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Abstract. Let M be an arbitrary Riemannian manifold diffeomorphic to S2. Let x, y
be two arbitrary points of M . We prove that for every k = 1, 2, 3, . . . there exist k distinct
geodesics between x and y of length less than or equal to (4k2 − 2k− 1)d, where d denotes
the diameter of M .

To prove this result we demonstrate that for every Riemannian metric on S2 there
are two (not mutually exclusive) possibilities: either every two points can be connected by
many “short” geodesics of index 0, or the resulting Riemannian sphere can be swept-out
by “short meridians”.

1. Main results. Here are the main results of the present paper.

Theorem 1. Let M be an arbitrary Riemannian manifold diffeomorphic to S2, and x, y
be two arbitrary points of M . Denote the diameter of M by d. (Recall that the diameter
of a compact Riemannian manifold is, by definition, the maximal distance between two
points on the manifold.) For every positive integer k there exist at least k distinct geodesics
starting at x and ending at y of length not exceeding (4k2 − 2k − 1)d.

Theorem 1.1. For every point x on a Riemannian manifold M diffeomorphic to S2 and
any k = 1, 2, 3, . . . there exist at least k non-trivial geodesic loops based at x of length at
most (4k2 + 2k)d.

Theorem 1.1 deals with a particular case of Theorem 1 when y = x. In this case the
shortest geodesic between x and y is trivial, and all other geodesics starting and ending
at x are non-trivial geodesic loops based at x. Thus, we can apply Theorem 1 for k + 1
and obtain an upper bound for the length of the kth non-trivial geodesic loop based at x.
However, the upper bound provided by Theorem 1.1 is somewhat better.

Theorem 1 is a result in the direction of our conjecture made in [NR1]. Recall, that
for every two points x in a closed Riemannian manifold M there exists an infinite set of
distinct geodesics connecting x and y. ( This is a well-known theorem of J. P. Serre, [Se]).
In [NR1] we observed that if M is a non-simply connected closed Riemannian manifold
with a torsion-free fundamental group, then for every x, y ∈ M and every k there exist k
distinct geodesics between x and y of length ≤ kd. Of course, the same fact is true also for
round spheres of all dimensions. And, if k = 1, then the existence of one geodesic between
x and y of length ≤ d is a trivial corollary of the definition of diameter. All these facts
led us to a conjecture that there exists a universal upper bound of the form f(n, k)d for
the length of k distinct geodesics between points of a closed n-dimensional Riemannian
manifold of diameter d. The main point here is that this upper bound does not involve
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any information about the metric invariants of the Riemannian manifold other than its
diameter.

Previously we established this conjecture for k = 2 and an arbitrary closed Riemannian
manifold in [NR2]. More precisely, we proved that for any two points x, y ∈ Mn there
exist two distinct geodesics starting at x and ending at y of length ≤ 2nd (and even ≤ 2qd,
where q = mini{πi(M

n) 6= 0}). The proof of this result in [NR2] was heavily based on
methods developed in [R], where it had been proven that for any n, Mn, x ∈ Mn the
length of the shortest non-trivial geodesic loop based at x does not exceed 2qd(≤ 2nd),
where d denotes the diameter of Mn. Since in our situation n = 2, we obtain the upper
bound 4d which is better than the estimate asserted in Theorem 1 for k = 2.

Note that one can make even a stronger conjecture: Is it true that for every closed
Riemannian manifold M , every pair of points x, y ∈ M and every positive integer k there
exist k distinct geodesics between x and y of length ≤ kd, where d denotes the diameter
of M? But F. Balacheff, C. Croke and M. Katz constructed Riemannian metrics on S2

arbitrarily close to a round metric such that the length of the shortest geodesic loop based
at each point is strictly greater than 2d ([BCK]). Therefore the stronger conjecture is false
even in the case, when n = k = 2, x = y, and the Riemannian metric is positively curved.

Also note that A. Schwarz ([S]) noticed that a modification of the proof of J.P. Serre
implies that for any closed Riemannian manifold Mn, any two points x, y ∈ Mn and
any k there exist at least k geodesics on Mn connecting x and y of length ≤ kC(Mn),
where C(Mn) depends on the ambient Riemannian manifold Mn. Of course, this result
immediately implies that there exists a scale-invariant constant c(Mn) such that there are
k distinct geodesics connecting x and y of length ≤ c(Mn)kd. Whenever Balacheff, Croke
and Katz demonstrated that one cannot take here c(Mn) = 1 ([BCK]), we do not know
if there exists a uniform bound for c(Mn) that depends only on n or even only on the
diffeomorphism class of Mn. In fact, it is quite possible that such an upper bound does
not exist, and the quadratic dependence on k in Theorem 1 is optimal.

Yet we are able to prove some specific linear estimates in k for the length of k distinct
geodesics between arbitrary points. Define the geodesic complexity of M as follows:

Definition. For every pair of points x, y ∈ M denote by g1(x, y) the number of distinct
geodesics between x and y of length ≤ 2d + dist(x, y) such that each of these geodesics
provides the local minimum of the length functional on the space of paths connecting x
and y. Denote by g2(x, y) the number of distinct geodesics between x and y of length ≤ 2d
such that each of these geodesics provides the local minimum of the length functional on
the space of paths connecting x and y. The geodesic complexities Ti of M , (i = 1 or 2),
are defined as minx,y∈M gi(x, y).

