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Abstract. The subject of this paper is upper bounds on the length of the
shortest closed geodesic on simply connected manifolds with non-trivial
second homology group. We will give three estimates. The first estimate will
explicitly depend on volume and the upper bound for the sectional curvature;
the second estimate will depend on diameter, a positive lower bound for the
volume, and on the (possibly negative) lower bound on sectional curvature;
the third estimate will depend on diameter, on a (possibly negative) lower
bound for the sectional curvature and on a lower bound for the simply-
connectedness radius.

The technique that we develop in order to obtain the last result will also
enable us to estimate the homotopy distance between any two closed curves
on compact simply connected manifolds of sectional curvature bounded
from below and diameter bounded from above. More precisely, letc be a
constant such that any metric ball of radius≤ c is simply connected. There
exists a homotopy connecting any two closed curves such that the length
of the trajectory of the points during this homotopy has an upper bound in
terms of the lower bound of the curvature, the upper bound of diameter and
c.

0. Introduction

In this paper we will prove three theorems relating the length of the shortest
closed geodesic on a simply connected Riemannian manifold either to the
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diameter or to the volume of a manifold. That work was motivated by the
paper [G2] of Gromov, in which he asks whether it is always possible to
find a constant c(n), such that the length of the shortest closed geodesic is
bounded from above by c(n)vol(M)1/n,where n is the dimension of a man-
ifold. (See also [Br] and [G3] for the related topics.) Gromov himself had
solved this problem for essential manifolds in [G2]. Recall that essential
manifolds are those (nonsimply connected) compact manifolds that admit
a map f:M → K(Π, 1), such thatf∗[M ] 6= 0, where [M] is the fundamen-
tal homology class of M,f∗ is the induced homomorphism andK(Π, 1)
denotes the aspherical space with the fundamental groupΠ, i.e. the space
K that has the following properties:π1(K) = Π and πn(K) = 0, for
n 6= 1. (In particular, all compact surfaces with the exception of a sphere
are essential, and so are all the manifolds that admit Riemannian metric of
nonpositive sectional curvature.) In 1988 C.B. Croke showed that the length
of the shortest geodesic on a sphere is always≤ 31

√
A and≤ 9D, where

A is the area andD is the diameter of a sphere, (see [Cr2], [M]). That re-
sult finished the problem for the compact surfaces. The only known to us
results for the simply connected manifolds of higher dimension are those
of Ballmann, Thorbergsson and Ziller ([BalThZ]), who, in particular, have
investigated the case of spheres endowed with a1

4 -pinched metric of positive
sectional curvature, and the results of Croke ([Cr2]) and Treibergs ([T]) for
convex hypersurfaces.

In this paper we present three upper bounds on the length of the shortest
closed geodesic on a simply connected Riemannian manifold with a non-
trivial second homology group. Our first estimate will be in terms of the
upper bound on sectional curvature and an upper bound on the volume of a
manifold.

Theorem A. LetMn be a simply connected compact Riemannian manifold
with a non-trivial second homology group, of sectional curvatureK ≤ 1
and a volume≤ V . Then the length of the shortest closed geodesicγ(t) on
the manifoldMn is bounded from above by

g(V, n) = (c1(n)(V + 1))c2(n)(V +1),

wherec1(n) = 104(n!)3, c2(n) = 105(n!)3.

In the future the class of simply connected Riemannian manifolds with
a non-trivial second homology group, of sectional curvatureK ≤ 1, and
volume≤ V will be denoted byΥ.

If, in addition, one assumes that the above manifold is 2-essential, one
can somewhat improve the upper bound. Some of the examples of 2-essential
manifolds are manifolds that are homotopically equivalent to Kähler mani-
folds, in particularCPn. In that case one obtains Theorem AA.
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Theorem AA. Let Mn be a 2-essential compact Riemannian manifold of
sectional curvatureK ≤ 1 and a volume≤ V . Then the length of the
shortest closed geodesicγ(t) onMn is bounded from above by

g̃(V, n) = c̃1(n) + (c̃2(n)V )c̃3(n)(V 1/n+1),

wherec̃1(n) = 103n3, c̃2(n) = 103((n + 1)!)2, c̃3(n) = 105n3.

Let us now recall the definition of 2-essential manifolds:

Definition 0.1. We will say that a compact and orientable manifoldM is
2-essential if there existsf : M → CP∞ such thatf∗[M ] 6= 0,where [M]
is the fundamental homology class ofM .

Our second estimate will be in terms of a lower bound for the sectional
curvature, a positive lower bound for the volume and an upper bound for the
diameter.

Theorem B. LetMn be a simply connected compact Riemannian manifold
with a non-trivial second homology group, of sectional curvatureK ≥ −1,
volume≥ v > 0 and diameterd ≤ D. Then the length of the shortest closed
geodesicγ(t) on the manifoldMn is bounded from above by

f(n, D, v) = exp(
ec4(n)D

min{1, v}c5(n) ),

where the constantsc4, c5 can be explicitly calculated.

The estimate in our third result is also given in terms of a lower bound
for the sectional curvature and an upper bound for the diameter but instead
of a lower bound for the volume we use a lower bound for the simply-
connectedness radius.

Theorem C. LetMn be a simply connected compact Riemannian manifold
with a non-trivial second homology group, of sectional curvatureK ≥ −1,
and diameterd ≤ D. Assume that all metric balls of radius≤ c in Mn are
simply connected. Then the length of the shortest closed geodesicγ(t) on
the manifoldMn is bounded from above by a certain functionh(n, D, c) of
n, D andc.

If we assume, in addition, that every closed curveγ in a metric ball of
radius less thenc can be contracted to a point inside this ball by a homotopy
which contains only closed curves of the length less than an explicitly given
function of the length ofγ then one is able to write down an explicit formula
for h(n, D, c).

In the future the class of simply connected compact Riemannian man-
ifolds with a non-trivial second homology group, of sectional curvature
K ≥ −1 and diameterd ≤ D will be denoted byΨ .
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The proof of Theorem C that we will present is more involved then proofs
of Theorems A and B and uses Gromov’s ideas from his well-known paper
on curvature, diameter and Betti numbers. Even though, Theorem C does
not quite allow us to get rid of the dependence onv, it can be considered as
a step in this direction.

We do not know how to get an explicit expression for the functionh,
existence of which is stated in the text of Theorem C (in contrast with
Theorem B) without the assumption made in the last statement of Theorem
C (or at least a weaker form of this assumption).

The reason that the proof of Theorem C is much more difficult than that
of Theorems A and B is that in Theorem C we do not assume anything about
how quickly closed curves in balls of radius≤ c can be contracted to a point.
On the other hand results of Grove and Petersen ([GrP]) yield not only an
explicit contractibility function of manifolds satisfyingK ≥ −1, volume
≥ v > 0 and diameter≤ D but in fact provide enough information about
how exactly closed curves contained in small metric balls can be contracted
to a point inside larger metric balls.

Corollary 1. LetMn be a simply connected compact Riemannian manifold
with a non-trivial second homology group, of sectional curvatureK ≥ 0,
and diameterd ≤ D. Assume that all metric balls of radius≤ c in Mn are
simply connected. Then the length of the shortest closed geodesicγ(t) on
the manifoldMn is bounded from above byp(n, c/D)D for some function
p.

Proof. follows from Theorem C by a rescaling argument.

Recall that a geodesic in which its starting point and the end point co-
incide is called a geodesic loop. (That is, we do not require the resulting
closed to curve to be smooth at this point.)

Corollary 2. Let Mn be a simply connected Riemannian manifold with a
non-trivial second homology group such thatK ≥ −1 and diameterd ≤ D.
Then the length of the shortest non-trivial geodesic loop onMn is bounded
from above by

λ(n, D) = eec(n)(D+1)
,

wherec(n) = 250n.
If, moreover,K ≥ 0 then the length of the shortest non-trivial geodesic

loop is bounded from above byee2c(n)
D.

Proof. We will prove the existence ofλ(n, D). One derives the explicit
formula forλ by following the proof of Theorem C. Letc be the same as in
the text of Theorem C. Ifc > 1, then one has the upper boundλ(n, D) =
f(n, D, 1) even for the length of the shortest closed geodesic.
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Otherwise there exists a closed curve in a ball of radius one which cannot
be contracted to the center of this ball inside this ball.

It is not hard to see that if every closed curve formed by two minimizing
geodesics between the center of the ball and a point of the closed curve is
contractible within the ball then the curve itself will be contractible within
the ball.

So, one of such curves will not be contractible. When we try to minimize
its length in the class of curves which start and end at the center of the ball
using a modification of the Birkhoff curve shortening process we arrive to a
non-trivial geodesic loop of length less than twice that of the initial curve.

Last statement of Corollary 2 follows from a rescaling argument. QED.
Before we will give the outline of our proofs, let us recall the result of

Lusternik and Fet, (see [B], [Ml] for more details).

Theorem. LetM be compact simply connected Riemannian manifold. Then
there exists at least one closed geodesic on M.

In order to briefly state the proof of this theorem we will need a couple
of facts:

1. Let ΛM = Map(S1, M) denote the space of continuous maps fromS1

to M and letΩM be the space of fixed point loops. Then

πq(ΛM) = πq(M) ⊕ πq(ΩM);

and
πq+1(M) ' πq(ΩM).

Therefore, there existsi > 0 such thatπi(ΛM) 6= {0}.

2. Givenc > 0 let ΛcM denote the closed subsetE−1([0, c]), whereE is
the energy defined on piecewise differentiable curves. LetPNM be the set
of all geodesic polygons consisting ofN segments. For any fixedm there
existsNm such thatπk(PNM) = πk(ΛcM) for all k ≤ m, N ≥ Nm.

