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Abstract. The subject of this paper is upper bounds on the length of the
shortest closed geodesic on simply connected manifolds with non-trivial
second homology group. We will give three estimates. The first estimate will
explicitly depend on volume and the upper bound for the sectional curvature;
the second estimate will depend on diameter, a positive lower bound for the
volume, and on the (possibly negative) lower bound on sectional curvature;
the third estimate will depend on diameter, on a (possibly negative) lower
bound for the sectional curvature and on a lower bound for the simply-
connectedness radius.

The technique that we develop in order to obtain the last result will also
enable us to estimate the homotopy distance between any two closed curves
on compact simply connected manifolds of sectional curvature bounded
from below and diameter bounded from above. More precisely; et a
constant such that any metric ball of radigis: is simply connected. There
exists a homotopy connecting any two closed curves such that the length
of the trajectory of the points during this homotopy has an upper bound in
terms of the lower bound of the curvature, the upper bound of diameter and
C.

0. Introduction

In this paper we will prove three theorems relating the length of the shortest
closed geodesic on a simply connected Riemannian manifold either to the
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diameter or to the volume of a manifold. That work was motivated by the
paper [G2] of Gromov, in which he asks whether it is always possible to
find a constant c(n), such that the length of the shortest closed geodesic is
bounded from above by c(m)l(M)l/",where n is the dimension of a man-
ifold. (See also [Br] and [G3] for the related topics.) Gromov himself had
solved this problem for essential manifolds in [G2]. Recall that essential
manifolds are those (nonsimply connected) compact manifolds that admit
amap fM — K(II,1), such thatf.[M] # 0, where [M] is the fundamen-

tal homology class of M{, is the induced homomorphism add(17, 1)
denotes the aspherical space with the fundamental gkbupe. the space

K that has the following properties:; (K) = II andn,(K) = 0, for

n # 1. (In particular, all compact surfaces with the exception of a sphere
are essential, and so are all the manifolds that admit Riemannian metric of
nonpositive sectional curvature.) In 1988 C.B. Croke showed that the length
of the shortest geodesic on a sphere is alwayily'A and< 9D, where

A is the area and is the diameter of a sphere, (see [Cr2], [M]). That re-
sult finished the problem for the compact surfaces. The only known to us
results for the simply connected manifolds of higher dimension are those
of Ballmann, Thorbergsson and Ziller ([BalThZ]), who, in particular, have
investigated the case of spheres endowed \A&tlrpmched metric of positive
sectional curvature, and the results of Croke ([Cr2]) and Treibergs ([T]) for
convex hypersurfaces.

In this paper we present three upper bounds on the length of the shortest
closed geodesic on a simply connected Riemannian manifold with a non-
trivial second homology group. Our first estimate will be in terms of the
upper bound on sectional curvature and an upper bound on the volume of a
manifold.

Theorem A. Let M™ be a simply connected compact Riemannian manifold
with a non-trivial second homology group, of sectional curvatifre< 1

and a volume< V. Then the length of the shortest closed geodeg&icon

the manifoldM™ is bounded from above by

9(Vin) = (er(n)(V + 1)) =W+,

wherec; (n) = 10%(n!)3, ca(n) = 10°(n!)3.

In the future the class of simply connected Riemannian manifolds with
a non-trivial second homology group, of sectional curvatiire< 1, and
volume< V will be denoted byr".

If, in addition, one assumes that the above manifold is 2-essential, one
can somewhatimprove the upper bound. Some of the examples of 2-essential
manifolds are manifolds that are homotopically equivalentébli€r mani-
folds, in particularC P"™. In that case one obtains Theorem AA.
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Theorem AA. Let M™ be a 2-essential compact Riemannian manifold of
sectional curvature’ < 1 and a volume< V. Then the length of the
shortest closed geodesj¢t) on M™ is bounded from above by

§(Vin) = &1(n) + (E2(n) V)@V,
wherec; (n) = 103n3,é(n) = 103((n + 1)1)2, &3(n) = 10°n3.
Let us now recall the definition of 2-essential manifolds:

Definition 0.1. We will say that a compact and orientable manifdlflis
2-essential if there exists: M — CP such thatf,[M] # 0,where [M]
is the fundamental homology class/af.

Our second estimate will be in terms of a lower bound for the sectional
curvature, a positive lower bound for the volume and an upper bound for the
diameter.

Theorem B. Let M™ be a simply connected compact Riemannian manifold
with a non-trivial second homology group, of sectional curvatiire> —1,
volume> v > 0 and diameterl < D. Then the length of the shortest closed
geodesicy(t) on the manifold\/" is bounded from above by

el4 (n)D

min{1,v}es()

f(n,D,v) = exp( )s

where the constants,, c; can be explicitly calculated.

The estimate in our third result is also given in terms of a lower bound
for the sectional curvature and an upper bound for the diameter but instead
of a lower bound for the volume we use a lower bound for the simply-
connectedness radius.

Theorem C. Let M™ be a simply connected compact Riemannian manifold
with a non-trivial second homology group, of sectional curvatidre> —1,

and diameterl < D. Assume that all metric balls of radigs cin M™ are
simply connected. Then the length of the shortest closed geogeégsion

the manifold)M ™ is bounded from above by a certain functiofm, D, c) of

n, D andc.

If we assume, in addition, that every closed cupie a metric ball of
radius less then can be contracted to a point inside this ball by a homotopy
which contains only closed curves of the length less than an explicitly given
function of the length of then one is able to write down an explicit formula
for h(n, D, c).

In the future the class of simply connected compact Riemannian man-
ifolds with a non-trivial second homology group, of sectional curvature
K > —1 and diametet < D will be denoted by?.
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The proof of Theorem C that we will present is more involved then proofs
of Theorems A and B and uses Gromov'’s ideas from his well-known paper
on curvature, diameter and Betti numbers. Even though, Theorem C does
not quite allow us to get rid of the dependencevoit can be considered as
a step in this direction.

We do not know how to get an explicit expression for the functign
existence of which is stated in the text of Theorem C (in contrast with
Theorem B) without the assumption made in the last statement of Theorem
C (or at least a weaker form of this assumption).

The reason that the proof of Theorem C is much more difficult than that
of Theorems A and B is that in Theorem C we do not assume anything about
how quickly closed curves in balls of radigsc can be contracted to a point.

On the other hand results of Grove and Petersen ([GrP]) yield not only an
explicit contractibility function of manifolds satisfyingg > —1, volume

> v > 0 and diametexK D but in fact provide enough information about
how exactly closed curves contained in small metric balls can be contracted
to a point inside larger metric balls.

Corollary 1. Let M™ be a simply connected compact Riemannian manifold
with a non-trivial second homology group, of sectional curvatiire> 0,

and diameter! < D. Assume that all metric balls of radiys ¢ in M™ are
simply connected. Then the length of the shortest closed geogeépion

the manifold)M ™ is bounded from above yn, ¢/ D)D for some function

p-

Proof. follows from Theorem C by a rescaling argument.

Recall that a geodesic in which its starting point and the end point co-
incide is called a geodesic loop. (That is, we do not require the resulting
closed to curve to be smooth at this point.)

Corollary 2. Let M™ be a simply connected Riemannian manifold with a
non-trivial second homology group such tliat> —1 and diametetl < D.
Then the length of the shortest non-trivial geodesic loogBhis bounded

from above by
A(n,D) = eecw(DH),

wherec(n) = 250n.

If, moreover, K > 0 then the length of the shortest non-trivial geodesic
loop is bounded from above k" D.
Proof. We will prove the existence ok(n, D). One derives the explicit
formula for A by following the proof of Theorem C. Letbe the same as in
the text of Theorem C. If > 1, then one has the upper boukth, D) =
f(n, D, 1) even for the length of the shortest closed geodesic.
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Otherwise there exists a closed curve in a ball of radius one which cannot
be contracted to the center of this ball inside this ball.

Itis not hard to see that if every closed curve formed by two minimizing
geodesics between the center of the ball and a point of the closed curve is
contractible within the ball then the curve itself will be contractible within
the ball.

So, one of such curves will not be contractible. When we try to minimize
its length in the class of curves which start and end at the center of the ball
using a modification of the Birkhoff curve shortening process we arrive to a
non-trivial geodesic loop of length less than twice that of the initial curve.

Last statement of Corollary 2 follows from a rescaling argument. QED.

Before we will give the outline of our proofs, let us recall the result of
Lusternik and Fet, (see [B], [MI] for more details).

Theorem. Let M be compact simply connected Riemannian manifold. Then
there exists at least one closed geodesic on M.

In order to briefly state the proof of this theorem we will need a couple
of facts:

1. Let AM = Map(S!, M) denote the space of continuous maps fr§m
to M and letf2M be the space of fixed point loops. Then

o (AM) = 7o (M) @ my(2M);

and
1 (M) = 7, (2M).