In particular, this definition implies that every two points x and y of M can be
connected by at least T2 geodesics of length ≤ 2d and T1 geodesics of length ≤ 2d +
dist(x, y). Observe, that obviously T1 ≥ T2 ≥ 1. The following theorem is non-trivial only
for k > Ti.

Theorem 1.A. Let M be a Riemannian manifold diffeomorphic to S2 with diameter d and
geodesic complexities Ti, i = 1, 2. Then for every pair of points x, y of M and every k there
exist at least k distinct geodesics between x and y of length ≤ (2(k − 1)(2T1 + 3) + 2)d ≤
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kd(4T1 + 6). Also, there exist at least k distinct geodesics between x and y of length
≤ (2(k − 1)(T 2

2 − T2 + 5) + 2)d ≤ kd(2T 2
2 − 2T2 + 10).

The methods of the present paper are quite different from the methods of [R] and
[NR2]. To explain our methods let us start from the following definition:

Definition. Let M be a Riemannian manifold diffeomorphic to S2, and L be a positive
real number. An L-slicing of M is a non-zero degree map from the round sphere S2 of
radius 1 to M such that the length of the image of every meridian of S2 in M does not
exceed L.

(Note, that some authors would use the term “sweep-out” instead of “slicing” here,
reserving the term “slicing” only for the situations, when the images of different meridians
of the round S2 do not intersect.) The importance of this definition for our purposes is
due to the following lemma:

Lemma 3. Let M be a Riemannian manifold of diameter d, which is diffeomorphic to
S2 and admits an L-slicing for some positive L. Then for every two points x, y ∈ M and
every positive integer k there exist at least k distinct geodesics starting at x and ending
at y of length 2(k − 1)L + 2d. If the L-slicing maps the South pole of S2 into either x or
y, then the upper bound for the length can be improved to 2(k − 1)L + d. If, in addition,
x = y then the upper bound can be improved to 2(k − 1)L.

This lemma will be proven in the next section. Its proof is based on Morse theory and
is mostly a compilation of known facts and ideas.

As a corollary, one might be tempted to look for an L-slicing of M where L ≤ cd for
an appropriate constant c. Yet examples of metrics on D2 constructed by S. Frankel and
M. Katz ([FK]) to answer a question posed by M. Gromov in [Gr] can be used to show that
such a slicing does not always exist: Although we did not check all the details, it seems not
difficult to prove that if one takes smoothed out doubles of Riemannian D2 constructed
by Frankel and Katz, then one obtains a sequence of metrics on S2 such that for no c all
of them admit a cd-slicing.

So, instead we establish the following dichotomy: Either there exists a cd-slicing of
M for a controlled not very large c, or for every two points x, y ∈ M there exist many
distinct geodesics between x and y of length ≤ 2d which are local minima of the distance
function on the space of all paths between x and y. Moreover, if there is no cd-slicing of
M for a not very large c there must be many short geodesics between x and y which are
“deep” local minima for the length functional. We need the following definition to state a
precise form of this result:

Definition: Let x, y be two points of M , and S be a non-negative real number. Let γ1, γ2

be two geodesics from x to y providing local minima for the length functional on the space
of paths from x to y. We say that γ1 and γ2 are S-distinct if every path homotopy (i.e.
a homotopy with fixed endpoints) between γ1 and γ2 must pass through a path of length
≥ max{ length(γ1), length(γ2)} + S.

Theorem 2. (Dichotomy Theorem) Let M be a Riemannian manifold diffeomorphic
to S2, x, y be two points of M , k ≥ 2 and S ≥ 0. Then:
I. One of the following two assertions is true:
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(A1) There exist at least k pairwise S-distinct geodesics between x and y of length ≤
2d+dist(x, y) that are local minima for the length functional on the space of paths between
x and y.
(B1) There exists an L-slicing of M with L = (2k − 1)d + 2dist(x, y) + S. Moreover, this
L-slicing maps the South pole of S2 into x.
II. Also one of the following two assertions is true:
(A2) There exist at least k pairwise S-distinct geodesics between x and y of length ≤ 2d
that are local minima for the length functional on the space of paths between x and y.
(B2) There exists an L-slicing of M with L = (k2 − 3k + 7)d + S. Moreover, this L-slicing
maps the South pole of S2 into x.

Observe that Theorem 2 immediately implies Theorem 1. Indeed, if (A1) is true, then
the theorem is true. But, if (B1) is true, the theorem immediately follows from Lemma 3.
Similarly, it implies Theorem 1.1. (We need to apply Theorem 2 and Lemma 3 in the case
when x = y for k + 1 instead of k since the shortest geodesic loop based at x is trivial.)

Theorem 2 also easily implies Theorem 1.A. Indeed, observe that the definition of the
geodesic complexity Ti of M implies the existence of a pair of points x, y ∈ M for which
the alternative (Ai) in Theorem 2 does not hold for k = Ti +1. (Here i = 1 or 2, of course.)
Therefore there exists an L-slicing with L = (2T1 + 3)d , if i = 1, or L = (T 2

2 − T2 + 5)d ,
if i = 2. Now Lemma 3 immediately implies Theorem 1.A.

