider here, so to conclude (41) we argue instead by breaking up the left-hand side into
terms

‖Ut+h − Ut
h

ψ‖2, ‖iAψ‖2, 2Re 〈Ut+h − Ut
h

ψ, iAψ〉

then justifying for each term rewriting as a suitable Stieltjes integral, using the Spectral
Theorem for ‖iAψ‖2 and Lemma 17 for the other two terms. When assembled, these yield
(41).

To conclude (32), note that

lim
h→0

|e
ihλ − 1

h
− iλ|2 = 0 |e

ihλ − 1

h
− iλ|2 ≤ cλ2

for every λ. Thus the Dominated Convergence Theorem implies that

‖(Ut+h − Ut
h

− iUtA)ψ‖2 → 0 as h→ 0.

Proof of (33): · · ·
2. 1-parameter unitary group is generated by a self-adjoint operator:
idea: define Aψ = 1

i
limh→0

1
h
(Uh − I)ψ, for suitable domain.

It is easier to define instead an operator Ã with domain D(Ã) chosen to consist of a
rather small subspace of H on which we can easily justify all calculations that we wish to
carry out, and then to verify that Ã is essentially self-adjoint.

Given ψ ∈ H and f ∈ C∞0 (R; C), define

ψf :=

∫
f(t)Utψdt

Here the integral is understood as a strong limit of Riemann sums; it is easy to see, by
essentially the proof from single-variable calculus, that this limit exists, since t 7→ f(t)Utψ
is continuous and compactly supported in t. Further define

D(Ã) := {ψf : ψ ∈ H, f ∈ C∞0 }.
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and for φ = ψf ∈ D(A), define

Ãφ =
1

i
lim
h→0

1

h
(Uh − I)φ.

Check that this limit exists, and in fact Ãψf = ψ−f ′ = −ψf ′ .
Check further that D(Ã) is dense, and check also that Ã is symmetric.
Verify that Ã is essentially self-adjoint by checking that N(Ã∗ ± i) = 0. To do this,

suppose that (Ã∗ + i)ψ = 0, so that 〈ψ, (Ã− i)φ〉 = 0 for all φ ∈ D(Ã). Fix η ∈ D(Ã), and
let g(t) := 〈ψ,Utη〉. We compute:

g′(t) =
d

dt
〈ψ,Utη〉 = 〈ψ, iÃUtη〉 = −〈ψ,Utη〉 = −g(t).

It follows that g(t) = e−tg(0) for all t. On the other hand, it is easy to see that g(t) ≤ ‖ψ‖ ‖η‖
for all t, from which we conclude that g(0) = 0. Thus ψ ⊥ D(Ã), so that N(A∗ + i) = 0.
Exactly the same argument shows that N(A∗ − i) = 0.

Finally, let A be the unique self-adjoint extension of Ã, and verify that A has the required
properties. �

6.2. spectrum and dynamics. In this section we fix a self-adjoint operator A, and we use
the notation

He := the closed span of the eigenvectors of A

= the smallest closed subspace containing all eigenvectors .

We write Pe to denote orthogonal projection onto He and P⊥e := I − Pe.

Theorem 5. If K is a compact operator and φ ⊥ He, then

(42)
1

T

∫ T

0

‖KeitAφ‖2 dt→ 0 as T →∞.

Moreover

(43)

∥∥∥∥ 1

T

∫ T

0

e−itAKP⊥e e
itA dt

∥∥∥∥ → 0 as T →∞.

The integral in (43) is a s-lim of Riemann sums.
In fact, conclusions (42), (43) still hold if K is bounded and K(A+ i)−1 is compact.

Proof. �

7. Trotter product formula
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