Therefore, there exists> 0 such thatr;(AM) # {0}.

2. Givenc > 0 let A°M denote the closed subsBt ([0, c]), whereE is

the energy defined on piecewise differentiable curves Haet/ be the set

of all geodesic polygons consisting &f segments. For any fixed there
existsN,,, such thatry,(PyM) = mi(A°M) forall k < m, N > Np,.

3. Let us also recall that closed geodesics are critical points of the energy
function (or equivalently of the length function) drty M.

Proof. Consider the smallestsuch thatr;(AM) # {0}, (or equivalently
miv1 (M) # {0} andm;(M) = {0}.) Letv € m(AM) andv # 0. It
is easy to see that can be represented by a continuous magofnto
the spacel* M made of piecewise differentiable closed curves. tet
sup,cgi (E(v(z))). Consider12° M. For any fixedn there existsV,, such
that for allk < i, N > Ny, mi(P3¢M) = m(A%°M). Moreover,v can
be deformed intaP2¢M without the increase of energy in the process of
homotopy. Thusy; (P2 M) # 0.

Suppose’3¢ M does not contain closed geodesics. Then the energy func-
tion £ on P2¢M has no critical points o#2°M other than constant paths.
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Let us define a vector field on P2°M by the formula— < X,Y >=
dE(Y). The vector fieldX does not vanish o®2¢M\ M. Therefore we
can deformP]%,cM into the tubular neighborhood d@ff, which can be re-
tracted to)M. But that would mean that;(P2°M) = m;(M), which is a
contradiction, sincer; (M) = {0}. QED.

Suppose now, that we want to estimate the length of a closed geodesic on
a compact simply connected manifold. In light of the above proof, we can see
that if we would actually construct a non-trivial elemerit, t) € m;(AM)
such that the length of each curkéy, *) is bounded from above by some
constant, that would imply the existence of a closed geodesic, which length
is going to be bounded by the same constant. That is exactly what we are
going to do in our case. In our case(M) # {0} andm (M) = {0}. It
follows that

T (AM) = m (M) @ m (2M) ~ w1 (2M) ~ 7w (M) # {0}.

Therefore, the problem can be reduced to constructing a non-trivial element
H,(t) of w1 (AM), such that for all- length H is bounded in terms of
available geometric data. We will be using the notions of the width of a
homotopy and the homotopy distance introduced in [SW] as follows:

Definition 0.2. Width of a HomotopyL.et 7', (¢) be a homotopy that connects
two closed curves parametrized by [0, 1] on a Riemannian manifoldl/ .

We say thatVr is the width of the homotop¥'-(¢) if Wr = max¢(o
length of the curvé(t). That isW is the maximal length of the trajectory
described by a point of one of the original closed curves during the homotopy.
More generally ifX,Y are metric spaces and : X x [0,1] — Y isa
homotopy theriV is defined asup,c ylength F'(z, ).

Definition 0.3. Homotopy Distancelet a;(t), a2(t) be two curves, then
the homotopy distancéy (a1, as)=infy Wy, whereH is any homotopy
betweernn; andas.

The constructions aff(¢) in the proofs of Theorems A, B and C are some-
what different. We will summarize the proof of Theorem C and then indicate
the points where the proof of Theorems A and B will deviate from the proof
of Theorem C.

There are several essential ideas in this proof that we want to emphasize.

1. In order to construct a non-trivial elemehit.(¢) of 71 (AM) such that
lengthH, < f(n, D, c) we will have to learn how to construct a homotopy

of any closed curve(t) of length< 3d to a point, and that homotopy has to
have some special properties. What we have in mind is the following: there
are two parameters of the homotopy that we need to control at the same
time, i.e. the length of the curves in the homotopy and the homotopy width
(by controlling we will mean providing an upper bound). We will, actually
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be satisfied if we have only “partial” control over the width, that is at least
two selected points om(t) do not “travel for too long” until they reach,

i.e. H-(t;) is bounded, wheré= 1, 2. The attempt at using Birkhoff curve
shortening process fails for the reason that even though we have absolute
control over the length of the curves in a homotopy, each point(éncan

travel a long distance till it gets t@

2. Such a homotopy as in the previous paragraph can be constructed by
first producing a different homotopy from which we demand only that its
width should be bounded. The assumption #iaf) > 3d will be used,
wherel (M) denotes the length of the shortest closed geodesic. We can then
construct a new homotopy based on the previous one that will satisfy the
necessary conditions, (see Fig. 11.)

3. In order to accomplish (2) we will need to use notions very similar to

those used by Gromov in [G1], i.e. rank and compressibility, that will be

substituted by effective rank and effective compressibility. These notions
will be defined in Sect. 3. We will be able to show that effective rank is

bounded through curvature and diameter of a manifold.

4. The result of the various estimates will be that (assuming) > 3d)

for every curvey(t) of length< 3d there exists a homotopy of this curve

to a point, such that the length of the curves in a homotopy is bounded by
a certain function of,, D andc¢ and that we can insure that for some two
points on the curve, the distance they travel is bounded by the same function.
At that point we will be able to construct a non-trivial 2-cycle with some
special properties. The argument that we will use in order to obtain it is the
following: we will consider a magf : S? — M, such that the image ¢f?
underf represents a non-trivial elementi (M ). Next we will triangulate

S? and consider the induced triangulatiory¢t?). We will want the induced
triangulation to be fine enough for the diameter of each simplex to be less
than the injectivity radius of a manifold. Let us c#S?) by o. Then we

will try to extend this magf to D3, or, roughly speaking, we will attempt to
“fill” o using the following procedure. First we will pick any poghin M.

Then we will join the poinp with all the vertices ofr by minimal geodesics.
After that we will consider all the closed curves composed of two geodesic
segments that joifi and verticeg, andd, of o and the edge af that joins

01 andd,. We will then use the “nice” homotopy to connect those closed
curves with some points. We will exterfdskeleton by skeleton by mapping
the center of the disP? to , edges that connect the center of the disc with
vertices of triangulation to minimal geodesics and 2-simplices to surfaces
generated by the above homotopigsannot be extended to 3-skeleton, so

it cannot be extended to at least one 3-dimensional simplex. Thus, we will
obtain some cycles af/ of a specific shape, at least one of which should
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be non-trivial, in order for not to bound. Finally, we will then construct a
non-trivial element ofr; (AM) with the desired properties.

Let us now somewhat extrapolate on (3). That work was mainly inspired
by [G1]. We will establish the connection between effective rank of a ball
and the homotopy distance between any closed curve inside that ball and
some point. That is, we will find an upper bound on the homotopy distance
between a curve and a point in terms of the effective rank. The proof of this
uses the induction procedure on the effective rank of a ball containing the
curve, thatwe willdenote asnk,,. Forthe curve (t) thatliesinside the ball,
of radius less than the injectivity radius there exists an obvious homotopy of
bounded width to the center of the ball. It is only slightly harder to construct
a homotopy of bounded width for the curve inside the balt@ik] = 0,

(but perhaps, with radius greater than the injectivity radius.) The above will
be the base of induction. Now let us roughly describe how we can construct a
homotopy of bounded width for the curve that lies inside a simply connected
ball B,.(p) of rank], = 1, since that will make the induction step clear.

We will begin by showing that there exists a finite sequence of closed
piecewise geodesic curves that starts at our given curve and ends with some
constant curve, such that two consecutive curves in the sequence are suf-
ficiently close to each other. We will then construct a homotopy between
two neighboring curves by reducing the problem to finding a homotopy of
a closed curve that lies totally inside the b&Jl;;(p’), which is a subset of
our original ball. That will be accomplished by first “bringing” the curve to
a ball ofrank!, = 0 and then by homotoping it to a point, (see Fig. 1 below,
and also Figs. 3-6.)

A technical difficulty which arises starting at the next step of induction
is that we need to know in advance some information about geometry of
the contraction of a given curve to a point insife(p). Fortunately, this
information is of combinatorial nature and the existence of the desired upper
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bound follows from the contractibility of the considered curve inditiép)
(see Lemma 3.5 for more details).

Proceeding by induction we can construct a homotopy of bounded width
of a curve inside any simply connected ball in the manifold. Therefore
if we have two parametrized curves such that the distance between their
corresponding points is less then the simply connectedness radius divided
by some large enough constant, then they can be connected by a homotopy
of a bounded width. Now we can use #)&3-net (for largeB) in the space
of closed curves id/ of length< 3d in order to complete the construction
of a contraction of bounded width for any closed curve of lergthd.

Note that the procedure that we develop in Steps 2 and 3 in order to
construct a homotopy of width bounded in terms of the lower bound on the
sectional curvature and the diameter can also be used to prove the following
theorem.

Theorem D. Let M™ be a simply connected compact Riemannian manifold
of sectional curvatured’ > —1 and diameterd < D. Suppose that all
metric balls inM™ of radius< ¢ are simply connected. Then there exists a
functionQ(n, ¢, D) such that for any closed curvgt) in M™ there exists

a homotopyH, (t) of w(t) to a point such that

Wy < Q(n,c, D).