So, to establish the rest of the results of this paper we only need to prove Lemma 3
and Theorem 2. We are going to prove Lemma 3 in the next section. Theorem 2 will be
proven in Section 3. Section 3.1 contains a review of some (known) facts about cut loci
of analytic metrics. Section 3.2 contains some auxiliary facts about a curve shortening
process later needed to generalize the proof of Theorem 2 from the analytic case to the
smooth case. Section 3.3 contains a proof of Theorem 2 in the analytic case. First, in
Section 3.3.1 we demonstrate that in order to prove Theorem 2 it is sufficient to establish
appropriate upper bounds for the length of loops in optimal path homotopies contracting
certain loops. These loops are formed by pairs of minimizing geodesics connecting x with
points on the cut locus of x. Equivalently, one needs to majorize lengths of paths during
path homotopies between pairs of minimizing geodesics between x and an arbitrary point
z of the manifold. It is sufficient to consider only points z which are the vertices of the cut
locus of x.

Denote one of these geodesic loops (formed by a pair of minimizing geodesics between
x and a vertex z of the cut locus of x) by λ. Note that we can use the tree structure of
the cut locus of x to introduce a partial order on the set of loops of interest to us, turning
it into a finite poset (where we do not have any control over the number of elements).
We also can use the structure of the cut locus to reduce the problem of contracting λ to
contracting geodesic loops “smaller” than λ in this poset. We can repeat this trick as many
times as we want, but every time we use it we worsen the upper bound for the lengths
of loops in a contracting homotopy. Therefore, this trick by itself is not sufficient for our
purposes, as it leads to upper bounds involving the height of the cut locus of x regarded
as a tree. (This height can be arbitrarily large, and we do not have any control over it.)

Now note that we can assume that x and y can be connected by less than k “short”
geodesics. We need to establish upper bounds for the length of loops in an optimal homo-
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topy contracting loop λ (formed by minimal geodesic digons between x and a vertex of the
cut locus of x) in terms of k and d. This is done in Section 3.3.2 which is the central section
of the paper. The first idea is to join the loop λ with a minimal geodesic σ between x and
y traversed twice (in opposite directions), and to contract λ ∗σ by a length non-increasing
path homotopy to a geodesic between x and y, If the resulting geodesic is σ, we cancel
it with σ−1 and obtain a controlled homotopy contracting λ. If the resulting geodesic σ1

is distinct from σ, then we call it the obstructing geodesic for λ. An easy observation is
that if two loops based at x have the same obstructing geodesic, then there is a controlled
homotopy between them. Thus, all loops that we would like to contract can be partitioned
into at most k − 1 equivalence classes according to what their obstructing geodesics are.
We perform an inductive construction of a controlled homotopy that contracts λ. The
induction is with respect to the number of equivalence classes in the (finite) set of loops
that inculdes λ and all loops in the considered poset that are “smaller” than λ. Here
is a brief outline of the induction step: Connect λ with the “smallest” loop in the same
homotopy class and apply a trick reducing the contracting of this loop to contracting even
“smaller” loops from the considered poset. In order to contract each of these loops we
need to consider them and “smaller” loops from the considered poset. Yet none of these
loops can be in the equivalence class of λ. We eliminated one equivalence class, and can
now use the induction assumption.

Finally, in Section 3.4 we generalize Theorem 4 to the smooth case.

Section 4 contains a strengthening of the Dichotomy Theorem for k = 2. In section 4
we also present another dichotomy theorem (Theorem 2.A). One of its corollaries is that
for every k ≥ 2 and every pair of points x, y ∈ M either the space of paths of length ≤ 2d
connecting x and y has at least k connected components, or M admits a (k2 − 3k + 7)d-
slicing.

2. Proof of Lemma 3.

We are going to deduce Lemma 3 from the following Lemma 4 that will be proven
at the end of this section, To state this lemma we need the following notation: For any
two points x, y in a manifold X let Ωx,yX denote the space of all paths starting at x and
ending at y. Of course, all these spaces are homotopy equivalent to the loop space ΩX .

Lemma 4. Let S and N be the South and the North poles of S2 with the standard
round metric. There exists a generator of H2(ΩS,SS2), which can be represented as the
image of the fundamental class of S2 under the homomorphism induced by a map λ :
S2 −→ ΩS,S(S2), such that every loop in the image of λ is either an arc of a meridian
traversed twice in opposite directions, or consists of a meridian that goes from S to N ,
and a meridian that returns from N to S.

Proof of Lemma 3. To see that Lemma 4 implies Lemma 3 we will follow the exposition in
[S]. Denote the homology class λ∗([S

2]) introduced in Lemma 4 by h and a two-dimensional
cohomology class dual to h by c. (In other words, c must satisfy < c, x >= 1.) For every
m = 1, 2, . . . define hm as (λm)∗([(S

2)m]), where λm : (S2)m −→ ΩS,S(S2) is the map
defined by the formula λm(s1, . . . , sm) = λ(s1) ∗ . . . ∗ λ(sm). It had been demonstrated in
[S] that for every m < hm, cm >= m!, where cm denotes the mth cup power of c.
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Alternatively, we can use the results on rational homology and cohomology algebras
of ΩSn that easily follow from the rational homotopy theory (cf. [FHT], ch. 16). (The
multiplication on homology groups of loop spaces is induced by the composition of paths
regarded as a map ΩSn ×ΩSn −→ ΩSn.) In particular, the loop space of S2 is rationally
homotopy equivalent to the product of S1 and CP∞. The class c introduced above corre-
sponds to a generator of the algebra H∗(CP∞, Q). The rational homology and cohomology
groups of ΩS2 in every dimension are isomorphic to Q. The rational homology algebra
of ΩS2 is isomorphic to the algebra of polynoimials Q[t] of one variable (of degree one)
([FHT], p.234-235). The class h introduced above corresponds to the square of a generator
of this algebra.