3. Let us also recall that closed geodesics are critical points of the energy
function (or equivalently of the length function) onPNM .

Proof. Consider the smallesti such thatπi(ΛM) 6= {0}, (or equivalently
πi+1(M) 6= {0} and πi(M) = {0}.) Let ν ∈ πi(ΛM) and ν 6= 0. It
is easy to see thatν can be represented by a continuous map ofSi into
the spaceΛ∗M made of piecewise differentiable closed curves. Letc =
supx∈Si(E(ν(x))). ConsiderΛ2cM . For any fixedm there existsNm such
that for all k ≤ i, N ≥ Nm, πk(P 2c

N M) = πk(Λ2cM). Moreover,ν can
be deformed intoP 2c

N M without the increase of energy in the process of
homotopy. Thus,πi(P 2c

N M) 6= 0.
SupposeP 2c

N M does not contain closed geodesics. Then the energy func-
tion E onP 2c

N M has no critical points onP 2c
N M other than constant paths.
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Let us define a vector fieldX on P 2c
N M by the formula− < X, Y >=

dE(Y ). The vector fieldX does not vanish onP 2c
N M\M. Therefore we

can deformP 2c
N M into the tubular neighborhood ofM , which can be re-

tracted toM . But that would mean thatπi(P 2c
N M) = πi(M), which is a

contradiction, sinceπi(M) = {0}. QED.
Suppose now, that we want to estimate the length of a closed geodesic on

a compact simply connected manifold. In light of the above proof, we can see
that if we would actually construct a non-trivial elementh(q, t) ∈ πi(ΛM)
such that the length of each curveh(q, ∗) is bounded from above by some
constant, that would imply the existence of a closed geodesic, which length
is going to be bounded by the same constant. That is exactly what we are
going to do in our case. In our caseπ2(M) 6= {0} andπ1(M) = {0}. It
follows that

π1(ΛM) = π1(M) ⊕ π1(ΩM) ' π1(ΩM) ' π2(M) 6= {0}.

Therefore, the problem can be reduced to constructing a non-trivial element
Hτ (t) of π1(ΛM), such that for allτ lengthHτ is bounded in terms of
available geometric data. We will be using the notions of the width of a
homotopy and the homotopy distance introduced in [SW] as follows:

Definition 0.2.Width of a Homotopy.LetFτ (t) be a homotopy that connects
two closed curves parametrized byt ∈ [0, 1] on a Riemannian manifoldM .
We say thatWF is the width of the homotopyFτ (t) if WF = maxt∈[0,1]
length of the curveFτ (t). That isWF is the maximal length of the trajectory
described by a point of one of the original closed curves during the homotopy.
More generally ifX, Y are metric spaces andF : X × [0, 1] −→ Y is a
homotopy thenWF is defined assupx∈X lengthF (x, ∗).

Definition 0.3. Homotopy Distance.Let α1(t), α2(t) be two curves, then
the homotopy distancedH(α1, α2)=infH WH , whereH is any homotopy
betweenα1 andα2.

The constructions ofHτ (t) in the proofs of Theorems A, B and C are some-
what different. We will summarize the proof of Theorem C and then indicate
the points where the proof of Theorems A and B will deviate from the proof
of Theorem C.

There are several essential ideas in this proof that we want to emphasize.

1. In order to construct a non-trivial elementHτ (t) of π1(ΛM) such that
lengthHτ ≤ f(n, D, c) we will have to learn how to construct a homotopy
of any closed curveγ(t) of length≤ 3d to a point, and that homotopy has to
have some special properties. What we have in mind is the following: there
are two parameters of the homotopy that we need to control at the same
time, i.e. the length of the curves in the homotopy and the homotopy width
(by controlling we will mean providing an upper bound). We will, actually
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be satisfied if we have only “partial” control over the width, that is at least
two selected points onγ(t) do not “travel for too long” until they reachp,
i.e.Hτ (ti) is bounded, wherei = 1, 2. The attempt at using Birkhoff curve
shortening process fails for the reason that even though we have absolute
control over the length of the curves in a homotopy, each point onγ(t) can
travel a long distance till it gets top.

2. Such a homotopy as in the previous paragraph can be constructed by
first producing a different homotopy from which we demand only that its
width should be bounded. The assumption thatl(M) > 3d will be used,
wherel(M) denotes the length of the shortest closed geodesic. We can then
construct a new homotopy based on the previous one that will satisfy the
necessary conditions, (see Fig. 11.)

3. In order to accomplish (2) we will need to use notions very similar to
those used by Gromov in [G1], i.e. rank and compressibility, that will be
substituted by effective rank and effective compressibility. These notions
will be defined in Sect. 3. We will be able to show that effective rank is
bounded through curvature and diameter of a manifold.

4. The result of the various estimates will be that (assumingl(M) > 3d)
for every curveγ(t) of length≤ 3d there exists a homotopy of this curve
to a point, such that the length of the curves in a homotopy is bounded by
a certain function ofn, D andc and that we can insure that for some two
points on the curve, the distance they travel is bounded by the same function.
At that point we will be able to construct a non-trivial 2-cycle with some
special properties. The argument that we will use in order to obtain it is the
following: we will consider a mapf : S2 → M , such that the image ofS2

underf represents a non-trivial element ofH2(M). Next we will triangulate
S2 and consider the induced triangulation off(S2). We will want the induced
triangulation to be fine enough for the diameter of each simplex to be less
than the injectivity radius of a manifold. Let us callf(S2) by σ. Then we
will try to extend this mapf to D3, or, roughly speaking, we will attempt to
“fill” σ using the following procedure. First we will pick any pointp̃ in M .
Then we will join the point̃p with all the vertices ofσ by minimal geodesics.
After that we will consider all the closed curves composed of two geodesic
segments that joiñp and vertices̃v1 andṽ2 of σ and the edge ofσ that joins
ṽ1 and ṽ2. We will then use the “nice” homotopy to connect those closed
curves with some points. We will extendf skeleton by skeleton by mapping
the center of the discD3 to p̃, edges that connect the center of the disc with
vertices of triangulation to minimal geodesics and 2-simplices to surfaces
generated by the above homotopies.f cannot be extended to 3-skeleton, so
it cannot be extended to at least one 3-dimensional simplex. Thus, we will
obtain some cycles ofM of a specific shape, at least one of which should
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be non-trivial, in order forσ not to bound. Finally, we will then construct a
non-trivial element ofπ1(ΛM) with the desired properties.

Let us now somewhat extrapolate on (3). That work was mainly inspired
by [G1]. We will establish the connection between effective rank of a ball
and the homotopy distance between any closed curve inside that ball and
some point. That is, we will find an upper bound on the homotopy distance
between a curve and a point in terms of the effective rank. The proof of this
uses the induction procedure on the effective rank of a ball containing the
curve, that we will denote asrank′

a. For the curveγ(t) that lies inside the ball,
of radius less than the injectivity radius there exists an obvious homotopy of
bounded width to the center of the ball. It is only slightly harder to construct
a homotopy of bounded width for the curve inside the ball ofrank′

a = 0,
(but perhaps, with radius greater than the injectivity radius.) The above will
be the base of induction. Now let us roughly describe how we can construct a
homotopy of bounded width for the curve that lies inside a simply connected
ball Br(p) of rank′

a = 1, since that will make the induction step clear.
We will begin by showing that there exists a finite sequence of closed

piecewise geodesic curves that starts at our given curve and ends with some
constant curve, such that two consecutive curves in the sequence are suf-
ficiently close to each other. We will then construct a homotopy between
two neighboring curves by reducing the problem to finding a homotopy of
a closed curve that lies totally inside the ballBr/10(p′), which is a subset of
our original ball. That will be accomplished by first “bringing” the curve to
a ball ofrank′

a = 0 and then by homotoping it to a point, (see Fig. 1 below,
and also Figs. 3–6.)

A technical difficulty which arises starting at the next step of induction
is that we need to know in advance some information about geometry of
the contraction of a given curve to a point insideBr(p). Fortunately, this
information is of combinatorial nature and the existence of the desired upper
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bound follows from the contractibility of the considered curve insideBr(p)
(see Lemma 3.5 for more details).

Proceeding by induction we can construct a homotopy of bounded width
of a curve inside any simply connected ball in the manifold. Therefore
if we have two parametrized curves such that the distance between their
corresponding points is less then the simply connectedness radius divided
by some large enough constant, then they can be connected by a homotopy
of a bounded width. Now we can use thec/B-net (for largeB) in the space
of closed curves inM of length≤ 3d in order to complete the construction
of a contraction of bounded width for any closed curve of length≤ 3d.

Note that the procedure that we develop in Steps 2 and 3 in order to
construct a homotopy of width bounded in terms of the lower bound on the
sectional curvature and the diameter can also be used to prove the following
theorem.

Theorem D. LetMn be a simply connected compact Riemannian manifold
of sectional curvatureK ≥ −1 and diameterd ≤ D. Suppose that all
metric balls inMn of radius≤ c are simply connected. Then there exists a
functionQ(n, c, D) such that for any closed curveω(t) in Mn there exists
a homotopyHτ (t) of ω(t) to a point such that

WH ≤ Q(n, c, D).

If we assume in addition that every closed curveγ in every metric ball of
radius less thanc can be contracted to a point inside this ball by a homotopy
which passes only through closed curves of length bounded from above by
an explicitly given function of the length ofγ then we can write down an
explicit formula forQ(n, c, D).

To prove Theorem A we can assume that the injectivity radius ofMn is
bounded from below. Otherwise Klingenberg’s lemma together with Berger
injectivity radius estimate will give an estimate on the length of the shortest
closed geodesic and we would be done. But now, having the lower bound
on the injectivity radius it will be much simpler to construct the required
homotopy with special properties that we discussed above. We can then
proceed as in the proof of Theorem C.