If we assume in addition that every closed cutvim every metric ball of
radius less tham can be contracted to a point inside this ball by a homotopy
which passes only through closed curves of length bounded from above by
an explicitly given function of the length 9fthen we can write down an
explicit formula forQ(n, ¢, D).

To prove Theorem A we can assume that the injectivity radiug/8fis
bounded from below. Otherwise Klingenberg’s lemma together with Berger
injectivity radius estimate will give an estimate on the length of the shortest
closed geodesic and we would be done. But now, having the lower bound
on the injectivity radius it will be much simpler to construct the required
homotopy with special properties that we discussed above. We can then
proceed as in the proof of Theorem C.

In the proof of Theorem B we will use Grove and Petersen results which
imply that under assumptions of Theorem B there exist v, D) > 0
andC'(n, v, D) which can be written down explicitly such that any metric
ball in M™ of radiusr < r(n,v, D) is contractible inside the concentric
ball of radiusC'(n, v, D)r. Moreover, results of Grove and Petersen provide
enough information about the geometry of this contraction to construct the
required homotopy discussed above almost as easily as if we would have a
lower bound for the injectivity radius.
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In order to prove Theorem AA we will use some obstruction theory used
by Gromov in [G2] to construct a homotopy non-trivial map of the boundary
of 3-simplex intoM™ with the following special properties: Denote the
images of the vertices, b, ¢, d. Then the images of 1-simplices will be
geodesics joining, b, c andd, and the images of faces will be formed by the
surfaces generated by the homotopies with the “nice” properties described in
(). The lengths of contracted curuwés:, bed, acd andabd will be bounded
in terms of the filling radius o/ ™ which does not exceeeﬁn)vol% (M™).

Then we can proceed as in the proof of Theorem A.

Sections 1-4 will be dedicated to estimating the homotopy distance be-
tween closed piecewise geodesic curve and a point for élassSect. 1 we
will define the notions ofi-effective compressibility and-effective rank.

In Sect. 2 we will prove the lemma that will be essential in estimating
effective rank. It will establish that the number of elements in the sequence
of e-almost critical points is finite for some under some conditions. In
Sect. 3 we will establish the connection between the effective rank and the
homotopy distance, and in Sect. 4 we will show thatk/, is bounded from
above bye3("TD(@+1) for somea. Combining results of Sects. 3 and 4 we
will obtain Theorem D.

In Sect. 5 we will construct the required homotopy for &d§} € ¥. We
will deal with classY” in Sect. 6. Finally in Sect. 7 we will prove Theorems
A, B and C and use some ideas from the paper [G2] of Gromov to finish the
proof of Theorem AA. In Sects. 1, 2 and 4 we will closely follow the proof
of the main theorem from [G1] of Gromov as it was done in [Cg].

1. Basic definitions

Definition 1.1. a-Effective Compressibility.et a be a positive number. We
will say thatB, (p) a-effectively compresses 8, (¢) and writeB,.(p) —,
B;(q) if the following conditions are satisfied:
1. 5s+d(p,q¥x5r;
2. There exists a homotog¥ of B,.(p) into B,(q) with Fj being the identity
andF : B.(p) C Bs(q);
3.Wr <ar.

(In particular, if there exists a homotogy, of B,(p) to some point
p’ € B,(p), such thatty is the identity and}; = ¢/, and the third property
of the definition is satisfied, then we will say thBt (p) is a-effectively
contractible.)

Definition 1.2. a-Effective Rank.

1. ranky(r,p):=0, if B.(p) —4 Bs(q) with Bs(q) a-effectively con-
tractible.
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2. rank, (r,p):=j if rank, (r,p) is not< j-1 and if B, (p) — 4 Bs(q) such
that for all¢’ € B;(q) with s’ < s/10, we haveank,(s',q’) <j-1.

Definition 1.3. a-Effectively Incompressible Balh ball B,.(p) is called
a-effectively incompressible i3, (p) —, Bs(q) implies thats > r/2.

Lemma 1.4.Any ball B,.(p) can be 3-effectively compressed either to an
a-effectively contractible ball or to a ball thatis incompressibleffectively.

Proof. SupposeB, (p) —4 Bs, (¢1). Then there are three possibilities:
1. Bs, (q1) is a-contractible;
2. Bs, (1) is incompressible-effectively;

3. Bs, (q1) is compressible-effectively, but notu-effectively contractible.

In the first and the second case we are done, sireféective compress-
ibility implies 3a-effective compressibility. In the third casB;, —, Bs,
such thak, < s1/2 by definition ofa-effective compressibility. Once again
we have three possibilities fdB,, (¢2). It can be either-effectively con-
tractible,a-effectively incompressible, ar-effectively compressible. Con-
sider the last case and obtaly, —, Bs, such thatss < sy/2, and
so on. The above process will have to terminate by our arriving either at
effectively compressible ball, or the ball that is incompressibédfectively.
We, thus,obtain a sequenég; F2, F3 ..., F™ of homotopies such that
Wp < ar,Wpge < asy < ar,Wgs < ass < as1/2 < ar/2, ..Wpn <
(ar)/2(=1)_ Thus, we can get to-effectively contractible or ta-effectively
incompressible ball applying one homotopy after the other and the width
W of the final homotopy will be< ar+-ar+ar/2+...+ar /2D < 3ar.
QED.

2. Modified Gromov’s lemma

In this section we will prove a slightly generalized version of the well-known
Gromov lemma about the sequence of critical points, (see [Cg], [G1] for the
proof of the original lemma).

Definition 2.1. e-Almost Critical Point.We will say that a poiniy on a
manifold M™ is e-almost critical with respect tp, if for all vectorsv in the
tangent spacé/,, there exists a minimal geodesjdrom ¢ to p with the
absolute value of the anglév, 7/ (0) < 7/2 + e.

Lemma 2.2.(Modified Gromov’s Lemma.) Let bee-almost critical point
with respect to p and lef, satisfyd(p, g2) > vd(p, ¢1) for somev > 1. Let
1,2 be minimal geodesics from p tg, ¢o respectively, and lef be the
angle between] (0) and~5(0). If sectional curvatures,, of the manifold
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Fig. 2

M is bounded from below by -1 anidp, ¢2) < d then

d
é(sine +1) +sine.

tan
cosf <
tan

Proof.Leta = d(p,q1),b = d(q1,q2), c = d(p, q2). Also letys be aminimal
geodesic fromy; to ¢o. Sincegs is e-almost critical point to p, there exists

a minimal geodesie (t) from ¢» to p such that the anglés’(0),75(0) <

/2 + €, (see Fig. 2.) We will apply the Toponogov comparison theorem
twice to the hinges (t), y3(t) and~;(t), ~2(t), which in combination with
the hyperbolic law of cosines will yield inequalities (1) and (2) respectively.

1) cosh ¢ < cosh acosh b — sinh a sinh b cos(mw/2 + ¢€)

(2) cosh b < cosh a cosh ¢ — sinh a sinh ¢ cos 6.
Let us substitute the inequality (2) into (1) to obtain:

cosh ¢ < cosh a(cosh a cosh ¢ — sinh a sinh ¢ cos §) + sinh a sinh bsin e.
Now, let us use the triangle inequality to see that

cosh ¢ < cosh? a cosh ¢ — cosh a sinh a sinh ¢ cos

+sinh asinh(a + ¢) sine.
Therefore, using the hyperbolic functions identities we obtain:
0 < sinh? a(sin e + 1) — cosh a sinh a tanh ¢(cos § — sin€);

cosh a tanh ¢(cosf — sine) < sinh a(sine + 1)

tanha , . . tanh(d/v)
1 < 7
tanh c (sine+1) +sine < tanh d

cosf < (sine + 1) + sine.

QED.
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It is clear that unless the expression on the right is strictly less than 1,
our lemma will not provide any additional information. Thus, we need to
find such are that

tanh(d/v)
tanh d
We will use Lemma 2.2. in the situation wher5/4. In this case let
tanh(4d/5)
Cd = ——T—77
tanh d

(sine+ 1) +sine =z < 1.

and let
cqg+1

It is clear that botlr; andx are strictls less than 1. Takesuch that
1-—Cd

2(Cd +-1)'

After doing some calculation we will see that

9d/5 —9d/5
'1 _ 2(eM5 — e79P) < 18654/5,
sin € ed/5 — e=d/5
Lemma 2.2 implies thatosf < (c; + 1)/2. Additional calculations
imply that

sine =

o—8d/5

(ca+1)/2<1—

and hence

Corollary 2.3. Letq, ¢o, ..., g be a sequence efalmost critical points of
p, wheresin e satisfies the above condition. Suppose alsodlatg; 1) >
(5/4)d(p, ¢;). Then N< (n — 1)gn—1eHn=1d/5,

Proof. Consider minimal geodesieg that joinp andg;, 7 = 1, ..., N. Next
consider the set of the unit tangent vectpr§(0) } that can be viewed as a
subset of the unit sphere in the tangent spack/ ait p. Let §; be the angle
betweenp, ¢;. Then the balls of radiug; /2 about they;(0) are mutually

disjoint. Thus the number of points in the sequence NH#M,
whereB(p, 6;/2) denote balls il6”~! fori = 1,..., N and
vol §™1 _ Jo (sins)"2ds

minvol B(p,0;/2) f00/2(sin s)n—2d8’
for & = min 6, Sincesin s > 2s/m, on the interval0, 7/2) we estimate:
7" n —1)
gn—l
Now substitute the lower bound férand obtain the result. QED.