Let φ be a L-slicing of M . It induces a map ΩS,S(S2) −→ Ωφ(S),φ(S)(M) that will

be denoted by φ̃. Note that the homomorphisms in homology groups (in all positive
dimensions) induced by φ̃ are also non-trivial. Consider classes h̃, c̃ corresponding to h, c
in Ωx,y(M). More precisely, consider some minimizing geodesics τ1 from x to φ(S) and

τ2 from φ(S) to y, and for every s ∈ S2 define λ̃(s) as the join of τ1, φ̃(λ(s)) and τ2.
The map λ̃ induces isomorphisms between all rational homology and cohomology groups
of ΩS,S(S2) and Ωx,y(M). Denote classes of Ωx,y(M) corresponding to homology and

cohomology classes hm and cm by h̃m and c̃m. We have exhibited above a specific cycle
representing hm. The definition of L-slicings and the definition of λ̃ immediately imply
that, when we apply λ̃ to this cycle we obtain a 2m-dimensional cycle in Ωx,y(M) made
of paths of length ≤ 2mL + 2d (≤ 2mL + d, if either x = φ(S), or y = φ(S); ≤ 2mL, if
x = y = φ(S)).

Note that when one pulls down h̃m as far as possible, it gets stuck at a critical point
of the length (or the energy) functional, which is a geodesic between x and y. Here one can
just use the gradient flow of the energy functional on Ωx,y(M), and to use a modification of
the work of N. Koiso [Ko] or M. Grayson [G] where the space of closed curves is replaced by
the space of paths with fixed endpoints to prove the local and global existence of solutions
of the corresponding parabolic PDE. But, of course, this is not needed. Classically one
circumvents the technical difficulties related to the appearance of non-linear parabolic
PDEs by using a finite-dimensional approximation of Ωx,y(M) and a gradient flow of the
energy functional on this finite-dimensional approximation (cf. [B] or [Kl]). One can
define the same critical values of the energy functional in terms of cohomology classes c̃m

as the minimal sublevel set of the energy functional which can be a support of a cochain
representing c̃m.

In general critical points corresponding to homology (or cohomology) classes of differ-
ent dimension need not be different, but Lyusternik and Schnirelman observed that if one
of the cohomology classes is a cup product of the other and a third cohomology class of
dimension l, and these two classes correspond to the same critical level, then the dimension
of the critical point set at this level is at least l. See, for example, [Kl] for a proof of this
fact. (In terms of homology classes one needs to require that one of these classes is a cap
product of the other and a cohomology class of dimension l. In this case one says that the
first homology class is subordinate to the second.)

Since the difference of dimensions of classes c̃m is at least two, and the dimension of
any critical level (=the set of geodesics between two fixed points of the same length on
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M) is at most one, one concludes that h̃m correspond to geodesics between x and y of
diffferent length for different values of m = 0, 1, 2, . . ., and the lemma follows. QED

Proof of Lemma 4. First, recall that π1(ΩS2) = H1(ΩS2) = Z, H2(ΩS2) = Z, π2(ΩS2) =
π3(S

2) = Z and is induced by the Hopf fibration H : S3 −→ S2. Since H2(π1(ΩS2)) = 0
the Hurewicz homomorphism π2(ΩS2) −→ H2(ΩS2) is surjective by virtue of the Hopf the-
orem (and, thus, is an isomorphism). Therefore we can construct a generator of H2(ΩS,SS2)
by merely regarding the Hopf fibration as a cycle in H2(ΩS,SS2). Let x0 ∈ H−1(S) ⊂ S3

be a point in the inverse image of the South pole of S2. Consider a slicing of S3 by loops
based at x0 and transversally intersecting a big S2 ⊂ S3 passing through x0 at one point
(pairwise intersecting only at x0). (The resulting picture will be a three-dimensional ana-
log of slicing of S2 into loops depicted on Fig. 1.) Then the images of these loops under
H will be elements of ΩS,SS2. Together they will form a generator of H2(ΩS,SS2).

Here is an explicit description of the generator. Big circles passing through the South
pole S on S2 constitute a circle in ΩS,SS2. Take a big circle B passing through S. Take
the perpendicular big circle b passing through S. It consists of two meridians m1 and
m2. Contract B to S along circles passing through S and tranversally intersecting m1

(correspondingly, m2) at one point. These will be two halves of the homologically non-
trivial circle in ΩS2 hanging at B (see Fig. 1).

We prefer to replace this circle by the following homotopic circle: Start from S re-
garded as a trivial loop. Continuously extend it along arcs of m1 passed twice with opposite
orientations until we obtain m1 ∗ m−1

1 . Now go along pairs of meridians forming with m1

angles α and −α, where α varies from 0 to π. At the end of this stage we obtain m2 ∗m−1
2 .

Contract the doubled m2 to S along itself. (See Fig. 2.) Consider this circle as a map of
a meridian µ of S2 into ΩS,SS2. (Here both poles of S2 are mapped to the trivial loop.)

To obtain the desired two-dimensional homology class in ΩS,S(S2) we need to rotate
B (and thereby b and the whole circle in ΩS,SS2 obtained by the two different contractions
of B to S). We obtain a desired map of S2 to ΩS,SS2. QED.

Figure 1.

m 1 m 2

S

B
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3. Proof of Theorem 2.