In the proof of Theorem B we will use Grove and Petersen results which
imply that under assumptions of Theorem B there existr(n, v, D) > 0
andC(n, v, D) which can be written down explicitly such that any metric
ball in Mn of radiusr < r(n, v, D) is contractible inside the concentric
ball of radiusC(n, v, D)r. Moreover, results of Grove and Petersen provide
enough information about the geometry of this contraction to construct the
required homotopy discussed above almost as easily as if we would have a
lower bound for the injectivity radius.
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In order to prove Theorem AA we will use some obstruction theory used
by Gromov in [G2] to construct a homotopy non-trivial map of the boundary
of 3-simplex intoMn with the following special properties: Denote the
images of the verticesa, b, c, d. Then the images of 1-simplices will be
geodesics joininga, b, c andd, and the images of faces will be formed by the
surfaces generated by the homotopies with the “nice” properties described in
(1). The lengths of contracted curvesabc, bcd, acd andabd will be bounded
in terms of the filling radius ofMn which does not exceeedc(n)vol

1
n (Mn).

Then we can proceed as in the proof of Theorem A.
Sections 1–4 will be dedicated to estimating the homotopy distance be-

tween closed piecewise geodesic curve and a point for classΨ . In Sect. 1 we
will define the notions ofa-effective compressibility anda-effective rank.
In Sect. 2 we will prove the lemma that will be essential in estimatinga-
effective rank. It will establish that the number of elements in the sequence
of ε-almost critical points is finite for someε under some conditions. In
Sect. 3 we will establish the connection between the effective rank and the
homotopy distance, and in Sect. 4 we will show thatrank′

a is bounded from
above bye3(n+1)(d+1) for somea. Combining results of Sects. 3 and 4 we
will obtain Theorem D.

In Sect. 5 we will construct the required homotopy for anyMn ∈ Ψ . We
will deal with classΥ in Sect. 6. Finally in Sect. 7 we will prove Theorems
A, B and C and use some ideas from the paper [G2] of Gromov to finish the
proof of Theorem AA. In Sects. 1, 2 and 4 we will closely follow the proof
of the main theorem from [G1] of Gromov as it was done in [Cg].

1. Basic definitions

Definition 1.1.a-Effective Compressibility.Let a be a positive number. We
will say thatBr(p) a-effectively compresses toBs(q) and writeBr(p) 7−→a

Bs(q) if the following conditions are satisfied:

1. 5s+d(p,q)≤5r;

2. There exists a homotopyFτ of Br(p) intoBs(q) with F0 being the identity
andF1 : Br(p) ⊂ Bs(q);
3. WF ≤ ar.

(In particular, if there exists a homotopyFτ of Br(p) to some point
p′ ∈ Br(p), such thatF0 is the identity andF1 = q′, and the third property
of the definition is satisfied, then we will say thatBr(p) is a-effectively
contractible.)

Definition 1.2.a-Effective Rank.

1. ranka(r, p):=0, if Br(p) 7−→a Bs(q) with Bs(q) a-effectively con-
tractible.
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2. ranka (r,p):=j if ranka (r,p) is not≤ j-1 and if Br(p) 7−→a Bs(q) such
that for allq′ ∈ Bs(q) with s′ ≤ s/10, we haveranka(s′, q′) ≤j-1.

Definition 1.3. a-Effectively Incompressible Ball.A ball Br(p) is called
a-effectively incompressible ifBr(p) 7−→a Bs(q) implies thats > r/2.

Lemma 1.4.Any ballBr(p) can be 3a-effectively compressed either to an
a-effectively contractible ball or to a ball that is incompressiblea-effectively.

Proof.SupposeBr(p) 7−→a Bs1(q1). Then there are three possibilities:

1. Bs1(q1) is a-contractible;

2. Bs1(q1) is incompressiblea-effectively;

3. Bs1(q1) is compressiblea-effectively, but nota-effectively contractible.
In the first and the second case we are done, sincea-effective compress-

ibility implies 3a-effective compressibility. In the third case,Bs1 7−→a Bs2

such thats2 ≤ s1/2 by definition ofa-effective compressibility. Once again
we have three possibilities forBs2(q2). It can be eithera-effectively con-
tractible,a-effectively incompressible, ora-effectively compressible. Con-
sider the last case and obtainBs2 7−→a Bs3 such thats3 ≤ s2/2, and
so on. The above process will have to terminate by our arriving either ata-
effectively compressible ball, or the ball that is incompressiblea-effectively.
We, thus,obtain a sequence:F 1, F 2, F 3, ..., Fn of homotopies such that
WF 1 ≤ ar, WF 2 ≤ as1 ≤ ar, WF 3 ≤ as2 ≤ as1/2 ≤ ar/2, ...,WF n ≤
(ar)/2(n−1). Thus, we can get toa-effectively contractible or toa-effectively
incompressible ball applying one homotopy after the other and the width
WF of the final homotopy will be≤ ar+ar+ar/2+...+ar/2(n−1) ≤ 3ar.
QED.

2. Modified Gromov’s lemma

In this section we will prove a slightly generalized version of the well-known
Gromov lemma about the sequence of critical points, (see [Cg], [G1] for the
proof of the original lemma).

Definition 2.1. ε-Almost Critical Point.We will say that a pointq on a
manifoldMn is ε-almost critical with respect top, if for all vectorsv in the
tangent spaceMq, there exists a minimal geodesicγ from q to p with the
absolute value of the angle∠v, γ′(0) ≤ π/2 + ε.

Lemma 2.2.(Modified Gromov’s Lemma.) Letq1 beε-almost critical point
with respect to p and letq2 satisfyd(p, q2) ≥ νd(p, q1) for someν > 1. Let
γ1, γ2 be minimal geodesics from p toq1, q2 respectively, and letθ be the
angle betweenγ′

1(0) andγ′
2(0). If sectional curvatureKM of the manifold
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M is bounded from below by -1 andd(p, q2) ≤ d then

cos θ ≤ tanh d
ν

tanh d
(sin ε + 1) + sin ε.

Proof.Leta = d(p, q1), b = d(q1, q2), c = d(p, q2). Also letγ3 be a minimal
geodesic fromq1 to q2. Sinceq2 is ε-almost critical point to p, there exists
a minimal geodesicσ(t) from q2 to p such that the angle∠σ′(0), γ′

3(0) ≤
π/2 + ε, (see Fig. 2.) We will apply the Toponogov comparison theorem
twice to the hingesσ(t), γ3(t) andγ1(t), γ2(t), which in combination with
the hyperbolic law of cosines will yield inequalities (1) and (2) respectively.

cosh c ≤ cosh a cosh b − sinh a sinh b cos(π/2 + ε)(1)

cosh b ≤ cosh a cosh c − sinh a sinh c cos θ.(2)

Let us substitute the inequality (2) into (1) to obtain:

cosh c ≤ cosh a(cosh a cosh c − sinh a sinh c cos θ) + sinh a sinh b sin ε.

Now, let us use the triangle inequality to see that

cosh c ≤ cosh2 a cosh c − cosh a sinh a sinh c cos θ

+ sinh a sinh(a + c) sin ε.

Therefore, using the hyperbolic functions identities we obtain:

0 ≤ sinh2 a(sin ε + 1) − cosh a sinh a tanh c(cos θ − sin ε);

cosh a tanh c(cos θ − sin ε) ≤ sinh a(sin ε + 1)

cos θ ≤ tanh a

tanh c
(sin ε + 1) + sin ε ≤ tanh(d/ν)

tanh d
(sin ε + 1) + sin ε.

QED.
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It is clear that unless the expression on the right is strictly less than 1,
our lemma will not provide any additional information. Thus, we need to
find such anε that

tanh(d/ν)
tanh d

(sin ε + 1) + sin ε = x < 1.

We will use Lemma 2.2. in the situation whenν=5/4. In this case let

cd =
tanh(4d/5)

tanh d
,

and let

x =
cd + 1

2
.

It is clear that bothcd andx are strictly less than 1. Takeε such that

sin ε =
1 − cd

2(cd + 1)
.

After doing some calculation we will see that

1
sin ε

=
2(e9d/5 − e−9d/5)

ed/5 − e−d/5 ≤ 18e8d/5.

Lemma 2.2 implies thatcos θ ≤ (cd + 1)/2. Additional calculations
imply that

(cd + 1)/2 ≤ 1 − e−8d/5

2
.

and hence
θ ≥ e−4d/5.

Corollary 2.3. Letq1, q2, ..., qN be a sequence ofε-almost critical points of
p, wheresin ε satisfies the above condition. Suppose also thatd(p, qi+1) ≥
(5/4)d(p, qi). Then N≤ (n − 1)πn−1e4(n−1)d/5.

Proof.Consider minimal geodesicsγi that joinp andqi, i = 1, ..., N . Next
consider the set of the unit tangent vectors{γ′

i(0)} that can be viewed as a
subset of the unit sphere in the tangent space ofM atp. Let θi be the angle
betweenp, qi. Then the balls of radiusθi/2 about theγ′

i(0) are mutually
disjoint. Thus the number of points in the sequence N≤ volSn−1

min volB(p,θi/2) ,

whereB(p, θi/2) denote balls inSn−1 for i = 1, ..., N and

volSn−1

min volB(p, θi/2)
=

∫ π
0 (sin s)n−2ds∫ θ/2

0 (sin s)n−2ds
,

for θ = min θi Sincesin s ≥ 2s/π, on the interval(0, π/2) we estimate:

N ≤ πn−1(n − 1)
θn−1 .

Now substitute the lower bound forθ and obtain the result. QED.
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3. Homotopy distance, nets in the space of closed curves and
a-effective rank of a ball

In this section we will obtain upper bounds for the homotopy distance be-
tween two curves that are close to each other.