N <
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3. Homotopy distance, nets in the space of closed curves and
a-effective rank of a ball

In this section we will obtain upper bounds for the homotopy distance be-
tween two curves that are close to each other.

The constructions that we will perform are based on the following idea:
if we know how to contract closed curves that lie in “small” metric balls to a
point (i.e. closed curves that lie inside balls of radij2then we also know
how to connect two curves that are close to each otherr{-elose) with
a homotopy (see Lemma 3.3). Thus, in the situation when we are able to
estimate homotopy distance between a closed curve in a sufficiently small
(simply connected) metric ball and a point we are also able to estimate
homotopy distance between any two closed curves which can be connected
by homotopy that passes through closed curves of ledgth This estimate
will depend on the number of points in thg/80-net in the space of closed
curves of length< L.

Note that the idea does not work if the only information we have is that
“small” balls are simply connected, but we do not know how to estimate the
width of the homotopy that connects a closed curve that lies inside that ball
and a point.

Thus, it is important to learn to construct contractions of closed curves
inside balls of radiugry.

Three different cases will be considered:

In the situation, when we know the injectivity radius, we can take
=injectivity radius, and the contractions are obvious.

The second case is that of a manifold with> —1, vol > v > 0 and
diam < D. Inthis case the work of Grove and Petersen gives to us the lower
bound for the radius of contractibility, so we can take= r(n, v, d) and
w(n, v, d) such that any closed curve in a ball of radiygan be contracted
to a point by homotopy of widtkl w(n, v, d). Note that in this case “small”
metric balls are not necessarily simply connected.

In the situation when a lower bound for the volume is not available our
idea is to use the notion ef-effective rank which we introduce below. In
that case we will examine how the homotopy distance between a curve
a(t) € B, (p) of a-effective rankm and the center of the ball, depends on
the rankm and the diametef of a manifoldA/™. Here we assume that™
has sectional curvature —1 and that all balls of radius. ¢ are simply
connected.

Definition 3.1. Modifieda-Effective Rank.
1.rank) (p,r) := 0if B.(p) — 34 Bs(q) whereBs(q) is a-contractible.
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2.rank, (p,r) := jif rankl(p,r) # j — 1 andB,.(p) —3, Bs(q) such
that B;(q) is a-incompressible and for alf € B;(q) with s’ < s/10, we
haverank! (¢, s’) <j-1.

Lemma 3.2.Lety(7) € B,(p) with rank,(p,r) = 0 be a closed curve.
There exists a homotopy: of y(¢) to a point withiWr. < 4ar < 4ad.

Proof.Sincerank,,(p, ) = Othere exists aa-effectively contractible3(q)
such thatB,(p) —, Bs(q), implying the existence of a homotopy?
with W2 < 3ar, such thatF (y(t)) = ~(t) and F£(v(t)) C Bs(q). But
a-effective contractibility ofB,(q) implies the existence of a homotopy
such that

1. Wpg < ar;
2. Fy (FE(v(1)) = FE((1));
3. F{(Ff(v(t)) = ¢,
whereq’ € B;(q).
Take the composition of the above homotopies and olstamith Wy <
4ar. QED.

We are now ready to show that for every closed curve inside abafl
a’-effective rankm the homotopy distance between the curve and any point
on M™ is bounded by the function that depends on dheffective rank

of the ball and the diameter of the manifold, whefe= ——, and where
€ = ﬁ as it was defined in Sect. 2, providing thatand all balls of

smaller radius in\/™ are simply connected. (Note thag— < 18¢5%/%).

Our proof will be by induction on the effective rank of the ball and will
be done in five steps.

Let us first note that the above statement is true, when 0. Since for
any closed curve inside that bah.(p) of o’-effective rank0, there exists
a homotopyF°, such thatVro < 4a'r,(by Lemma 3.2.), thusi¥Vo <
r <Al < A+ whered = 2-10%(n + 1).

Let us assume now that the above statement is true for a curve lying
in a ball of o’-effective rankm of radius smaller than the radius of simply
connectedness, that is there exists a pginand homotopy, such that
Wgm < f(m,n,d). We want to show that for any closed curve lying in-
side that ball ofa’-effective rankm + 1 of radiusr less than the simply
connectedness radius there exists a homofdpy' to a pointg,,. 1, such
that Wgm+1 < f(m + 1,n,d). The homotopyF™+! will be a product of
several homotopies. We will proceed as follows.

Step 1:Given a; we will show that there exists a homotopy that we will
call ! that connects our curve; with the curvea, inside a ballB;(q),
such that the width okh! will be bounded by3a'r(< 3a’d) and for every
¢’ € Bs(q) ands’ < s/10 the ball By (¢') hasa’-effective rankm.
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Step 2:We will use our induction assumption to show that for any two
curvesa; (t), aa(t) C Bs(q) such thatl(aq(t), aa(t)) < s/20 there exists

a homotopyh? with the width< 4f(m,n,d) + 4s/10(< 4f(m,n,d) +
4d/10.) (see Figs. 3-6).

Step 3:We will then show that any closed curveifi(q) of length bounded
from above by3s can be homotoped to a poipby a homotopy:? with the
width bounded by a function of, m, d.

Step 4:For any closed curve, C Bs(q), regardless of its length, there
exists a homotopy,* to a pointg such that the width of the homotopy is
bounded by2s + 4Wj,3(< 2d 4+ 4W3).

Step 5:Take the composition df! andh* to get the required homotopy and
estimate its width.
We will now proceed with the proofs.

Step 1:Immediately follows from the definition of the-effective rank of
the ball.

Step 2:will be the result of

Lemma 3.3.1) Leta (t), aa(t) be two closed curves in a bal,(q), where

s is smaller than simply connectedness radius\df with the distance
d(aq(t), aa(t)) < s/20 for all t. Suppose also thads,(q) hasa’-effective
rank < m. Assume that every closed curve in every ball efffective rank

m and radius< s can be connected to a point by a homotopy of width
< f(m,n,d). Then there exists a homotopy between those two curves
with Wy2 < 4f(m,n,d) + 4s/10 (< 4f(m,n,d) + 4d/10).

2) More generally, ifa;(t), aa(t) are two closed curves such that
d(aq(t), aa(t)) < s/20 for all ¢ in an arbitary Riemannian manifold/,
and any closed curve in any ball of radiusn M can be contracted to a
point by a homotopy of width W then there exists a homotopi/between
aq anday of width < 4W + 45/20.

Proof.1) Takew; (), a2(t), such thatl(o (1), aa(t)) < s/20. W.L.O.G. we
can assume that;:[0,1] — M™, as:[0,1] — M™ are broken geodesics.
We will partition the interval [0,1] into segments, such that each quadrangle
withthe verticesyy (¢;), a1 (ti+1), aa(tiv1), a2(t;) and the edges; |, 4, .1,
Jj =1,2,04(s), whereo;(s) isaminimal geodesic joining; (¢;) andas(t;),
lies inside a metric ball of radius s/10. This can be done by requiring that
the length of the curvéo|; ;1)) < s/30.

We will describe the homotopy, by providing the description of the
images of the curvey; (¢) under the homotopy. Let} = a1y, 4,,,] and
oy = as|y, 4;.,)- Then we claim that

1. oy (t) is homotopic to the curve, = |J,_; i U o0; U —0;, (see Fig. 3.)
Moreover,W,: < s/10, whereg! is the homotopy betweem, and-;.
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R

Fig. 5

2. The curvey, () will be homotopic to the curves(t) = J;_, i Uo; U
—ay U ay U —o; with W2 < (3s)/10, (see Fig. 4.)

3. The curvey,(t) will be homotopic to the curves(t), wherevys(t) =
Uiz1 0 U F (a2 (tit1))[o,n) U FF (1) U —F7(@2(tiv1)) and Ws <
2f(m), (see Fig.5.)
4.The curveys(t) is homotopic to the curve, (t), wherey,(t) = |J,_, a4U
F7’_”(a2(ti+1)) U —F:I(Oég(ti_i_l)) ande4 < 2f(m), (see Fig. 6).