First, we are going to prove Theorem 2 in the case when M is analytic. In section 3.4 we
will prove the theorem in the general (smooth) case. In sections 3.1-3.3 we will assume
that M is a real analytic Riemannian manifold. Throughout this section we are going to
use the following notation: The cut locus of a point x ∈ M will be denote Cx.
3.1. Some facts about cut loci. Here we collected some facts about cut loci of points
on analytic Riemannian manifolds diffeomorphic to S2 that we will need for our proof.
Most of these facts are known and were apparently first discovered by S.B. Myers ([M]).
See also [K], [Be] and references there for more information.
3.1.1. A cut locus of a point on a closed analytic n-dimensional manifold is a finite CW
complex of dimension ≤ n− 1 ([Bu]). (This assertion does not hold if we assume that the
manifold is only C∞, [GS]). In dimension 2 it had been first proven by S.B. Myers ([M]).
In fact, Buchner proved that the cut locus is subanalytic and used Hironaka’s results on
triangulability of subanalytic sets. We refer the reader to a survey [BM] for properties of
subanalytic sets.
3.1.2. The cut-locus of every point x of M is a finite tree ([M]).
Proof: Indeed, its homotopy type is the homotopy type of S2 minus a 2-cell, i.e. of a point.
But a finite-dimensional 1-complex contractible to a point is a tree. If it is 0-dimensional,
it is a point, which we consider as a degenerate tree.
3.1.3. Assume that τ1, τ2 are two distinct minimizing geodesics between x and a point v
in the cut locus of x, Cx. Consider one of two open domains, D, bounded by the digon
τ1∗τ2. Either D

⋂
Cx is not empty, or Cx = {v}, and M can be partitioned into minimizing
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geodesics from x to v.

Proof: Consider the plane tangent to M at x. Consider the angle formed by vectors
tangent to M at x pointing inwards D and bounded by the rays generated by the tangent
vectors to τ1 and τ2 at x. Consider the geodesic rays from x in directions of all vectors in
this angle. If D

⋂
Cx is empty, then all these geodesics must be minimizing until they leave

D. None of them can intersect τ1 or τ2 at points different from x, v, since otherwise τ1 (or
τ2) will stop being minimizing. Therefore each of these geodesic rays must pass through
v. Let l = dist(x, v), TlMx denote the set of all tangent vectors at x of length equal to l,
and Al ⊂ TlMx denote the subset of TlMx formed by tangent vectors to geodesics from
the considered set. (Al is an arc of the circle TlMx formed by all vectors in the angle
between tangent vectors to τ1 and τ2). Consider the restriction of the exponential map
at x on TlMx. This is an analytic map, which is constant on Al. (Its value is equal to
v.) The analytic continuation principle implies that it is constant on TlMx, and is equal
to v. Thus, every geodesic of length ≤ dist(x, v) issued from x must be minimizing, and
therefore does not contain any points of Cx other than v. On the other hand, it stops
being minimizing after passing through v. Since every point of M can be connected with
x by a minimizing geodesic, we see that M is partitioned into these minimizing geodesics
from x to v (intersecting only at x and v).

3.1.4. Let v be a point inside an edge of the cut locus of x, Cx. Then the minimizing
geodesics from x come to v from both sides of the cut locus. There exists exactly one
minimizing geodesic from x to v coming from each side.

Proof: Consider the boundary Bε of ε-heighborhood of Cx. Consider its intersection with
the 2ε-neighborhood of v. For small positive ε it will consist of two arcs Aε

1, Aε
2 on both

sides of Cx. Each point of Aε
i can be connected with x by exactly one minimizing geodesic.

As ε −→ 0, these minimizing geodesics converge to a limit set of minimizing geodesics
between x and v. All the geodesics in these limit sets are minimizing.

We need to prove that each of these two limit sets contains exactly one geodesic. Let
γ1, γ2 be two distinct minimizing geodesics from x to v coming from one side of Cx. They
can intersect Cx only at v. Cx is connected. Therefore one of two open digons bounded
by γ1, γ2 has the empty intersection with Cx. Now we can apply 3.1.3 and conclude that
Cx = {v}, which contradicts our assumption that v is a point on an edge of Cx.

3.1.5. Let the tree Cx not be a point, and let v be a vertex. Denote the number of edges
of the cut locus meeting at v by kv. These kv edges divide a small open neighborhood
U of v into kv connected components that we will denote Ki, i = 1, . . . , kv. The set of
all minimizing geodesics from x to v consists of kv geodesics. There exists exactly one
minimizing geodesic from x to v approaching v from within Ki for every i.

Proof: We can use 3.1.3 to conclude that there is at most one minimizing geodesic from
x to v approaching v from within Ki exactly as it has been done in the proof of 3.1.4. We
can obtain one minimizing geodesic from x to v approaching v from within Ki proceeding
as follows: Take a point vε in the intersection of the boundary of the ε-neighborhood of
v with Ki. Consider the minimizing geodesic from x to vε. As ε −→ 0, a subsequence of
the sequence of these minimizing geodesics will converge to a minimizing geodesic from x
to v approaching v from within the closure of Ki. But minimizing geodesics from x to v
cannot intersect Cx at points other than x and v, and therefore each of these minimizing
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geodesics must approach v from within of one of the sets Ki.
3.1.6. (Sliding of minimizing geodesics along edges) Let [v1, v2] be an edge 3.1.6.
Let γ be a minimizing geodesic from x to v1. Then there exists a continuous family of
minimizing geodesics connecting x with all points of [v1, v2].
Proof: Consider a very small open neighborhood U of [v1, v2] and the connected compo-
nent K of U \ Cx that contains γ \ {v1}. According to 3.1.4, 3.1.5 for every v ∈ [v1, v2]
there exists exactly one minimizing geodesic from x to v that approaches v from within
K. We claim that this family of minimizing geodesics continuously depends on v. To see
that observe that if this family is not continuous at a point v∗, then there must be at least
two distinct minimizing geodesics between x and v∗ approaching v∗ from K providing a
contradiction with 3.1.4.