The constructions that we will perform are based on the following idea:
if we know how to contract closed curves that lie in “small” metric balls to a
point (i.e. closed curves that lie inside balls of radii 2r0) then we also know
how to connect two curves that are close to each other (i.e.r0-close) with
a homotopy (see Lemma 3.3). Thus, in the situation when we are able to
estimate homotopy distance between a closed curve in a sufficiently small
(simply connected) metric ball and a point we are also able to estimate
homotopy distance between any two closed curves which can be connected
by homotopy that passes through closed curves of length≤ L. This estimate
will depend on the number of points in ther0/80-net in the space of closed
curves of length≤ L.

Note that the idea does not work if the only information we have is that
“small” balls are simply connected, but we do not know how to estimate the
width of the homotopy that connects a closed curve that lies inside that ball
and a point.

Thus, it is important to learn to construct contractions of closed curves
inside balls of radius2r0.

Three different cases will be considered:
In the situation, when we know the injectivity radius, we can taker0

=injectivity radius, and the contractions are obvious.
The second case is that of a manifold withK ≥ −1, vol ≥ v > 0 and

diam ≤ D. In this case the work of Grove and Petersen gives to us the lower
bound for the radius of contractibility, so we can taker0 = r0(n, v, d) and
w(n, v, d) such that any closed curve in a ball of radiusr0 can be contracted
to a point by homotopy of width≤ w(n, v, d). Note that in this case “small”
metric balls are not necessarily simply connected.

In the situation when a lower bound for the volume is not available our
idea is to use the notion ofa-effective rank which we introduce below. In
that case we will examine how the homotopy distance between a curve
α(t) ∈ Br(p) of a-effective rankm and the center of the ball, depends on
the rankm and the diameterd of a manifoldMn. Here we assume thatMn

has sectional curvature≥ −1 and that all balls of radius≤ c are simply
connected.

Definition 3.1. Modifieda-Effective Rank.

1. rank′
a(p, r) := 0 if Br(p) 7−→3a Bs(q) whereBs(q) is a-contractible.
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2. rank′
a(p, r) := j if rank′

a(p, r) 6= j − 1 andBr(p) 7−→3a Bs(q) such
thatBs(q) is a-incompressible and for allq′ ∈ Bs(q) with s′ ≤ s/10, we
haverank′

a(q
′, s′) ≤ j-1.

Lemma 3.2.Let γ(τ) ∈ Br(p) with rank′
a(p, r) = 0 be a closed curve.

There exists a homotopyFτ of γ(t) to a point withWFτ ≤ 4ar ≤ 4ad.

Proof.Sincerank′
a(p, r) = 0 there exists ana-effectively contractibleBs(q)

such thatBr(p) 7−→a Bs(q), implying the existence of a homotopyF 2
τ

with WF 2
τ

≤ 3ar, such thatF 2
0 (γ(t)) = γ(t) andF 2

1 (γ(t)) ⊂ Bs(q). But
a-effective contractibility ofBs(q) implies the existence of a homotopyF 1

τ

such that

1. WF 1
τ

≤ ar;

2. F 1
0 (F 2

1 (γ(t))) = F 2
1 (γ(t));

3. F 1
1 (F 2

1 (γ(t))) = q′,
whereq′ ∈ Bs(q).

Take the composition of the above homotopies and obtainFτ withWFτ ≤
4ar. QED.

We are now ready to show that for every closed curve inside a ballB of
a′-effective rankm the homotopy distance between the curve and any point
on Mn is bounded by the function that depends on thea′-effective rank
of the ball and the diameter of the manifold, wherea′ = 1

sin ε , and where
ε = 1−cd

2(1+cd) as it was defined in Sect. 2, providing thatB and all balls of

smaller radius inMn are simply connected. (Note that,1sin ε ≤ 18e8d/5).
Our proof will be by induction on the effective rank of the ball and will

be done in five steps.
Let us first note that the above statement is true, whenm = 0. Since for

any closed curve inside that ballBr(p) of a′-effective rank0, there exists
a homotopyF 0, such thatWF 0 ≤ 4a′r,(by Lemma 3.2.), thus,WF 0 ≤
4r

sin ε ≤ eA(d+1) ≤ eA(d+1)(m+1), whereA = 2 · 105(n + 1).
Let us assume now that the above statement is true for a curve lying

in a ball ofa′-effective rankm of radius smaller than the radius of simply
connectedness, that is there exists a pointqm and homotopyFm, such that
WF m ≤ f(m, n, d). We want to show that for any closed curve lying in-
side that ball ofa′-effective rankm + 1 of radiusr less than the simply
connectedness radius there exists a homotopyFm+1 to a pointqm+1, such
thatWF m+1 ≤ f(m + 1, n, d). The homotopyFm+1 will be a product of
several homotopies. We will proceed as follows.

Step 1:Given α1 we will show that there exists a homotopy that we will
call h1 that connects our curveα1 with the curveα2 inside a ballBs(q),
such that the width ofh1 will be bounded by3a′r(≤ 3a′d) and for every
q′ ∈ Bs(q) ands′ ≤ s/10 the ballBs′(q′) hasa′-effective rankm.
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Step 2:We will use our induction assumption to show that for any two
curvesα1(t), α2(t) ⊂ Bs(q) such thatd(α1(t), α2(t)) ≤ s/20 there exists
a homotopyh2 with the width≤ 4f(m, n, d) + 4s/10(≤ 4f(m, n, d) +
4d/10.) (see Figs. 3–6).

Step 3:We will then show that any closed curve inBs(q) of length bounded
from above by3s can be homotoped to a pointq by a homotopyh3 with the
width bounded by a function ofn, m, d.

Step 4:For any closed curveα2 ⊂ Bs(q), regardless of its length, there
exists a homotopyh4 to a pointq such that the width of the homotopy is
bounded by2s + 4Wh3(≤ 2d + 4Wh3).
Step 5:Take the composition ofh1 andh4 to get the required homotopy and
estimate its width.

We will now proceed with the proofs.

Step 1:Immediately follows from the definition of thea-effective rank of
the ball.

Step 2:will be the result of

Lemma 3.3.1) Letα1(t), α2(t) be two closed curves in a ballBs(q), where
s is smaller than simply connectedness radius ofMn with the distance
d(α1(t), α2(t)) ≤ s/20 for all t. Suppose also thatBs(q) hasa′-effective
rank≤ m. Assume that every closed curve in every ball ofa′-effective rank
m and radius≤ s can be connected to a point by a homotopy of width
≤ f(m, n, d). Then there exists a homotopyh2 between those two curves
with Wh2 ≤ 4f(m, n, d) + 4s/10 (≤ 4f(m, n, d) + 4d/10).

2) More generally, ifα1(t), α2(t) are two closed curves such that
d(α1(t), α2(t)) ≤ s/20 for all t in an arbitary Riemannian manifoldM ,
and any closed curve in any ball of radiuss in M can be contracted to a
point by a homotopy of width≤ W then there exists a homotopyH between
α1 andα2 of width≤ 4W + 4s/20.

Proof.1) Takeα1(t), α2(t), such thatd(α1(t), α2(t)) < s/20. W.L.O.G. we
can assume thatα1:[0,1] −→ Mn, α2:[0,1] −→ Mn are broken geodesics.
We will partition the interval [0,1] into segments, such that each quadrangle
with the verticesα1(ti),α1(ti+1),α2(ti+1), α2(ti) and the edgesαj |[ti,ti+1],
j = 1, 2,σj(s), whereσj(s) is a minimal geodesic joiningα1(ti) andα2(ti),
lies inside a metric ball of radius s/10. This can be done by requiring that
the length of the curve(αj |[i,i+1]) ≤ s/30.

We will describe the homotopy, by providing the description of the
images of the curveα1(t) under the homotopy. Letαi

1 = α1|[ti,ti+1] and
αi

2 = α2|[ti,ti+1]. Then we claim that

1. α1(t) is homotopic to the curveγ1 =
⋃

i=1 αi
1 ∪ σi ∪ −σi, (see Fig. 3.)

Moreover,Wg1 ≤ s/10, whereg1 is the homotopy betweenα1 andγ1.
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2. The curveγ1(t) will be homotopic to the curveγ2(t) =
⋃

i=1 αi
1 ∪ σi ∪

−αi
2 ∪ αi

2 ∪ −σi with Wg2 ≤ (3s)/10, (see Fig. 4.)

3. The curveγ2(t) will be homotopic to the curveγ3(t), whereγ3(t) =⋃
i=1 αi

2 ∪ Fm
τ (α2(ti+1))|[0,τ∗] ∪ Fm

τ (t) ∪ −Fm
τ (α2(ti+1)) and Wg3 ≤

2f(m), (see Fig. 5.)

4. The curveγ3(t) is homotopic to the curveγ4(t), whereγ4(t) =
⋃

i=1 αi
2∪

Fm
τ (α2(ti+1)) ∪ −Fm

τ (α2(ti+1)) andWg4 ≤ 2f(m), (see Fig. 6).
Finally, we observe thatγ4(t) is homotopic toα2(t) and notice that

Wh2 ≤ 4f(m) + 4s/10 as required. The proof of 2) is quite similar. QED.

Step 3:will require proofs of several lemmas.
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Fig. 6

Lemma 3.4.Let Φ(Br(p)) be the space of piecewise differentiable closed
curves of length≤L parametrized proportionally to their arclength inBr(p),
a ball of radius r in a manifoldMn and letN be an upper bound on the
number of elements in some cover{Bε̃/24(pi)} of the ballBr(p) for some
ε̃. There exists añε/4-net in theδ-neighborhoodNδ(Φ(Br(p))) with the
number of elements

Q ≤ N24L/ε̃+1,

whereδ is some positive number and the length of every closed curve in this
ε̃/4-net is≤ 3L.