Finally, we observe thaf,(¢) is homotopic toay(t) and notice that
Wiz < 4f(m) + 4s/10 as required. The proof of 2) is quite similar. QED.

Step 3:will require proofs of several lemmas.
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Fig. 6

Lemma 3.4.Let ®(B,(p)) be the space of piecewise differentiable closed
curves of lengtk L parametrized proportionally to their arclength s, (p),

a ball of radius r in a manifold\/™ and let N be an upper bound on the
number of elements in some coqes; »4(p;)} of the ball B,.(p) for some

€. There exists ai/4-net in thed-neighborhoodNs (2 (B, (p))) with the
number of elements

O < N2L/E1

whered is some positive number and the length of every closed curve in this
€/4-netis< 3L.

Proof. Given the coveq B;/24(pi)} of B,.(p) we will construct arg/4-net

in thed-neighborhood of (B, (p)) as follows. We will consider the set | of
~i(t), where eachy; (t) will be a curve composed of the geodesic segments,
that join pointsp;, andp; if and only if d(px, p;) < €/8 with the additional
condition that the length of; < 3L. The number of such curves will be

< N2AL/&H1 1t we will impose the additional condition of all curves being
closed, then our set J of such curves will be a subset of | and the number of
elements of J will also be N24L/é+1 We claim that J is oug/4-net.

For letv(t) C B,(p) be any curve parametrized proportionally to its
arclength, in particulary : [0,!] — B,(p),l < L. Let us partition [0,I] into
segmentst;, t;,1] such that; | —t; = €/24. For each; we will select
p; such thaty(t;) € Bg/o4(p;j). Note thatd(p;1,p;) < €/8 by triangle
inequality. We will then construct a curedt) by joining centers of the balls
by minimal geodesics. Note:(t) will not be parametrized proportionally
by its arclength, butl(o(t), v(t)) < €/8. QED.

Lemma 3.5. Let «(t) be a closed piecewise differentiable curvelf’
parametrized proportionally to its arclength and contractible inside a ball
B, (p) of radiusr in M™.

1) Assume that(¢) can be contracted to a point insid.(p) by a ho-
motopy that passes only through piecewise differentiable curves of length
< L. Thenthere exists afinite sequemae}f:1 of closed broken geodesics,
such thatd(oi(t),a(t)) < €/4 for all ¢; o = p; length(g;) < 3L,
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d(o;(t),0:41(t)) < € for all ¢ and the number k of elements in this se-
quence i< @, where Q is as in the Lemma 3.4.

2)Assume instead only tha&. (p) is simply connected. Then there exists
a sequencéo; }¥_, of closed broken geodesics such thiét; (t), a(t)) <
€/4, d(o1(t), o2(t)) < €forall ¢, o), = p and the numbek of elements in
this sequence does not excegéd/é, N), whereN is the same as in Lemma
3.4 andf is an increasing function.

Proof. 1) There exists a patf; in a space of all closed curves . (p)

of length bounded from above ldyand parametrized proportionally to the
arclength connecting(¢) and the constant curye By the above lemma we

can construct a&/4-netin thej-neighborhood o®( B, (p)), thatis the space

of curves of length< L and parametrized proportionally to their arclength.
Now consider the sequenchj, ..., P, such thatd(P;, P;y1) < €/4, P| =

a1, P, = p. We know that for allP; there existsr; € Ns(®(B,(p))) such
thatd(P;,0;) < €/4. Thus we obtain sequeneg such thatr;, = p and
d(os,0i41) < €. But we still have to estimate the number of elements in
that sequence. So far there is a possibility that o; for different: and;.

To avoid that we can delete all the subsequences between all the repeating
elements from the sequence without changing the essential properties of the
sequence, SO our new sequence obtained in this way will be nonrepeating
and the number of elements will be less than or equal to Q.

2) Considera. Let us splita by geodesics fronp to points ofa into
loops~y; of length less then or equal 8 similarly to what is on Figs. 7-9
and explained in details in the proof of Lemma 3.6 below. Logpare
contractible insideB,.(p) and if every of them can be contracteditby a
homotopy of width< W, then~ can be contracted te by a homotopy of
width < 4W + 2r, (see the proof of Lemma 3.6 below for details).

Consider a nerve of a covering Bf.(p) by balls of radiug /24. Consider
the natural map from the manifold to the nerve obtained using a partition of
unity associated with the covering with derivatives bounded by a constant.
Consider a simplicial approximation ef. The number of simplices, in
this simplicial curvel” does not exceed a constant times the length /éf
and thus, does not exceed a constant timy&s I" must be contractible in
the nerve since; is contractible.

The crucial idea is that there exists a simplicial homotop¥ ¢ a point
and a functionw, such that its image consists of not more thgn/é, V)
simplices (counting with multiplicities) in the nerve, whe¥eis a number
of vertices in the nerve.

Indeed, the number of simplicésin the nerve is bounded by a function
of N. Now for everyl and S there exists only finitely many simplicial
complexes with not more thafisimplices and contractible closed simplicial
curves in the simplicial complex with not more thasimplices. Taking
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maximum over all such pairs of the number of 2-dimensional simplices in
the optimal contracting homotopy we obtain an increasing functiémoé
S, which is bounded from above by an increasing function/@fand N.

Now we would like to turn this simplicial homotopy éf into a desired
sequence of closed broken geodesics betwgeand a point. To do this
find a closed broken geodesic with vertices in the net used to construct the
nerve closest ta;. This will be oy (for the considered curve;). We can
think about simplicial homotopy of to a point as a sequence of closed
simplicial curves such that the difference between two consecutive curves is
the boundary of exactly one triangle (i.e. two-dimensional simplex) of the
nerve. Now we can assign to any closed simplicial curve in the nerve a broken
geodesic passing through the centers of balls of the covering corresponding
to the vertices of the nerve. Two broken geodesics in the manifold obtained
from two consecutive closed curves in the simplicial homotop¥ @fill be
€/4 close. It remains to recall that the number of 2-dimesional simplices in
the homotopy of” (=the number of consecutive closed simplicial curves)
is bounded from above by an increasing functiom Gfand N. Q.E.D.

Let us now apply those lemmas to the compact maniféltiof sectional
curvatureK > —1 and wherel, = 3r. We estimate the number of points in
theé/24 net onB,.(p) using Bishop-Gromov volume comparison theorem,
(see [GoHL]). Consider the maximal number of pairwise disjoint balls in
B,(p) of radiusé/48. Then the set of ball§B; 2, (p;) }{' will cover B,.(p),
whereN can be estimated to be

vol(By(p)) _ _wol(B(p))
~ wol(Beas(pi)) — UOZ(B&/ALS(p;))’

whereB.(p'), B. /48 (p}) are balls of radit-, €/48 respectively on a manifold

of constant curvature 1. Calculation shows that
for sinh™ 1 tdt
fog/48 sinh™ 1 tdt

N <

Since the ball§ B; /24 (p;)} coverB,(p), the sef{p;} will be €/24-net. Let
€ =r/20. Then@ < (960e(n—1))144L,

We are now ready to complete Step 3. hét) € B,.(p) be a curve
of length < 3r and leté = r/20. There exists a sequence of piecewise
geodesics parametrized proportionally to their arclength of ledgth and
having properties 1-3. Thus, we can obtain the required homotopy by taking
the composition of homotopies between the consecutive curves. It is easy
to see that the upper bound on the width of the final homotopy is what has
been required.

Step 4:will require the lemma below.
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Lemma3.6.Lety(t) € B,(p) be apiecewise geodesic curve of any lengthin
B, (p) parametrized proportionally to its arclength. Then there is a homotopy
H.,(t) of y(¢) to a point such thatVy;, < 2d + 4Ws, whereh3(t) is the
homotopy connecting a curve of length3r to a point produced in Step 3.

Proof.Let~(¢) have lengthi. Partition the interval [@] into the subintervals
[ti,ti+1] such thatt; 1 — t; < r. Also leto; be minimal geodesic joining
the points:y(t;) and the center of the ball. Let = |[t;, ;1] then we
claim that~(¢) is homotopic to the curve! = |J~v*~! U o; U —0; and
Wi, < 2r(< 2d), whereh! is the homotopy, (see Figs. 7 and 8). I&the

a geodesic triangle with verticesatt;), v(t;+1), p and edgess;, %, o11.
By Step 3, for eacH; there exists a homotopy that conects it to some point
pi. Let us call this homotopyi™ 1. Consider a curvél, " (p) joining

p andp;, and denotefZ;" 1|y , 1 by H*""". Then we claim that! is
homotopic toy? = (JH" ™ (p) U HITH(T) U —H T (p) with the
width of the homotopy bounded 2y + ZWH;,LHJ, (see Fig. 9). We can see
that~? is homotopic toy? = | J H* U —H?, which is homotopic to a point
(see Fig. 10). QED

Step 5:We combine the results of Steps 1-4 and get the desired result:

WF"L+1 S X(n, d, m)

As it was stated at the beginning of the section, we can now prove the
next lemma by following steps 1-5.
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H_;n+1'i (p‘)‘—
Fig. 10

Lemma 3.7.Let M™ be a compact simply connected manifold of sectional
curvature K > —1 and diamete. Assume that every metric ball ™

of radiusr < cis simply connected. Then every closed curvé/ith can

be contracted to a point by a homotopy of width bounded by a funétion
of n, d, ¢ and the modified'-effective rankn of M™. Herea’ = 1/ sine,

__ tanhd—tanh(4d/5) .
wheree = 5(tanh d-Ftanh (4d/3)) If we assume that every closed cutvén

any metric ball of radius< ¢ can be contracted to a point by a homotopy
such that the length of curves in this homotopy is bounded by a function
¢ of the length ofv then one can write an explicit formula férinvolving
o,n,d,c,m.