Definition. The minimizing geodesic between x and v2 obtained as in the proof above
will be called the result of a sliding of γ along the edge [v1, v2].

3.2. Curve-shortening processes. Let x, y be two points, on M and Ωx,y(M) denotes
the space of paths between x and y. Below we will need a curve-shortening process on
Ωx,y(M). This means that we would like to choose for every path ρ ∈ Ωx,y a length-
nonincreasing homotopy connecting ρ with a geodesic between x and y providing a local
minimum for the length functional on Ωx,y(M). In fact many such processes are known.
For example, one can use the obvious modification of the Birkhoff curve shortening process
for Ωx,y(M) instead of the space closed curves ΛM on M . (We refer a reader to [C] for
a detailed description of this process for ΛM . In order to modify it for Ωx,y we consider
only broken geodesics that start at x0 = x and end at xN = y. The endpoints x and y
remain fixed during the whole process.)

Yet another option is a class of flows suggested by J. Hass and P. Scott in [HS].
Let conv(M) denotes the convexity radius of M . Consider a covering of M by discs
D0, . . . , Dn−1. We demand that the radii of these discs are less than conv(M)/2, that
the discs with the same centers of half the radius cover M , the discs meet transversely,
and no three boundaries of these discs intersect. Define for every i > n Di as Di(modn).
Then for every i = 1, 2, 3, . . . , one constructs an obvious homotopy that replaces every arc
of the curve inside Di by the minimal geodesic with the same end points. The desired
curve shortening process on the space of all closed curves on M is the composition of all
these homotopies. In order to modify this flow to make it work for Ωx,y(M) instead of the
space of all closed curves on M we demand that x, y must be inside some of the discs Di.
Also, when we modify the initial and the last arc of the curve, we find path homotopies
connecting these arcs with the minimizing geodesics between x (or, correspondingly, y)
and the other endpoint of the arc (on the boundary of the considered disc).

Either of these flows can be used to prove Theorems 1, 1.1 and 2 in the case of an
analytic M . We can assume that “a curve shortening process” mentioned below in sections
3.1-3.3 is one of these processes. If M is analytic, we do not have any restrictions on the
curve shortening flow at all. In particular, we do not need any kind of continuity.

However, in order to prove our results in the smooth case we need to impose one
restriction on the flow. This restriction will be used only in the last section to extend the
main results of the paper from the analytic case to the smooth case. Namely, let γ be a
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piecewise smooth path on S2 connecting x and y. Consider a surface generated by a path
homotopy obtained using a chosen curve shortening flow. Consider this surface as a map
from the standard two-dimensional disc into M = (S2, g). Consider the Lipschitz constant
of this map, λ, as a function of the Riemannian metric g on M . We need to define a curve
shortening flow for all smooth Riemannian metrics on S2 so that for every compact set
K of Riemannian metrics on S2 supg∈K λ(g) < ∞. Here we can assume that for every
g ∈ K the length of γ is either ≤ D0 = 2d + δ (for the purposes of proving Theorem
2.II) or ≤ D0 = 2d + dist(x, y) + δ (for the purposes of proving Theorem 2.I). Here is the
simplest way to do this. Let D = D0 + S, where S is the same as in Theorem 2. Let γ be
a piecewise-smooth path in M = (S2, g) connecting x and y of length ≤ D. Let Ωx,y(M)D

denotes the space of all paths of length ≤ D between x and y. Consider the connected
component Ωγ of Ωx,y(M)D that contains γ. Choose a path p in Ωγ providing the global
minimum of the length functional on Ωγ . Define a metric on Ωx,y(M) as follows: The
distance between two paths γ1 and γ2 will be the infimum over all homotopies between
these two paths of the maximal length of a trajectory of a point of γ1 during this homotopy.
Of course, homotopies between some γ1, γ2 connecting x and y can be regarded as paths
between γ1 and γ2 in Ωx,y(M). Choose an (almost) optimal homotopy between γ and
p. That is, we choose a homotopy such that the maximal length of a trajectory is almost
equal to the distance between γ and p. This homotopy will be the curve shortening process
for γ. It is obvious that the Lipschitz constant of an (optimal) map of [0, 1] × [0, 1] into
M generated by this homotopy can be majorized in terms of the length of γ and the
width of the homotopy (=the maximal length of the trajectory of a point of γ during this
homotopy). The width of this homotopy can, in turn, be majorized by the diameter of Ωγ .
(The last assertion trivially follows from the definition of the metric on Ωx,y(M).)

Now we are going to consider γ as a fixed path on S2 between x and y, where S2

is endowed with Riemannain metrics from a compact set K of Riemannian metrics. The
length of γ and D continuously depend on the Riemannian metric and, are therefore
bounded on K.

