APM 421/ MAT 1723 Assignment number 2, fall 2005, due Tuesday October 25, 2005.

questions 1 through 4 of this assignment: do exercises 1, 2d, 3, and 4 in the handout "spectral theorem. part 1", posted on the course web site.

5. Let $\mathcal{H} = \ell^2$, here thought of as the set of doubly infinite square summable sequences $x = (x_n)_{n=-\infty}^{\infty}$, with the usual inner product $(x, y) = \sum_{-\infty}^{\infty} \bar{x}_n y_n$. Define

Define

 $D(A) = \{x \in \mathcal{H} : \exists N \text{ such that } x_n = 0 \text{ for all } n \ge N\}$ $(Ax)_n = nx_n.$

Compute the adjoint A^* ? Is A essentially self-adjoint?

Note that D(A) is dense. I do not want to see the proof of this fact.

6. For \mathcal{H} as in the previous exercise, define A by

$$D(A) = \{x \in \mathcal{H} : \sum n^2 |x_n|^2 < \infty, \sum x_n = 0\}$$
$$(Ax)_n = nx_n.$$

Compute the adjoint A^* ? Is A essentially self-adjoint?

Note that $\sum_{n\neq 0} |x_n| = \sum_{n\neq 0} \frac{1}{n} (nx_n) \le \left(\sum n^{-2} \sum n^2 |x_n|^2\right)^{1/2} < \infty$. Thus the condition $\sum x_n = 0$ makes sense.

One can also check that D(A) is dense in \mathcal{H} . You need not write up the proof, which can easily be deduced from the elementary fact that, given any $z \in \mathbb{C}$ and any $\epsilon > 0$, one can find an element $x \in H$ such that $\sum x_n = z$, $\sum n^2 |x_n|^2 < \infty$, and $||x|| < \epsilon$.

7. Probe that if A is an invertible operator and if B is a bounded operator such that $||B|| ||A||^{-1} < 1$, then A - B is invertible. (Here we define D(A - B) = D(A), consistent with our standard conventions.)

To do this, first note that $\sum ||(A^{-1}B)^n|| \leq \sum (||A||^{-1}||B||)^n < \infty$. It follows from an easy general result that the partial sums $\sum_{n=0}^{N} (A^{-1}B)^n$ converge in the operator norm as $N \to \infty$ to a limit, which is (naturally) denoted $\sum_{n=0}^{\infty} (A^{-1}B)^n$. We understand $(A^{-1}B)^0$ as the identity I

- (a) Prove that $\sum_{n=0}^{\infty} (A^{-1}B)^n$ provides the inverse of $I A^{-1}B$, which is therefore an invertible operator.
- (b) Prove that if A and C are invertible, and C is bounded, then AC is invertible, with $(AC)^{-1} = C^{-1}A^{-1}$. recall that in general $D(A_1A_2) = \{x \in D(A_2) : A_2x \in D(A_1)\}$.

The invertibility of A - B then follows from writing $A - B = A(I - A^{-1}B)$