Proof. The lemma basically follows from steps 1-5 above. It remains to
observe thad/™ can be regarded as a simply connected metric ball centered
at any of its points and to use Lemmae 3.5 and 3.3 again. The first step is
to cover a manifold/™ by simply connected metric balls and use Lemmae
3.5 and 3.3 to reduce the case of a general closed curd£'ito the case

of a closed curve that lies in a ball of radius less then the radius of simply
connectedness. QED.
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4. An upper bound on the effective rank

In this section we will establish an upper bound for gﬁg-eﬁective rank
of the ball.

Once again the proof of the following proposition is a modification of
the similar proof in [G1]. We will need to use an effective version of the
Isotopy Lemma ([Cqg]) that was proved by Grove and Peterson in [GrP],
(Theorem 1.6, pg.199).

Lemma4.1.Let B, (p) and B, (p) be two metric balls on a manifol&i/™
with ro < rq. Suppose that there is realmost critical points tg on the
complement of3,,(p) in the B,, (p). Then there exists a homotopy that
deformsB,, (p), so that it lies insid&3,., (p) and the width of this homotopy
is bounded from above by:-.

Proposition 4.2.Let M™ be a compact manifold of diametérsuch that
its curvatureK > —1. Then modifiedL’ effective rank of any ball id/",
wherea’ = 1/sine, € = as in Sect. 2, will be bounded Iy —
1)7Tn—1e4(n—1)d/5'

2(1+ )

In order to prove this proposition, we will first have to prove the following

Lemma 4.3.Let B, (p) be a ball of radius r on a complete Riemannian
manifold M™. Assuméss + d(p,y) < 5r;d(p,y) < 2r . Then if B,(p)
doesn’tﬁ-eﬁectively compress tB;(y) there exists am-almost critical
point x of y withs < d(z,y) < r + d(p,y).

Proof. Let us assume that there are ¢talmost critical points in the com-
plement of theB,(y) in By, ,)+-(y). Then the bigger ball can bel-
effectively deformed into a smaller one (this follows from the effective
version of the Isotopy Lemma,) b, (p) C By, )+ (y) C Bsr(p),which

is a contradiction. Therefore, there exists aradmost critical pointz in the

complement ofB; (y) in By, )1 (y) QED.

Next Lemma will be a slight maodification of the similar lemma in [G1],
where the term “ 1 —-effectively” will be added in the appropriate places,
(see also [Cq] for the proof of the original Lemma.)

Lemma4.4.Let M™ be a Riemannian manifold and teink’ , (r,p) = j.

Then there existg € Bs,(p) andz;, ...z, € Bs.(p) such that for all <7,
x; is e-almost critical with respect tg andd(x;,y) > (5/4)d(zi-1,y).

Proof.We begin by considering the metric bal} (p) of rank’ , (r,p) = j.

By the definition of the;--effectiverank’ B,(p) — s B, (p;), such

that the following conditions are satisfied:
By, (pj) is 1116-effectively incompressible;
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there existsp’ , € B,(p;) andr’_; < r;/10 such thatrank’,

(7";'—1717;'—1) =Jj—1L

Similarly, the baIIBT;__l(p;-_l) — s B, _, (pj-1) such that
B,,_,(pj—1) is s--effectively incompressible;
there eXiStSp;;Q € By,_,(pj—1) and 7‘372 < rj—1/10, such that
rank’ , (r_q,pj_5) = Jj — 2, etc.

Note: Bs,., /2(p) O Bsr;, (Pji1)-

By proceeding in the above fashion we obtain the sequence of balls
By, (pi),i =0,1,...,5.suchthatfoll < i< j B, (p;) issi}le-incompressible
andBs,, 2 O Bsr, , (pi-1),7i-1 < 1i/10.Lety = po. Theny € B, /5(pi)
forall1 <i < j.Inparticulard(p;,y) +5r;/2 < 4r; < 5r; andd(p;,y) <
3r;/2 < 2r;. SinceB,, (p;) is 1—-incompressible it doesn—-effectively

compress ta3,, »(y). Therefore, by Lemma 4.1 there exists @almost
critical pointz; with

sin e

ri/2 < d(xiy) <ri+2-(3/2)r; = 4r;.

Thend(xi,y) > 7’2/2 > 0511 > (5/4) “Ar; 1 > 5d($i_1, y)/4 QED.

Corollary 4.5. rank’ , (r,p) < (n — D)pn—ledn=1d/5 < 3(d+1)(n-1)
which proves Proposériteion 4.2.
Proof of Theorem DCombine Lemma 3.7 with Corollary 4.5 which provides

an upper bound fom. QED.
We are now ready to construct a homotopy with the following properties:

1. the length of the curves in the homotopy is bounded;
2. there exists a point p for which the length of the cukud p) is bounded.

5. Construction of a homotopy with curves of bounded length

In this section we will prove the following proposition:

Proposition 5.1.Let M™ C ¥, andy(t) a closed curve il/™. Assume that
all metric balls in M™ of radius less thar: are simply connected. There
exists a homotop# <" (t) satisfying the following properties:

L Hgew(t) =~(t);
2. H{"(t) = p, wherep € M™;
3.sup,, lengthH " (t) < length(y) +2Q(n,d,c)

4. lengthH™"(t;) < Q(n,d,c), wherevy(t;),i = 1,2 are two selected
points on the curve(t), and@ is the same function as in Theorem D.
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Hit,d) bor,

/

=~ -H-[‘(O)l[o"[*] H'[ (tm)
He(td o o,

Fig. 11A—H.

Proof. Let us begin by observing that for any two curvest), as(t) such
thatd(aq (t), aa(t)) < inj/3 for anyt a function that for any € (0,1)
assigns the minimal geodesic that joingt) andas(t) is continuous.

Let~(¢) be a closed curve as above, andAgt(t) be the homotopy of
~(t) to p provided by Theorem D (so that we have an upper bound for the
width of H). For anyr we will partition the unit interval inte subintervals
[titit1],t0 = t, SO thatd(H,(t;), H-(t;+1)) < inj/3. That partition is
possible to achieve because of the continuity/bf. Let o; -(s) be the
minimal geodesic that joins pointg, (¢;) and H(t;+1). We are now ready
to describe our new homotopy, (see also Fig. 11.) We claim:

1.~(t) ishomotopictothe curv® =~|(g ¢, _,|UHr (tn-1)j0,r,] YT (n—1),7.U
—H(0)|[0,7,)- Moreover, the length of curves in the homotopy is bounded
by I(v) + 4Wy, (see Fig. 11A.)

2. A1 is homotopic to\s = 7|g 4, _,) U Hr(tn-1) U—H-(0), (see Fig. 11B.)

3.y is homotopicto\; = 7|[01tn72] UH(tp—2)U—H(tp—1)UH(tp—1)U
—H(0). The length of curves in the homotopy is bounded(by +8Wx,,
(see Figs.11C and D.)

4. \3is homotopicto\y = [0, t,—2]UH(t,—2)U—H-(0), (see Fig. 11E.)
5. A4 is homotopic to\s = 7][0,¢1] U H-(¢t1) U —H,(0), (see Fig. 11F.)
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6. A5 is homotopic to\¢ = H,(t1) U —H-(t1) U —H,(0) U H-(0) which
is homotopic to a point p, (see Figs. 11G and H.) Note also that for points
{t:}, I(H*"(t;)) < 4Wpg_ and that we can partition the unit interval in
such a way that some selected points on the cyre amongy(¢;). QED.

Note thatif we have an explicitupper bound for the width of the homotopy
H; of 7(t) to p provided by Theorem D then we can replaGeand fs in
the right hand sides of 3. and 4. by explicit expressions.

In Sect.6 we will establish a similar result for compact simply con-
nected manifolds with a non-trivial second homology groip< 1 and
vol(M™) <V, whereK is sectional curvature.