Proof. Given the cover{Bε̃/24(pi)} of Br(p) we will construct añε/4-net
in theδ-neighborhood ofΦ(Br(p)) as follows. We will consider the set I of
γi(t), where eachγi(t) will be a curve composed of the geodesic segments,
that join pointspk andpj if and only if d(pk, pj) ≤ ε̃/8 with the additional
condition that the length ofγi ≤ 3L. The number of such curves will be
≤ N24L/ε̃+1. If we will impose the additional condition of all curves being
closed, then our set J of such curves will be a subset of I and the number of
elements of J will also be≤ N24L/ε̃+1. We claim that J is our̃ε/4-net.

For let γ(t) ⊂ Br(p) be any curve parametrized proportionally to its
arclength, in particular,γ : [0, l] → Br(p), l ≤ L. Let us partition [0,l] into
segments[tj , tj+1] such thattj+1 − tj = ε̃/24. For eachtj we will select
pj such thatγ(tj) ∈ Bε̃/24(pj). Note thatd(pj+1, pj) ≤ ε̃/8 by triangle
inequality. We will then construct a curveσ(t) by joining centers of the balls
by minimal geodesics. Note:σ(t) will not be parametrized proportionally
by its arclength, butd(σ(t), γ(t)) < ε̃/8. QED.

Lemma 3.5. Let α(t) be a closed piecewise differentiable curve inMn

parametrized proportionally to its arclength and contractible inside a ball
Br(p) of radiusr in Mn.

1) Assume thatα(t) can be contracted to a point insideBr(p) by a ho-
motopy that passes only through piecewise differentiable curves of length
≤ L. Then there exists a finite sequence{σi}k

i=1 of closed broken geodesics,
such thatd(σ1(t), α(t)) ≤ ε̃/4 for all t; σk = p; length(σi) ≤ 3L,
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d(σi(t), σi+1(t)) < ε̃ for all t and the number k of elements in this se-
quence is≤ Q, where Q is as in the Lemma 3.4.

2)Assume instead only thatBr(p) is simply connected. Then there exists
a sequence{σi}k

i=1 of closed broken geodesics such thatd(σ1(t), α(t)) ≤
ε̃/4, d(σ1(t), σ2(t)) < ε̃ for all t, σk = p and the numberk of elements in
this sequence does not exceedf(r/ε̃, N), whereN is the same as in Lemma
3.4 andf is an increasing function.

Proof. 1) There exists a pathPτ in a space of all closed curves inBr(p)
of length bounded from above byL and parametrized proportionally to the
arclength connectingα(t) and the constant curvep. By the above lemma we
can construct añε/4-net in theδ-neighborhood ofΦ(Br(p)), that is the space
of curves of length≤ L and parametrized proportionally to their arclength.
Now consider the sequence:P1, ..., Pk such thatd(Pi, Pi+1) < ε̃/4, P1 =
α1, Pk = p. We know that for allPi there existsσi ∈ Nδ(Φ(Br(p))) such
that d(Pi, σi) < ε̃/4. Thus we obtain sequenceσi such thatσk = p and
d(σi, σi+1) < ε̃. But we still have to estimate the number of elements in
that sequence. So far there is a possibility thatσi = σj for differenti andj.
To avoid that we can delete all the subsequences between all the repeating
elements from the sequence without changing the essential properties of the
sequence, so our new sequence obtained in this way will be nonrepeating
and the number of elements will be less than or equal to Q.

2) Considerα. Let us splitα by geodesics fromp to points ofα into
loopsγi of length less then or equal to3r similarly to what is on Figs. 7–9
and explained in details in the proof of Lemma 3.6 below. Loopsγi are
contractible insideBr(p) and if every of them can be contracted top by a
homotopy of width≤ W , thenγ can be contracted top by a homotopy of
width ≤ 4W + 2r, (see the proof of Lemma 3.6 below for details).

Consider a nerve of a covering ofBr(p) by balls of radius̃ε/24. Consider
the natural map from the manifold to the nerve obtained using a partition of
unity associated with the covering with derivatives bounded by a constant.
Consider a simplicial approximation ofγi. The number of simplices,l, in
this simplicial curveΓ does not exceed a constant times the length ofγi/ε̃,
and thus, does not exceed a constant timesr/ε̃. Γ must be contractible in
the nerve sinceγi is contractible.

The crucial idea is that there exists a simplicial homotopy ofΓ to a point
and a functionω, such that its image consists of not more thanω(r/ε̃, N)
simplices (counting with multiplicities) in the nerve, whereN is a number
of vertices in the nerve.

Indeed, the number of simplicesS in the nerve is bounded by a function
of N . Now for everyl and S there exists only finitely many simplicial
complexes with not more thanS simplices and contractible closed simplicial
curves in the simplicial complex with not more thanl simplices. Taking



384 R. Rotman

maximum over all such pairs of the number of 2-dimensional simplices in
the optimal contracting homotopy we obtain an increasing function ofl and
S, which is bounded from above by an increasing function ofr/ε̃ andN .

Now we would like to turn this simplicial homotopy ofΓ into a desired
sequence of closed broken geodesics betweenγi and a point. To do this
find a closed broken geodesic with vertices in the net used to construct the
nerve closest toγi. This will be σ1 (for the considered curveγi). We can
think about simplicial homotopy ofΓ to a point as a sequence of closed
simplicial curves such that the difference between two consecutive curves is
the boundary of exactly one triangle (i.e. two-dimensional simplex) of the
nerve. Now we can assign to any closed simplicial curve in the nerve a broken
geodesic passing through the centers of balls of the covering corresponding
to the vertices of the nerve. Two broken geodesics in the manifold obtained
from two consecutive closed curves in the simplicial homotopy ofΓ will be
ε̃/4 close. It remains to recall that the number of 2-dimesional simplices in
the homotopy ofΓ (=the number of consecutive closed simplicial curves)
is bounded from above by an increasing function ofr/ε̃ andN . Q.E.D.

Let us now apply those lemmas to the compact manifoldMn of sectional
curvatureK ≥ −1 and whereL = 3r. We estimate the number of points in
the ε̃/24 net onBr(p) using Bishop-Gromov volume comparison theorem,
(see [GoHL]). Consider the maximal number of pairwise disjoint balls in
Br(p) of radiusε̃/48. Then the set of balls{Bε̃/24(pi)}N

1 will cover Br(p),
whereN can be estimated to be

N ≤ vol(Br(p))
vol(Bε̃/48(pi))

≤ vol(B′
r(p

′))
vol(B′

ε̃/48(p
′
i))

,

whereB′
r(p

′), B′
ε̃/48(p

′
i) are balls of radiir, ε̃/48 respectively on a manifold

of constant curvature−1. Calculation shows that

N ≤
∫ r
0 sinhn−1 tdt∫ ε̃/48

0 sinhn−1 tdt
.

Since the balls{Bε̃/24(pi)} coverBr(p), the set{pi} will be ε̃/24-net. Let
ε̃ = r/20. ThenQ ≤ (960ed(n−1))1441.

We are now ready to complete Step 3. Letγ(t) ∈ Br(p) be a curve
of length≤ 3r and let ε̃ = r/20. There exists a sequence of piecewise
geodesics parametrized proportionally to their arclength of length≤ 3r and
having properties 1-3. Thus, we can obtain the required homotopy by taking
the composition of homotopies between the consecutive curves. It is easy
to see that the upper bound on the width of the final homotopy is what has
been required.

Step 4:will require the lemma below.
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Lemma 3.6.Letγ(t) ∈ Br(p) be a piecewise geodesic curve of any length in
Br(p)parametrized proportionally to its arclength. Then there is a homotopy
Hτ (t) of γ(t) to a point such thatWHτ ≤ 2d + 4Wh3 , whereh3

τ (t) is the
homotopy connecting a curve of length≤ 3r to a point produced in Step 3.

Proof.Letγ(t) have lengthl. Partition the interval [0,l] into the subintervals
[ti, ti+1] such thatti+1 − ti ≤ r. Also let σi be minimal geodesic joining
the points:γ(ti) and the center of the ball. Letγi = γ|[ti, ti+1] then we
claim thatγ(t) is homotopic to the curveγ1 =

⋃
γi−1 ∪ σi ∪ −σi and

Wh1 ≤ 2r(≤ 2d), whereh1 is the homotopy, (see Figs. 7 and 8). LetT i be
a geodesic triangle with vertices atγ(ti), γ(ti+1), p and edges:σi, γ

i, σi+1.
By Step 3, for eachTi there exists a homotopy that conects it to some point
pi. Let us call this homotopyHm+1,i. Consider a curveHm+1,i

τ (p) joining
p andpi, and denoteHm+1,i

τ |[0,t∗] by Hm+1,i
∗ . Then we claim thatγ1 is

homotopic toγ2 =
⋃

Hm+1,i
∗ (p) ∪ Hm+1,i

τ∗ (Ti) ∪ −Hm+1,i
∗ (p) with the

width of the homotopy bounded by2d+2W
Hm+1,i

τ
, (see Fig. 9). We can see

thatγ2 is homotopic toγ3 =
⋃

H i ∪ −H i, which is homotopic to a point
(see Fig. 10). QED

Step 5:We combine the results of Steps 1-4 and get the desired result:

WF m+1 ≤ χ(n, d, m).