So, it remains only to prove the existence of a uniform upper bound for the diameter
of every connected component of Ωx,y(M)D in the considered metric for all Riemannian
metrics g ∈ K on S2. In fact, the existence of such a bound is well-known. Here we
sketch how it can be obtained. We refer the reader to a much more detailed exposition in
[R0], [NR0]. (In these papers such an estimate was obtained for spaces of closed curves
instead of spaces of paths with fixed endpoints, but the argument is completely similar.)
The sectional curvature, volume and diameter of (S2, g) also depend continuously on g.
The classical lower bound for the injectivity radius proven by J. Cheeger easily implies
that the convexity radius of M is bounded from below in terms of an upper bound for
the absolute value of the sectional curvature of (S2, g), a positive lower bound for the
volume and an upper bound for diameter (cf. [Ch]). Therefore the convexity radius of M
is uniformly bounded from below on K by a constant ν > 0. Denote the upper bound for
the volume of (S2, g), where g ∈ K by V , and an upper bound for D by DK . The classical
inequality proven by C. Croke implies that the volume of any ball of radius ν/10 is bounded
from below by constν2. This gives us a uniform upper bound M = [V/(constν2)] + 1 for
the number of points in a minimal ν/4-net Netg on (S2, g) for all g ∈ K. Consider all
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broken geodesics from x to y of length ≤ 5D such that the length of every segment is
≤ ν and all ends of geodesic segments other than the endpoints x, y are in Netg. Denote
the set of these broken geodesics by Bg. Bg is a ν-net in the set of paths in Ωx,y(M)D

made of all paths parametrized by the arclength (in the sense of the metric on Ωx,y(M)
that we are considering). The cardinality of Bg can be obviously uniformly bounded on
K. Moreover, every path between γ1, γ2 ∈ Ωx,y(M)D can be ν-approximated by a path
with short segments connecting points from Bg. Therefore, if γ1 and γ2 are in the same
connected component of Ωx,y(M)D they can be connected by the following homotopy: It
goes from γ1 to a nearest point of Bg, then it goes via short segments connecting pairs of
close points of Bg, and at the end it goes from a point of Bg that is ν-close to γ2 to γ2. Now
note that if this homotopy visits a point of Bg twice (thus, forming a loop), then we can
just eliminate this loop shortening the homotopy. So, the homotopy can be chosen so that
it visits every point of Bg at most once, and it length is bounded in terms of the product
of the cardinality of Bg and ν. These observations provide us with an upper bound for the
diameter of every connected component of Ωx,y(M)D.

Note that although this flow will eventually shorten any path between x and y that
was not a geodesic, it can increase the length of the path in the process. (It differs in this
aspect from the Birkhoff or Hass-Scott flows.) But the lengths of the intermediate paths
will be bounded by D.

3.3. Proof of Theorem 2.

3.3.1. Path homotopies of controlled length and slicings of a 2-sphere. Here we
are going to reduce Theorem 2 to Corollaries 7 and 9. The assertions of these corollaries
constitute the crucial part of the proof of Theorem 2. They will be rigorously stated and
proven in section 3.3.2. They both provide an upper bound L for the maximal length of
loops in “optimal” path homotopies contracting minimal geodesic digons emanating from
x. In Corollary 7 we assume that there are at most k − 1 distinct geodesics between x
and y of length ≤ 2d providing local minima for the length functional on Ωx,y(M). Under
this assumption we obtain L = (k2 − 3k + 6)d. In Corollary 9 we assume that there are
at most k − 1 distinct geodesics between x and y of length ≤ 2d + dist(x, y) providing
local minima for the length functional on Ωx,y(M). This assumption leads to the estimate
L = (2k−2)d+2dist(x, y) ≤ 2kd. Moreover, both of these estimates can be generalized to
the case, in which one assumes the existence of at most k − 1 “short” S-distinct geodesics
between x and y for any non-negative S.

Let f : S2 −→ M be a diffeomorphism. Endow S2 with a very fine triangulation, so
that the images of all simplices of this triangulation under f are δ-small for a very small
positive δ. We are going to attempt to extend f to the disc D3 triangulated as the cone
over the chosen triangulation of S2. (Such extension is obviously impossible, but in the
process we will construct a desired L-slicing of M unless we will be prevented from doing
so by the appearance of k distinct geodesics connecting x and y.) We start from mapping
the only new vertex (=the center of D3) into x and all new 1-dimensional simplices (that
connect the center of D3 with points on its boundary, S2) into (arbitrary) minimizing
geodesics between x and the images of the corresponding points on S2 under f .

Consider now the boundaries of the new 2-simplices. Each of them is formed by two
new 1-dimensional simplices mapped into minimizing geodesics between x and some δ-
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close points a, b ∈ M and the (very short) minimal geodesic [a, b]. We will think of the
boundaries of the new 2-dimensional singular simplices in M as being formed by two paths
of length ≤ d + δ/2 connecting x with the midpoint of the short side, and going along the
sides of the triangle from x along two different directions. We will try to fill each of these
triangles in M by finding a path homotopy between these two paths.

We will try to find the desired path homotopies using some geometric ideas explained
below. The upshot will be that either there exists a path homotopy via paths of controlled
length, or we will get the desired k distinct or S-distinct short geodesics between x and y.
(This will be the main part of the proof.)

To finish the proof we need to consider only the case when all boundaries of new
2-dimensional simplices can be contracted by means of a path homotopy passing via paths
of controlled length.

Since the extension of f to D3 is impossible, we cannot extend f from the boundary
of at least one three-dimensional simplex of the chosen triangulation of D3. This boundary
consists of three new 2-dimensional simplices and a small 2-dimensional simplex coming for
the original triangulation of S2. First, assume that this simplex is mapped into a point. In
particular, all new 1-dimensional simplices in the 1-skeleton of the 3-dimensional simplex
were mapped to minimal geodesics between x and this point. On the previous steps of
the proof we concluded that for each of the three resulting geodesic digons one its side
can be connected with the other by a path homotopy passing through paths of controlled
length. Now we can combine these three path homotopies in the most obvious way into a
L-slicing of M . (Each of these three path homotopies constitutes a third of the L-slicing.
The boundary of the considered 3-simplex is mapped into M with a non-zero degree. Here
L is an upper bound for the length of the paths in the three path homotopies.)