6. Manifolds with bounded from above curvature

Our result will be based on the following two inequalities:

1. Croke’s isoperimetric inequalityiol(B) > const.,r", where B(r,p) is
any metric ball of radius centered ap € M™ andr < inj(M™)/2. We

277.—1

can takeconst., = (COLE (see [Cr1], [Ch)]).

2. Berger'sinequalityool(M™) > c,(inj(M™)/m)" whereM™ is compact
manifold of dimensiom, andc,, can be estimated to tig (see [Ch]).
We will also need the following corollary to Klingenberg's lemma:

Lemma6.1.Let M ™ be a compact manifold of sectional curvature bounded
from above, i.eK < 1. Theninj(M™) > min(w,l(M™)/2), wherel(M™)
is the length of the shortest simple closed geodesic, (see [GoHL].)
Supposé(M™) = 2inj(M™). Then we are done, because by Berger’s
inequality [(M™) = 2inj(M™) < c,vol(M™)'/". Therefore, from now
on we will assume thal(M™) > 2inj(M™) > w. Our approach will be
similar to that of Sect. 3, but instead of first constructing a homotopy of
bounded width we will right away construct a homotopy similar to the one
of Sect. 5. We will show that it is possible to construct such a homotopy
if the distance between two curveéso; (t), as(t)) < 7/9. Then we will
construct a sequence of curvgs(¢) }7*, such that

1.o1(t) = a(t);

2.0, = p, where p is a point on a manifold.
3.d(04,0i+1) <m/9and

4.m < ((n!igi(%”))ﬂ@/nﬂ

Lemma 6.2.Let &1 (M™) be the space of piecewise differentiable closed
curves of lengti< L parametrized proportionally to their arclength. There
existsm/36-net on thes-neighborhoodNs(® (M™)) of such curves and

the number of elements iry 36-net will be < ((”!);0”,0#)21“/”“
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Proof. First, we will have to construct/216-net on M™ and estimate
the number of elements in it. It will be done using Croke’s inequality.
Let us consider the maximal number of pairwise disjoint ball3/4f of

radius/432. The number of such balls will be vol(M®) - <
max vol(Br /432(pi))
Lol — const.vol(M™). The set(By a16(pi))1, is a cover ofM™,

nl)2zxn
th(u)s the set of pointsr/216-net onA/™. We will construct the required net
on Ns(@1,(M™)) by joining p; andp; with minimal geodesics if and only
if d(ps,p;) < w/72 and considering its subset consisting of closed curves.
The number of elements in that set can be estimated to be

2 wol(M") 216L/7+1
< T ol(ary2ieL/n (0
< [const.,vol(M™)] 2n-1432n

) (n!)2vol(M™) 216L/7r+1.
- 20n—1

Let us now apply Lemma 3.4 substituting9 for e. QED.

Lemma 6.3.Let M™ be a compact simply connected manifold with> 1,
vol(M™) < V,andl(M™) > L > 7. Lety(t) € &1,(M"). There exists
a finite sequencéo; }¥_, of broken geodesics such théto (t),y(t)) <
7/36; o, = p; length@;) < 3L; d(oy,0i+1) < 7/9 and the numbek of
elements in this sequencedsN, whereN = (const.! vol (M™))?16L/m+1,

Proof.as in Lemma 3.5, part 1.
We are now ready to construct a homotopy with the required properties.

Lemma 6.4.Assumd(M™) > L. Let M™ be as in Lemma 6.3, and let
~(t) € M™ be any closed curve of length L. Then there exists a homotopy
H.(t) of a curve to a point p, such that:

1.sup {lengthH.(t)/t € [0,1]} < 2L+ m;

2. IengthHT(ti),r c [0’ 1] < w(const.ﬁlvol(3/[71))216L/7r+1
< (const.! vol(M™))*16L/m+1 for at least two selected pointg i = 1, 2.

Proof.First we will show that any two curves, (t), aa(t) such thati(a; (¢),
as(t)) < /9 can be connected by a homotofy (¢) for which

1.sup, {lengthH.(t)/t € [0,1]} < 2L + 7.

2.lengthH,(t;),t € [0,1] < x/9.

Then we will apply Lemma 6.3. to get a desired homotopy.

Let us subdivide the interval [0,1] into subintervads, ¢;;1], so that
the figure with verticesao (¢;), aa(t;), aa(ti+1), andag (t;4+1) and edges
@jlit; 4., @ndo;(s), whereo;(s) is @ minimal geodesic joining; (¢;) and
as(t;) lies inside the ball of radius/3. That is possible to achieve by
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Fig. 12A—E.

demanding that max leng#; |, ;.. ,; < 7/9. The function that for each
s assigns the minimal geodegig(t) that joins pointsr;(s) ando;1(s) is
continuous. W.L.O.G. assume that;, ;. | is a geodesic. Let us calldt;.
Then we claim:
1. oy is homotopic toy1 = i, 4] U o, (5)]jo,s.] U Bt U —0(s).
Moreover, the length of curves in the homotopy is boundetitp + [ ().
2.1 is homotopic toye = a1y, ) U ov,_; Uaaly, 0 U —0oo. Length
of curves in the homotopy bounded By /9 + I(a1) + ().
3.2 is homotopic toys = ailjoy, _,) U, 5l0,s.] Uﬁ;ij? U—0t, 1][0,5,]Y
_, Uaaly,_, 0 U—0o. Length of curves in the homotopy is 27/3 +
lag) + U(a2).

4.73'
Oé2\[t

i1

)n72]UUtn—2ua2|[t ]U Utn latn 1U

n—2,tn—1
O]U_UO-

n—1,

5. 74 is homotopic toy; =
6. 5 is homotopic toys = 041’[0,751] Uog, U 042‘[151,0] U —oyp.

U az’[tn_%o] U —oy.

7.6 is homotopic toy; = og U ae U —o, Which is homotopic tav.. Note

that the maximal length of curves in the resulting homotopy is bounded from

above byr + 2L. Note also that for all; lengthH (¢;) < 7/9, (see Fig. 12.)
Now let us apply Lemma 6.3, i.e. take a sequence of broken geodesics

{o;}. We know thatr; is homotopic tar; | ;, where the homotopyi* has
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the desired properties. Take the composition of those homotopies to obtain
H.(t). Itis clear that it will satisfy 1 and 2 of the lemma. QED.

7. Construction of a closed path in the space of closed curves

Before we give the proofs of the main theorems let us state the following
two definitions from [G2]:

Definition 7.1. Filling Radius of n-dimensional Manifold M Topologically
Imbedded into XFilling radius, denoted by Fill Rad(M= X), where X is
an arbitrary metric space, is the infimumeof- 0, such that M bounds in
the e-neighborhoodV, (M), i.e. homomorphisni,, (M) — H,(N.(M))
induced by the inclusion map vanishes.

Definition 7.2. Filling Radius of an Abstract Manifold-illing radius Fill
Rad M of an abstract manifold Mis Fill Rad{ C X),whereX = L>*(M),
i.e. the Banach space of bounded Borel functions f on M, and the embedding
of M into X that to each point of M assigns a distance functipn— f, =
d(p,q).

In order to prove Theorem AA we will need the following result proved
by Gromov in [G2].

Theorem 7.3.Let M be a closed connected Riemannian manifold of dimen-
sion n. Then Fill Rad M< (n 4 1)n 3/n!(vol M)Y/™.

We are now ready to prove the following proposition:

Proposition 7.4. Let M™ be a compact 2-essential manifold of dimen-
sion n, with the property that for every closed curvét) of length <
min{6FillRadM", 3diam(M™)}, there exists a homotop¥ -(¢) of that
curve to a poinp, such that the length of curves in the homotopy is bounded
by L; and for two selected points on(t) : ~(¢;),i = 1,2 the length
H,(t;) < Lo. Then there exists a closed path in the spa¢&/™) of closed
curves on a manifold with the property that the length of each curve is
bounded by:(L,, Ly) = 3L, + 6L, and such that this path represents a
non-trivial element ofry (AM™).

Proof. The proof will be done in two steps: The idea of Step 1 is to obtain
a non-trivial element ofif,(M™) with some special properties described
below. This will be done in the following way: we will “fill"’A/™ with W,

and then try to extend the map: M" — CP> to W. We will then
obtain the required element as an obstruction. This part of the proof will
be a modification of Lemma 1.2 B and Proposition (pg. 136) of Gromov in
[G2]. In Step 2 we turn this element &f» (™) into the required loop in
AM™,
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,

Step 1For any positivé, M "™ bounds inits Fill Rad /™) +§-neighborhood

in L (M™). Let M™ = OW, whereW is a compactn + 1)-dimensional
polyhedron inN ;i rad(amy+5(M™). SinceM™ is 2-essential there exists
a functionf : M™ — CP such thatf.[M] # 0. We will try to extend
fto W. Let us proceed as follows: first, extend f to 0-skeletomgfthen

to 1-skeleton o#V, etc. This process will have to be interrupted at the 4th
stage since we know that f cannot be extendetl’to(Here we somewhat
oversimplify by assuming tha¥’ can be triangulated. In case it cannot, we
can still approximate it by a simplicial complex.)