As it was stated at the beginning of the section, we can now prove the
next lemma by following steps 1-5.
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Lemma 3.7.LetMn be a compact simply connected manifold of sectional
curvatureK ≥ −1 and diameterd. Assume that every metric ball inMn

of radiusr ≤ c is simply connected. Then every closed curve inMn can
be contracted to a point by a homotopy of width bounded by a functionh
of n, d, c and the modifieda′-effective rankm of Mn. Herea′ = 1/ sin ε,

whereε = tanh d−tanh(4d/5)
2(tanh d+tanh(4d/5)) . If we assume that every closed curveω in

any metric ball of radius≤ c can be contracted to a point by a homotopy
such that the length of curves in this homotopy is bounded by a function
φ of the length ofω then one can write an explicit formula forh involving
φ, n, d, c, m.

Proof. The lemma basically follows from steps 1-5 above. It remains to
observe thatMn can be regarded as a simply connected metric ball centered
at any of its points and to use Lemmae 3.5 and 3.3 again. The first step is
to cover a manifoldMn by simply connected metric balls and use Lemmae
3.5 and 3.3 to reduce the case of a general closed curve inMn to the case
of a closed curve that lies in a ball of radius less then the radius of simply
connectedness. QED.
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4. An upper bound on the effective rank

In this section we will establish an upper bound for the1sin ε -effective rank
of the ball.

Once again the proof of the following proposition is a modification of
the similar proof in [G1]. We will need to use an effective version of the
Isotopy Lemma ([Cg]) that was proved by Grove and Peterson in [GrP],
(Theorem 1.6, pg.199).

Lemma 4.1.LetBr1(p) andBr2(p) be two metric balls on a manifoldMn

with r2 < r1. Suppose that there is noε-almost critical points top on the
complement ofBr2(p) in the Br1(p). Then there exists a homotopy that
deformsBr1(p), so that it lies insideBr2(p) and the width of this homotopy
is bounded from above byr1

sin ε .

Proposition 4.2.Let Mn be a compact manifold of diameterd such that
its curvatureK ≥ −1. Then modifieda′-effective rank of any ball inMn,
wherea′ = 1/ sin ε, ε = 1−cd

2(1+cd) as in Sect. 2, will be bounded by(n −
1)πn−1e4(n−1)d/5.

In order to prove this proposition, we will first have to prove the following

Lemma 4.3. Let Br(p) be a ball of radius r on a complete Riemannian
manifoldMn. Assume5s + d(p, y) ≤ 5r; d(p, y) ≤ 2r . Then ifBr(p)
doesn’t 1

sin ε -effectively compress toBs(y) there exists anε-almost critical
point x of y withs ≤ d(x, y) ≤ r + d(p, y).

Proof. Let us assume that there are noε-almost critical points in the com-
plement of theBs(y) in Bd(p,y)+r(y). Then the bigger ball can be1

sin ε -
effectively deformed into a smaller one (this follows from the effective
version of the Isotopy Lemma,) butBr(p) ⊂ Bd(p,y)+r(y) ⊂ B5r(p),which
is a contradiction. Therefore, there exists andε-almost critical pointx in the
complement ofBs(y) in Bd(p,y)+r(y) QED.

Next Lemma will be a slight modification of the similar lemma in [G1],
where the term “ 1

sin ε -effectively” will be added in the appropriate places,
(see also [Cg] for the proof of the original Lemma.)

Lemma 4.4.LetMn be a Riemannian manifold and letrank′
1

sin ε

(r, p) = j.

Then there existsy ∈ B5r(p) andxj , ...x1 ∈ B5r(p) such that for alli ≤ j,
xi is ε-almost critical with respect toy andd(xi, y) ≥ (5/4)d(xi−1, y).

Proof.We begin by considering the metric ballBr(p) of rank′
1

sin ε

(r, p) = j.

By the definition of the 1
sin ε -effectiverank′ Br(p) 7−→ 3

sin ε
Brj (pj), such

that the following conditions are satisfied:
Brj (pj) is 1

sin ε -effectively incompressible;
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there existsp′
j−1 ∈ Brj (pj) and r′

j−1 ≤ rj/10 such thatrank′
1

sin ε

(r′
j−1, p

′
j−1) = j − 1.

Similarly, the ballBr′
j−1

(p′
j−1) 7−→ 3

sin ε
Brj−1(pj−1) such that

Brj−1(pj−1) is 1
sin ε -effectively incompressible;

there existsp′
j−2 ∈ Brj−1(pj−1) and r′

j−2 ≤ rj−1/10, such that
rank′

1
sin ε

(r′
j−2, p

′
j−2) = j − 2, etc.

Note:B3rj/2(p) ⊃ B5rj1
(pj1).

By proceeding in the above fashion we obtain the sequence of balls
Bri(pi), i = 0, 1, ..., j.such that for1≤ i≤ j Bri(pi) is 1

sin ε -incompressible
andB3ri/2 ⊃ B5ri−1(pi−1), ri−1 ≤ ri/10. Lety = p0. Theny ∈ B3ri/2(pi)
for all 1 ≤ i ≤ j. In particular,d(pi, y)+5ri/2 ≤ 4ri < 5ri andd(pi, y) ≤
3ri/2 < 2ri. SinceBri(pi) is 1

sin ε -incompressible it doesn’t1sin ε -effectively
compress toBri/2(y). Therefore, by Lemma 4.1 there exists anε-almost
critical pointxi with

ri/2 ≤ d(xi, y) ≤ ri + 2 · (3/2)ri = 4ri.

Thend(xi, y) ≥ ri/2 ≥ 5ri−1 ≥ (5/4) · 4ri−1 ≥ 5d(xi−1, y)/4. QED.

Corollary 4.5. rank′
1

sin ε

(r, p) ≤ (n − 1)πn−1e4(n−1)d/5 ≤ e3(d+1)(n−1),

which proves Proposition 4.2.

Proof of Theorem D.Combine Lemma 3.7 with Corollary 4.5 which provides
an upper bound form. QED.

We are now ready to construct a homotopy with the following properties:

1. the length of the curves in the homotopy is bounded;

2. there exists a point p for which the length of the curveHτ (p) is bounded.

5. Construction of a homotopy with curves of bounded length

In this section we will prove the following proposition:

Proposition 5.1.LetMn ⊂ Ψ , andγ(t) a closed curve inMn. Assume that
all metric balls inMn of radius less thanc are simply connected. There
exists a homotopyHnew

τ (t) satisfying the following properties:

1. Hnew
0 (t) = γ(t);

2. Hnew
1 (t) = p, wherep ∈ Mn;

3. supτ∗ lengthHnew
τ∗ (t) ≤ length(γ) + 2Q(n, d, c)

4. lengthHnew
τ (ti) ≤ Q(n, d, c), whereγ(ti), i = 1, 2 are two selected

points on the curveγ(t), andQ is the same function as in Theorem D.
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Fig. 11A–H.

Proof.Let us begin by observing that for any two curvesα1(t), α2(t) such
that d(α1(t), α2(t)) < inj/3 for any t a function that for anyt ∈ (0, 1)
assigns the minimal geodesic that joinsα1(t) andα2(t) is continuous.

Let γ(t) be a closed curve as above, and letHτ (t) be the homotopy of
γ(t) to p provided by Theorem D (so that we have an upper bound for the
width of H). For anyτ we will partition the unit interval inton subintervals
[ti, ti+1], t0 = tn so thatd(Hτ (ti), Hτ (ti+1)) ≤ inj/3. That partition is
possible to achieve because of the continuity ofHτ . Let σi,τ (s) be the
minimal geodesic that joins pointsHτ (ti) andHτ (ti+1). We are now ready
to describe our new homotopy, (see also Fig. 11.) We claim:

1.γ(t) is homotopic to the curveλ1 =γ|[0,tn−1]∪Hτ (tn−1)|[0,τ∗]∪σ(n−1),τ∗∪
−Hτ (0)|[0,τ∗]. Moreover, the length of curves in the homotopy is bounded
by l(γ) + 4WH , (see Fig. 11A.)

2.λ1 is homotopic toλ2 = γ|[0,tn−1] ∪Hτ (tn−1)∪−Hτ (0), (see Fig. 11B.)

3.λ2 is homotopic toλ3 = γ|[0,tn−2]∪Hτ (tn−2)∪−Hτ (tn−1)∪Hτ (tn−1)∪
−Hτ (0). The length of curves in the homotopy is bounded byl(γ)+8WHτ ,
(see Figs. 11C and D.)

4.λ3 is homotopic toλ4 = γ|[0, tn−2]∪Hτ (tn−2)∪−Hτ (0), (see Fig. 11E.)

5. λ4 is homotopic toλ5 = γ|[0, t1] ∪ Hτ (t1) ∪ −Hτ (0), (see Fig. 11F.)
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6. λ5 is homotopic toλ6 = Hτ (t1) ∪ −Hτ (t1) ∪ −Hτ (0) ∪ Hτ (0) which
is homotopic to a point p, (see Figs. 11G and H.) Note also that for points
{ti}, l(Hnew

τ (ti)) ≤ 4WHτ and that we can partition the unit interval in
such a way that some selected points on the curveγ are amongγ(ti). QED.

Note that if we have an explicit upper bound for the width of the homotopy
Hτ of γ(t) to p provided by Theorem D then we can replacef1 andf2 in
the right hand sides of 3. and 4. by explicit expressions.

In Sect. 6 we will establish a similar result for compact simply con-
nected manifolds with a non-trivial second homology group,K ≤ 1 and
vol(Mn) ≤ V , whereK is sectional curvature.

6. Manifolds with bounded from above curvature

Our result will be based on the following two inequalities:

1. Croke’s isoperimetric inequality:vol(B) ≥ const.nrn, where B(r,p) is
any metric ball of radiusr centered atp ∈ Mn andr < inj(Mn)/2. We
can takeconst.n = 2n−1

(n!)2 , (see [Cr1], [Ch]).

