
APM 421/ MAT 1723 Assignment number 3, fall 2005, due Tuesday November 8,
2005.

Do at least three of the following 6 problems. You can use the conclusion of any of the exercises in
solving the other exercises, except in cases where one problem is an easy corollary of another.

1. Suppose that f : R → R is a nondecreasing function such that f(λ) = 0 for all λ < m and
f(λ) = a for all λ ≥M . Show that if g : R → R is continuous, then

a inf
[m,M ]

g(λ) ≤
∫
g(λ)df(λ) ≤ a sup

[m,M ]
g(λ).

In the following questions, {Eλ}λ∈R always denotes a spectral family of projection operators asso-
ciated with a (possibly unbounded) self-adjoint operator A.Exercise 1 may be useful.

2. Suppose that λ 7→ Eλ is constant for all λ in an interval (a, b).

(a) Show that if λ ∈ (a, b) then (A − λI)−1 exists and is bounded. In other words, show
that (a, b) ⊂ ρ(A).

(b) Estimate the operator norm of (A− λI)−1 in term of max{λ− a, b− λ}.

3. Assume that λ0 is such that λ 7→ Eλ is not constant in any interval containing λ0, so that
Fε := Eλ+ε − Eλ−ε is a nonzero projection for every ε > 0. Prove that λ0 ∈ σ(A).

4. (a) Prove that Eλ− := s − limµ↗λEµ is a projection operator. (This limit exists because
any bounded monotone sequence of symmetric operators has a limit.)

(b) Show that Eλ− 6= Eλ if and only if there exists some nonzero ψ ∈ H such that Aψ = λψ.

(c) Deduce that (A− λI)−1 exists if and only if Eλ− = Eλ.
(Thus λ belongs to the point spectrum of A if and only if µ 7→ Eµ is (s-)discontinuous
at µ = λ.)

The above exercises show that for a self-adjoint operator, the resolvent set, the spectrum, and the
eigenvalues can all be characterized in terms of the spectral decomposition {Eλ}.

Before stating the next problems we give some definitions.

definition 1: The point spectrum of an operator A on a Hilbert space H, denoted σp(A), is defined
by

σp(A) := {λ ∈ C : λ is an isolated eigenvalue of finite multiplicity}.

Here “isolated” means that there exists ε > 0 such that σ(A) ∩ (λ − ε, λ + ε) = {λ}. (In other
words, λ is isolated, not merely from other eignevalues, but also from other parts of the spectrum
as well.)
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definition 2: If λ ∈ C then a Weyl sequence for A and λ is a sequence {ψn} ⊂ D(A) ⊂ H satisfying

‖ψn‖ = 1 for all n,

‖(A− λ)ψn‖ → 0 as n→∞

and
ψn → 0 weakly as n→∞.

The last condition means that for every φ ∈ H, 〈ψn, φ〉 → 0 as n→∞.

definition 3: The continuous spectrum of A, denoted σc(A), is defined by

σc(A) := {λ ∈ C : there exists a Weyl sequence for A and λ.}.

It is always true that σp(A) supσc(A) ⊂ σ(A), regardless of whether or not A is self-adjoint. If A
is self-adjoint, a stronger conclusion holds:

5. If A is self-adjoint, then σ(A) = σc(A) ∪ σp(A), and σp(A) ∩ σc(A) = ∅.

In fact, if A is self-adjoint then

σp(A) = {λ ∈ σ(A) : R(Eλ+ε − Eλ−ε) is finite-dimensional for some ε > 0}

and
σc(A) = {λ ∈ R : R(Eλ+ε − Eλ−ε) is infinite-dimensional for all ε > 0}.

One way to do exercise 4 is by proving these statements. There may be easier ways to do it.

We state one more exercise after giving yet another definition:

definition 4: If X and Y are Banach spaces, then an operators K : X → Y is compact if, for every
sequence {xn} ⊂ X such that ‖xn‖X ≤ C for all n, the sequence {Axn} ⊂ Y has a convergent
subsequence.

6. Show that if H is an infinite-dimensional Hilbert space and K : H → H is a compact self-
adjoint operator, then σc(A) = {0}.

2