Extending to 0-skeletoubdividelV/, so that all simplices have diam)(
< 4. Send vertices); € W to vertices of triangulatiom; € M™ for which
d(w;, m;) < d(w;, M™)+6 < FillRad M"+4. Supposen;, m; come from
the verticesw;, w; of some simplex in W. Thed(m;, m;) < d(m;, w;) +
d(wi,mj) < d(my,w;) + d(wi,wj) + d(wj,mj) < 2Fill Rad M™ + 36.
Thus,m;, m; can be joined by geodesic of length2Fill RadM™ + 36.

Extending to 1-skeletorsend the 1-simplicelgy;, w;] C W/M™ to the
above geodesics joining; andm;. (In addition, we assume all 1-simplices
in M™ to be already short.) So we can see that the boundary of each 2-
simplex inT¥ is sent to a curve of length 6Fill Rad M™ + 94, (note, that
itis also< 3diam(M™)).

Extendingto 2-skeletoteto be a 2-simplex ofi”. Consider its boundary
0o and the image ado under f. It will be a closed curve consisting of broken
geodesics. Let us callit(t). By our hypothesis we know that there exists a
special homotopy{ ., (t) of that curve to a point. We will then mapto the
surface determined by this homotopy.

We have, thus, succeeded in extending our map to the 2-skeleton. Extend-
ing the map to 3-skeleton would have been equivalent to extending it to the
whole of W, but that is impossible, since it would contradfef)M™] # 0.
Therefore, there exists a 3-simplexXin, such that the image of its boundary
w represents a non-trivial element &5(M™).

Step 2:Considerw. Let's denote its vertices a,b,c,d. (Here, we will call
vertices ofw the images of vertices*, b*, ¢*, d* of {2.) Let x,y,z,s be the
images of the faces dP. (They are obtained by contracting closed curves
[a,b,d], [b,d,c], [a,b,c], [d,a,c] idd™ by the homotopies from the hypothesis
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G

Fig. 14A-G

of this proposition, which we will calH*, HY, H?, H? respectively.) Let
us examine the face of w. We will claim that
1. a, regarded as a constant curve, is homotopigatd] U [b, a], (see
Fig. 14.A.) and the length of curves in this homotopy .
2. [a,b] U [b, a] is homotopic tda, b] U HZ (b) U —HZ(a) and the length of
curves in the homotopy is 2L, + 2L-. Figure 14.B and C.
3.[a, bJUHZF (b)U—HF (a) is homotopictda, b]UHY|( -, (b)) UHZ ([a, b])U
—HZ|(0,7,1(a). Figure 14.D. The length of curves in the homotopy is bounded
from above by2L1 + 2L,.
4. [a,b] U HY|jo,7,)(b) U HE (t) U —HF|jo ,1(a) is homotopic toa, b] U
[b, d] U [d, a], and the length of the curves in the homotopyki&L; + 2Ls.
Figure 14E.

By the same type of constructions we have
5.[a, b]U[b, d]U[d, a] homotopic tda, z]U[z, b]U[b, y]U[y, d]U[d, s]U[s, a
homotopic to[a, c] U [¢,b] U [b,c] U [¢,d] U [d, c] U [¢,a] homotopic to
[a, c] U [e, a] homotopic to a, where the length of the curves in the homotopy
is < 3L; + 6Ls. See Fig. 14F and G. QED.

RemarkWe need Proposition 7.4 only to prove Theorem AA below. How-
ever, the construction of Step 2 producing aloodii™ out of a non-trivial
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cycle in Hy(M™) will be also used in the proofs of Theorems A, B and C.
Note that 2-essentiality a¥/™ is not required for Step 2.

Now we can prove the main theorems. The proof of Theorem C will be
a combination of application of the results of Sections 1-5 and the Step 2 of
Proposition 7.4.

Proof of Theorem QConsider a may : S? — M", such that the image of
S? underf represents a non-trivial element &% (M™).

We will try to extendf to D3, which should be impossible to do, there-
fore, as an obstruction to this extension, we will obtain a non-trivial element
of Ho(M™) that has a special shape. As in the previous proposition we will
do it skeleton by skeleton.

We will proceed as follows: first triangulaf? and consider an induced
triangulation of the image o$2. We will want the triangulation to be fine
enough, so that the diameter of each simpléx the induced triangulation
is less than the injectivity radius of a manifold, next we will attempt to
construct a new map* : D3 — M", such thatf*|g> = f.

Let p be the center oD? andp be any point onV/™. Define f*(p) = p.

Connectp with the vertices of triangulation o§? by the straight lines,
and also connegi with the vertices of induced triangulation by minimal
geodesics. Lef* map the line segmepb to the minimal geodesic segment
that joinsp and f (v), for the vertex of the triangulation of52.

Now consider all closed curves that are formed by three segrients,

[p, va], [v1, v2], Where[p, v1], [p, v2] are line segments that connect a pgint
with the vertices);, vy and[vy, vo] is an edge of?. Consider also the cor-
responding closed curves that are formed by the three segipefits; )],

[D, f(v2)], [f(v1), f(v2)]. The length of such closed curves<s 3d. We

can contract each of those curves to a point using the homotopy of Proposi-
tion 5.1. Then each simpléy, v1, v2] can be mapped by* to the surface
generated by this homotopy.

We now have succeeded at extendifigo the 2-skeleton oD3. We
should not be able to extend it to the 3-skeleton. Therefore, among the 2-
cycles of Hy (M) that we obtained, at least one, should be non-trivial. This
cycle has the shape of the one on Fig. 13, i.e. its vertices di@1 ), f (v2),
f(vs3),its edges are curves of lengthd, and its faces are surfaces generated
by the homotopies of Proposition 5.1 (except for the face that ligg$),
which is generated by the homotopy that is even nicer since it lies inside
the ball of radius that is less than the injectivity radiusidéf'.) We can
now denote this cycler and follow Step 2 of Proposition 7.4. whefg <
Q(n,d,c)andLy < 3d+2Q(n,d,c), whereL; andL, are as in Proposition
7.4. Therefore, by Step 2 of Proposition 7.4. there exists a closed non-trivial
curve in the space of all closed curves such that the length of each curve is
bounded by3L; + 6Ly < 18d + 15Q(n, ¢, d).
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Proof of Theorem Af [(M™) =2inj(M™) thenl(M™) < 23/nlvol(M™)1/™

< 23¥/n!'V1/" and we are done. Otherwisiyj(M™) > 7 (sinceK < 1)

and the proof is analogous to the proof of the Theorem C (but a much
simpler argument explained in Sect. 6 replaces the argument of Sects. 2-
4 using ideas from [G1]). The proof is an application of Proposition 6.4
and the argument of the proof of Proposition 7.4. As in Proposition 7.4 we
first obtain a “special” non-trivial element éf,(M™). Then we construct

a corresponding closed curve in the space of closed curves out of it. One
can just follow Step 2 of Proposition 7.4. In this case tdke= 6d + 7
andLy = (const.'vol(M™))?32(4+1) and note thatl < (2n!)(vol(M™)).

(d is bounded by the ratio afol(M™) to the volume of the ball of radius
inj(M™)/2, which can be estimated with the help of Croke’s inequality.)
Obvious substitutions will imply the result. QED.

Proof of Theorem AAOnce again, let us assume th@™) > 2inj(M™).
The proof is again similar to the one of Theorem A and is an application
of Proposition 6.4, Theorem 7.3 and Proposition 7.4. Note that in this case

L = 12Fill Rad M™ + 7, Ly = (@LvelM)y216FitlRadM™ 41 Obyious

substitutions and calculations imply the result. QED.

Proof of Theorem B\Ve know from the work of Grove and Petersen ([GrP])
how to find positived(n, v, D) and C(n, v, D) such that any metric ball
of radiusr < §(n,v,D) in a closedn-dimensional Riemannian mani-
fold of diameter less thaw, volume greater than and K > —1 is con-
tractible within the concentric ball of radits(n, v, D)r. In fact, one can

takeC(n,v, D) = M andd = % Moreover the work
[GrP] implies an explicit upper bound for the width of the optimal homo-
topy contracting a closed curve in such small metric balls to a point, namely
C(n,v, D)r. The standard Bishop-Gromov argument provides an upper
bound for the number of balls of radidén, v, D)/10 covering any mani-

fold with X' > —1, volume greater than and diameter less tha. Now

the argument based on Lemma 3.3 (1) and used previously in the proofs of
Theorems C,A and AA can be used to obtain an upper bound for the width
of an optimal homotopy contracting a closed curvadit by reducing this

to the case of closed curves in metric balls of radiu§(n, v, D). The rest

of the proof is the same as in the proofs of Theorems A and C. QED.
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