2. Berger’s inequality:vol(Mn) ≥ cn(inj(Mn)/π)n whereMn is compact
manifold of dimensionn, andcn can be estimated to beπ

n

n! , (see [Ch]).
We will also need the following corollary to Klingenberg’s lemma:

Lemma 6.1.LetMn be a compact manifold of sectional curvature bounded
from above, i.e.K ≤ 1. Theninj(Mn) ≥ min(π, l(Mn)/2), wherel(Mn)
is the length of the shortest simple closed geodesic, (see [GoHL].)

Supposel(Mn) = 2inj(Mn). Then we are done, because by Berger’s
inequality l(Mn) = 2inj(Mn) ≤ c′

nvol(Mn)1/n. Therefore, from now
on we will assume thatl(Mn) > 2inj(Mn) > π. Our approach will be
similar to that of Sect. 3, but instead of first constructing a homotopy of
bounded width we will right away construct a homotopy similar to the one
of Sect. 5. We will show that it is possible to construct such a homotopy
if the distance between two curvesd(α1(t), α2(t)) ≤ π/9. Then we will
construct a sequence of curves{σi(t)}m

i=1 such that

1. σ1(t) = α(t);
2. σm = p, where p is a point on a manifold.

3. d(σi, σi+1) ≤ π/9 and

4. m ≤ ( (n!)2vol(Mn)
20n−1 )216L/π+1

Lemma 6.2.Let ΦL(Mn) be the space of piecewise differentiable closed
curves of length≤ L parametrized proportionally to their arclength. There
existsπ/36-net on theδ-neighborhoodNδ(ΦL(Mn)) of such curves and

the number of elements inπ/36-net will be≤ ( (n!)2vol(Mn)
20n−1 )216L/π+1



Geodesic on simply connected manifolds 391

Proof. First, we will have to constructπ/216-net on Mn and estimate
the number of elements in it. It will be done using Croke’s inequality.
Let us consider the maximal number of pairwise disjoint balls inMn of
radiusπ/432. The number of such balls will be≤ vol(Mn)

max vol(Bπ/432(pi))
≤

vol(Mn)
2n−1432n

(n!)2πn

= const.′nvol(Mn). The set(Bπ/216(pi))m
i=1 is a cover ofMn,

thus the set of pointsπ/216-net onMn. We will construct the required net
on Nδ(ΦL(Mn)) by joining pi andpj with minimal geodesics if and only
if d(pi, pj) ≤ π/72 and considering its subset consisting of closed curves.
The number of elements in that set can be estimated to be

≤ [const.′nvol(Mn)]216L/π+1 =
(

(n!)2πnvol(Mn)
2n−1432n

)216L/π+1

≤
(

(n!)2vol(Mn)
20n−1

)216L/π+1

.

Let us now apply Lemma 3.4 substitutingπ/9 for ε. QED.

Lemma 6.3.LetMn be a compact simply connected manifold withK ≥ 1,
vol(Mn) ≤ V , and l(Mn) ≥ L > π. Let γ(t) ∈ ΦL(Mn). There exists
a finite sequence{σi}k

i=1 of broken geodesics such thatd(σ1(t), γ(t)) ≤
π/36; σk = p; length(σi) ≤ 3L; d(σi, σi+1) < π/9 and the numberk of
elements in this sequence is≤ N , whereN = (const.′nvol(Mn))216L/π+1.

Proof.as in Lemma 3.5, part 1.
We are now ready to construct a homotopy with the required properties.

Lemma 6.4. Assumel(Mn) > L. Let Mn be as in Lemma 6.3, and let
γ(t) ⊂ Mn be any closed curve of length≤ L. Then there exists a homotopy
Hτ (t) of a curve to a point p, such that:

1. supτ{lengthHτ (t)/t ∈ [0, 1]} ≤ 2L + π;

2. lengthHτ (ti), τ ∈ [0, 1] ≤ π(const.′nvol(Mn))216L/π+1

9
≤ (const.′nvol(Mn))216L/π+1 for at least two selected pointsti, i = 1, 2.

Proof.First we will show that any two curvesα1(t), α2(t) such thatd(α1(t),
α2(t)) ≤ π/9 can be connected by a homotopyH ′

τ (t) for which

1. supτ{lengthHτ (t)/t ∈ [0, 1]} ≤ 2L + π.

2. lengthHτ (ti), t ∈ [0, 1] ≤ π/9.
Then we will apply Lemma 6.3. to get a desired homotopy.
Let us subdivide the interval [0,1] into subintervals[ti, ti+1], so that

the figure with vertices:α1(ti), α2(ti), α2(ti+1), andα1(ti+1) and edges
αj |[ti,ti+1] andσi(s), whereσi(s) is a minimal geodesic joiningα1(ti) and
α2(ti) lies inside the ball of radiusπ/3. That is possible to achieve by
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demanding that max lengthαj |[ti,ti+1] ≤ π/9. The function that for each
s assigns the minimal geodesicβi

s(t) that joins pointsσi(s) andσi+1(s) is
continuous. W.L.O.G. assume thatαj |[ti,ti+1] is a geodesic. Let us call itαi

j .
Then we claim:

1. α1 is homotopic toγ1 = α1|[0,tn−1] ∪ σtn−1(s)|[0,s∗] ∪ βn−1
s∗ ∪ −σ0(s).

Moreover, the length of curves in the homotopy is bounded by4π/9+l(α1).

2. γ1 is homotopic toγ2 = α1|[0,tn−1] ∪ σtn−1 ∪ α2|[tn−1,0] ∪ −σ0. Length
of curves in the homotopy bounded by2π/9 + l(α1) + l(α2).

3.γ2 is homotopic toγ3 = α1|[0,tn−2] ∪σtn−2 |[0,s∗] ∪βn−2
s∗ ∪−σtn−1 |[0,s∗] ∪

σtn−1 ∪ α2|[tn−1,0] ∪ −σ0. Length of curves in the homotopy is≤ 2π/3 +
l(α1) + l(α2).

4.γ3 is homotopic toγ4 = α1|[0,tn−2]∪σtn−2∪α2|[tn−2,tn−1]∪−σtn−1σtn−1∪
α2|[tn−1,0] ∪ −σ0.

5. γ4 is homotopic toγ5 = α1|[0,tn−2] ∪ σtn−2 ∪ α2|[tn−2,0] ∪ −σ0.

6. γ5 is homotopic toγ6 = α1|[0,t1] ∪ σt1 ∪ α2|[t1,0] ∪ −σ0.

7. γ6 is homotopic toγ7 = σ0 ∪ α2 ∪ −σ0, which is homotopic toα2. Note
that the maximal length of curves in the resulting homotopy is bounded from
above byπ +2L. Note also that for allti lengthH(ti) ≤ π/9, (see Fig. 12.)

Now let us apply Lemma 6.3, i.e. take a sequence of broken geodesics
{σi}. We know thatσi is homotopic toσi+1, where the homotopyH i has
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the desired properties. Take the composition of those homotopies to obtain
Hτ (t). It is clear that it will satisfy 1 and 2 of the lemma. QED.

7. Construction of a closed path in the space of closed curves

Before we give the proofs of the main theorems let us state the following
two definitions from [G2]:

Definition 7.1. Filling Radius of n-dimensional Manifold M Topologically
Imbedded into X.Filling radius, denoted by Fill Rad(M⊂ X), where X is
an arbitrary metric space, is the infimum ofε > 0, such that M bounds in
the ε-neighborhoodNε(M), i.e. homomorphismHn(M) → Hn(Nε(M))
induced by the inclusion map vanishes.

Definition 7.2. Filling Radius of an Abstract Manifold.Filling radius Fill
Rad M of an abstract manifold M is Fill Rad (M ⊂ X), whereX = L∞(M),
i.e. the Banach space of bounded Borel functions f on M, and the embedding
of M intoX that to each pointp of M assigns a distance functionp 7→ fp =
d(p, q).

In order to prove Theorem AA we will need the following result proved
by Gromov in [G2].

Theorem 7.3.Let M be a closed connected Riemannian manifold of dimen-
sion n. Then Fill Rad M≤ (n + 1)n n

√
n!(volM)1/n.

We are now ready to prove the following proposition:

Proposition 7.4. Let Mn be a compact 2-essential manifold of dimen-
sion n, with the property that for every closed curveγ(t) of length ≤
min{6FillRadMn, 3diam(Mn)}, there exists a homotopyHτ (t) of that
curve to a pointp, such that the length of curves in the homotopy is bounded
by L1 and for two selected points onγ(t) : γ(ti), i = 1, 2 the length
Hτ (ti) ≤ L2. Then there exists a closed path in the spaceΛ(Mn) of closed
curves on a manifold with the property that the length of each curve is
bounded byh(L1, L2) = 3L1 + 6L2 and such that this path represents a
non-trivial element ofπ1(ΛMn).

Proof. The proof will be done in two steps: The idea of Step 1 is to obtain
a non-trivial element ofH2(Mn) with some special properties described
below. This will be done in the following way: we will “fill”Mn with W ,
and then try to extend the mapf : Mn → CP∞ to W . We will then
obtain the required element as an obstruction. This part of the proof will
be a modification of Lemma 1.2 B and Proposition (pg. 136) of Gromov in
[G2]. In Step 2 we turn this element ofH2(Mn) into the required loop in
ΛMn.
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Fig. 13

Step 1.For any positiveδ,Mn bounds in its Fill Rad(Mn)+δ-neighborhood
in L∞(Mn). Let Mn = ∂W , whereW is a compact(n + 1)-dimensional
polyhedron inNFillRad(Mn)+δ(Mn). SinceMn is 2-essential there exists
a functionf : Mn → CP∞ such thatf∗[M ] 6= 0. We will try to extend
f to W . Let us proceed as follows: first, extend f to 0-skeleton ofW , then
to 1-skeleton ofW , etc. This process will have to be interrupted at the 4th
stage since we know that f cannot be extended toW . (Here we somewhat
oversimplify by assuming thatW can be triangulated. In case it cannot, we
can still approximate it by a simplicial complex.)

