APM 421/ MAT 1723 Assignment number 4, fall 2005,

This will not be collected.

Here I assemble some exercises that were mentioned during the lectures.

- 1. Suppose that A is a self-adjoint operator with spectral family $\{E_{\lambda}\}$, and that ψ is an element of the Hilbert space such that $\langle \psi, \phi \rangle = 0$ for every eigenvector ϕ of E.
 - (a) Prove that $\lambda \mapsto \langle E_{\lambda} \psi, \psi \rangle$ is continuous.
 - (b) Prove that $\lambda \mapsto \langle E_{\lambda}\psi, \eta \rangle$ is continuous for every fixed $\eta \in \mathcal{H}$.
- 2. We have proved the following theorem in the lectures:

Theorem 1. If K is a rank-1 operator and $\phi \perp \mathcal{H}_e$, then

$$\frac{1}{T} \int_0^T \|K e^{itA} \phi\|^2 \, dt \to 0 \qquad \text{as } T \to \infty.$$
(1)

Moreover

$$\left\|\frac{1}{T}\int_{0}^{T}e^{-itA}KP_{e}^{\perp}e^{itA} dt\right\| \to 0 \qquad \text{as } T \to \infty.$$
⁽²⁾

The integral in (2) is understood to be a s-lim of Riemann sums.

Here we use the notation

 $\mathcal{H}_e :=$ the closed span of the eigenvectors of A

= the smallest closed subspace containing all eigenvectors .

We write P_e to denote orthogonal projection onto \mathcal{H}_e and $P_e^{\perp} := I - P_e$.

Prove that the theorem is still valid if K is a compact operator. In doing this, you can take for granted the following

Lemma 1. Every compact operator is a norm limit of finite-rank operators. In other words, if K is compact and $\varepsilon > 0$, then there exists an operator K_{ε} which is a linear combination of finitely many rank-1 operators, and such that $||K - K_{\varepsilon}|| < \varepsilon$.

3. Suppose that A is an unbounded, self-adjoint operator on a Hilbert space \mathcal{H} . For $\psi, \phi \in D(A)$, define

$$[\psi,\phi] := \langle A\psi, A\phi \rangle + \langle \psi, \phi \rangle$$

Verify that $[\cdot, \cdot]$ is a norm, and that with this norm, D(A) is a Hilbert space.