Extending to 0-skeleton:SubdivideW , so that all simplices have diam(σ)
≤ δ. Send verticeswi ∈ W to vertices of triangulationmi ∈ Mn for which
d(wi, mi) ≤ d(wi, M

n)+δ < Fill RadMn+δ. Supposemi, mj come from
the verticeswi, wj of some simplex in W. Thend(mi, mj) ≤ d(mi, wi) +
d(wi, mj) ≤ d(mi, wi) + d(wi, wj) + d(wj , mj) ≤ 2Fill RadMn + 3δ.
Thus,mi, mj can be joined by geodesic of length< 2Fill RadMn + 3δ.

Extending to 1-skeleton:send the 1-simplices[wi, wj ] ⊂ W/Mn to the
above geodesics joiningmi andmj . (In addition, we assume all 1-simplices
in Mn to be already short.) So we can see that the boundary of each 2-
simplex inW is sent to a curve of length< 6Fill RadMn + 9δ, (note, that
it is also≤ 3diam(Mn)).

Extending to 2-skeleton:letσ be a 2-simplex ofW . Consider its boundary
∂σ and the image of∂σ under f. It will be a closed curve consisting of broken
geodesics. Let us call itγ(t). By our hypothesis we know that there exists a
special homotopyHτ (t) of that curve to a point. We will then mapσ to the
surface determined by this homotopy.

We have, thus, succeeded in extending our map to the 2-skeleton. Extend-
ing the map to 3-skeleton would have been equivalent to extending it to the
whole ofW , but that is impossible, since it would contradictf∗[Mn] 6= 0.
Therefore, there exists a 3-simplex inW , such that the image of its boundary
ω represents a non-trivial element ofH2(Mn).

Step 2:Considerω. Let’s denote its vertices a,b,c,d. (Here, we will call
vertices ofω the images of verticesa∗, b∗, c∗, d∗ of Ω.) Let x,y,z,s be the
images of the faces ofΩ. (They are obtained by contracting closed curves
[a,b,d], [b,d,c], [a,b,c], [d,a,c] inMn by the homotopies from the hypothesis
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of this proposition, which we will callHx
τ , Hy

τ , Hz
τ , Hs

τ respectively.) Let
us examine the facex of ω. We will claim that

1. a, regarded as a constant curve, is homotopic to[a, b] ∪ [b, a], (see
Fig. 14.A.) and the length of curves in this homotopy≤ L1.

2. [a, b] ∪ [b, a] is homotopic to[a, b] ∪ Hx
τ (b) ∪ −Hx

τ (a) and the length of
curves in the homotopy is≤ 2L1 + 2L2. Figure 14.B and C.

3.[a, b]∪Hx
τ (b)∪−Hx

τ (a) is homotopic to[a, b]∪Hx
τ |[0,τ∗](b)∪Hx

τ∗([a, b])∪
−Hx

τ |[0,τ∗](a). Figure 14.D. The length of curves in the homotopy is bounded
from above by2L1 + 2L2.

4. [a, b] ∪ Hx
τ |[0,τ∗](b) ∪ Hx

τ∗(t) ∪ −Hx
τ |[0,τ∗](a) is homotopic to[a, b] ∪

[b, d]∪ [d, a], and the length of the curves in the homotopy is≤ 2L1 +2L2.
Figure 14E.

By the same type of constructions we have

5. [a, b]∪[b, d]∪[d, a] homotopic to[a, z]∪[z, b]∪[b, y]∪[y, d]∪[d, s]∪[s, a]
homotopic to[a, c] ∪ [c, b] ∪ [b, c] ∪ [c, d] ∪ [d, c] ∪ [c, a] homotopic to
[a, c]∪ [c, a] homotopic to a, where the length of the curves in the homotopy
is ≤ 3L1 + 6L2. See Fig. 14F and G. QED.

Remark.We need Proposition 7.4 only to prove Theorem AA below. How-
ever, the construction of Step 2 producing a loop inΛMn out of a non-trivial
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cycle inH2(Mn) will be also used in the proofs of Theorems A, B and C.
Note that 2-essentiality ofMn is not required for Step 2.

Now we can prove the main theorems. The proof of Theorem C will be
a combination of application of the results of Sections 1-5 and the Step 2 of
Proposition 7.4.

Proof of Theorem C.Consider a mapf : S2 → Mn, such that the image of
S2 underf represents a non-trivial element ofH2(Mn).

We will try to extendf to D3, which should be impossible to do, there-
fore, as an obstruction to this extension, we will obtain a non-trivial element
of H2(Mn) that has a special shape. As in the previous proposition we will
do it skeleton by skeleton.

We will proceed as follows: first triangulateS2 and consider an induced
triangulation of the image ofS2. We will want the triangulation to be fine
enough, so that the diameter of each simplexτ in the induced triangulation
is less than the injectivity radius of a manifold, next we will attempt to
construct a new mapf∗ : D3 → Mn, such thatf∗|S2 = f .

Let p be the center ofD3 andp̃ be any point onMn. Definef∗(p) = p̃.
Connectp with the vertices of triangulation ofS2 by the straight lines,

and also connect̃p with the vertices of induced triangulation by minimal
geodesics. Letf∗ map the line segment̄pv to the minimal geodesic segment
that joinsp̃ andf(v), for the vertexv of the triangulation ofS2.

Now consider all closed curves that are formed by three segments[p, v1],
[p, v2], [v1, v2], where[p, v1], [p, v2] are line segments that connect a pointp
with the verticesv1, v2 and[v1, v2] is an edge ofS2. Consider also the cor-
responding closed curves that are formed by the three segments[p̃, f(v1)],
[p̃, f(v2)], [f(v1), f(v2)]. The length of such closed curves is≤ 3d. We
can contract each of those curves to a point using the homotopy of Proposi-
tion 5.1. Then each simplex[p, v1, v2] can be mapped byf∗ to the surface
generated by this homotopy.

We now have succeeded at extendingf to the 2-skeleton ofD3. We
should not be able to extend it to the 3-skeleton. Therefore, among the 2-
cycles ofH2(M) that we obtained, at least one, should be non-trivial. This
cycle has the shape of the one on Fig. 13, i.e. its vertices arep̃, f(v1), f(v2),
f(v3), its edges are curves of length≤ d, and its faces are surfaces generated
by the homotopies of Proposition 5.1 (except for the face that lies inf(S2),
which is generated by the homotopy that is even nicer since it lies inside
the ball of radius that is less than the injectivity radius ofMn.) We can
now denote this cycleω and follow Step 2 of Proposition 7.4. whereL1 ≤
Q(n, d, c) andL2 ≤ 3d+2Q(n, d, c), whereL1 andL2 are as in Proposition
7.4. Therefore, by Step 2 of Proposition 7.4. there exists a closed non-trivial
curve in the space of all closed curves such that the length of each curve is
bounded by3L1 + 6L2 ≤ 18d + 15Q(n, c, d).
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Proof of Theorem A.If l(Mn)=2inj(Mn) thenl(Mn) ≤ 2 n
√

n!vol(Mn)1/n

≤ 2 n
√

n!V 1/n and we are done. Otherwise,inj(Mn) ≥ π (sinceK ≤ 1)
and the proof is analogous to the proof of the Theorem C (but a much
simpler argument explained in Sect. 6 replaces the argument of Sects. 2-
4 using ideas from [G1]). The proof is an application of Proposition 6.4
and the argument of the proof of Proposition 7.4. As in Proposition 7.4 we
first obtain a “special” non-trivial element ofH2(Mn). Then we construct
a corresponding closed curve in the space of closed curves out of it. One
can just follow Step 2 of Proposition 7.4. In this case takeL1 = 6d + π
andL2 = (const.′vol(Mn))532(d+1), and note thatd ≤ (2n!)3(vol(Mn)).
(d is bounded by the ratio ofvol(Mn) to the volume of the ball of radius
inj(Mn)/2, which can be estimated with the help of Croke’s inequality.)
Obvious substitutions will imply the result. QED.

Proof of Theorem AA.Once again, let us assume thatl(Mn) > 2inj(Mn).
The proof is again similar to the one of Theorem A and is an application
of Proposition 6.4, Theorem 7.3 and Proposition 7.4. Note that in this case

L1 = 12Fill Rad Mn + π, L2 = ( (n!)2vol(Mn)
20n−1 )216FillRadMn+1. Obvious

substitutions and calculations imply the result. QED.

Proof of Theorem B.We know from the work of Grove and Petersen ([GrP])
how to find positiveδ(n, v, D) andC(n, v, D) such that any metric ball
of radiusr ≤ δ(n, v, D) in a closedn-dimensional Riemannian mani-
fold of diameter less thanD, volume greater thanv andK ≥ −1 is con-
tractible within the concentric ball of radiusC(n, v, D)r. In fact, one can

takeC(n, v, D) = ξ1(n)e(n−1)D

v andδ = ξ2(n)v min{1,v}
De(n−1)D . Moreover the work

[GrP] implies an explicit upper bound for the width of the optimal homo-
topy contracting a closed curve in such small metric balls to a point, namely
C(n, v, D)r. The standard Bishop-Gromov argument provides an upper
bound for the number of balls of radiusδ(n, v, D)/10 covering any mani-
fold with K ≥ −1, volume greater thanv and diameter less thanD. Now
the argument based on Lemma 3.3 (1) and used previously in the proofs of
Theorems C,A and AA can be used to obtain an upper bound for the width
of an optimal homotopy contracting a closed curve inMn by reducing this
to the case of closed curves in metric balls of radius≤ δ(n, v, D). The rest
of the proof is the same as in the proofs of Theorems A and C. QED.
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