The situation when the small 2-dimensional 1-simplex is non-trivial can be easily
reduced to the situation when it is trivial. Indeed, we can contract the small 2-simplex
over itself to a point q. Let x1, x2, x3 denote its vertices. We extend the minimal geodesics
from x to x1, x2, x3 by joining them correspondingly with [x1, q], [x2, q], [x3, q] to obtain
three paths, p1, p2, p3 connecting x with q. For every vertex xi denote the midpoint of the
opposite side of the triangle x1x2x3 by mi. Assume that for every i = 1, 2, 3 there exists
a path homotopy connecting two paths between x and mi along two different sides of the
triangle xxjxk, where xj and xk denote the vertices of the side of the triangle x1x2x3

opposite to xi. (Note that mi ∈ (xjxk).) Assume that this homotopy goes via paths of
length ≤ L (for some L). Then is is easy to find a path homotopy between pi and pj (for
all pairs of i and j) that goes via paths of length ≤ L + o(1). Here is a description of one
such homotopy. Denote the midpoint of [xixj ] by mk.

pi = [xxi] ∗ [xiq] −→ [xxi] ∗ [ximk] ∗ [mkxi] ∗ [xiq] −→ [xxj] ∗ [xjmk] ∗ [mkxi] ∗ [xiq] =

= [xxj] ∗ [xjxi] ∗ [xiq] −→ [xxj ] ∗ [xjq] = pj .

Here the first path homotopy is the insertion of [ximk] traversed twice in the opposite
direction, the second path homotopy passes only though paths of length ≤ L, and the
third path homotopy is, in fact, between [xjxi] ∗ [xiq] and [xjq] via (a part of) the very
small triangle x1x2x3.
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Thus, we demonstrated that proving of Theorem 2 reduces to finding path homotopies
between the halves of the boundaries of new 2-dimensional singular simplices in M that
pass via paths of controlled length (or obtaining distinct minimizing geodesics between x
and y as obstructions if the desired path homotopies do not exist). Denote two vertices of
a considered 2-simplex by x1 and x2; the third vertex is, of course, x. One of two paths in
question is the join of the minimal geodesic from x to x1 and the part of [x1x2] between x1

and the midpoint m of [x1x2], the other is the join of [xx2] and [x2m]. Denote these two
paths by π1, π2. The intersection of π1

⋃
π2 with the cut locus Cx of x is entirely contained

in the short simplex [x1x2]. By perturbing the short geodesic segment between x1 and x2

as a smooth path with fixed endpoints we can ensure that the number of its points of
intersection with Cx is finite, and that m is not in Cx. (Here we use the subanaliticity
of the cut-locus, cf. [B], [BM]). Denote these points by P1, P2, . . . PK (see Fig. 3). These
points divide π1

⋃
π2 into segments [PiPi+1], where P0 = PK+1 = x.

We would like to construct a continuous family of paths of controlled length between x
and all points of π1

⋃
π2, so that the lengths of all these paths do not exceed a certain upper

bound. In addition, we want the path connecting x with P0 = PK+1 = x to be trivial.
There will be exactly one path γxPt

connecting x with every point Pt ∈ (π1

⋃
π2) \ Cx,

but possibly a continuous family of paths between x and Pt, if Pt ∈ (π2

⋃
π2)

⋂
Cx. Once

the desired continuous family of paths between x and all points of π1

⋃
π2 is constructed,

one can construct the path homotopy between π1 and γxm as follows: We start from π1

regarded as the join of the trivial path from x to x and π1. Let Pt move from P0 to
m along π1. For every position of Pt we can replace the trivial path from x to P0 = x
by a path from x to Pt from the constructed continuous family, and π1 by the arc of π1

between Pt and m. The joins of these pairs of paths constitute a path homotopy between
π1 and γxm. In exactly the same way one can construct a path homotopy between γxm

and π2. The desired path homotopy between π1 and π2 is the combination of these two
path homotopies.

Now we are going to explain our approach to constructing the desired family of con-
tinuous paths between x and Pt. If Pt ∈ [P0, P1)

⋃
(PK , PK+1] γxPt

is just the mini-
mizing geodesic xPt. Similarly, if Pt belongs to the open segment (PiPi+1) of π1

⋃
π2,

i = 1, . . . , K − 1, then Pt is not in a cut locus of x and can be connected with x by the
unique minimizing geodesic. For every i these minimizing geodesics form continuous fam-
ilies of paths between x and Pt ∈ (Pi, Pi+1). These paths will be γxPt

. Moreover, when
Pt approaches Pi or Pi+1, these minimizing geodesics converge to minimizing geodesics
between x and Pi or x and Pi+1. Denote these limit geodesics by w+

i and w−

i+1. Now

the problem is that for every i w+
i can differ from w−

i . But if we have a choice of a path
homotopy between every pair of distinct minimizing geodesics with the same endpoints
emanating from x, then we will be able to complete the construction of the continuous
familiy of paths between x and points of π1

⋃
π2 by connecting w−

i with w+
i by such a

path homotopy for every i = 1, . . . , K − 1.

Assume that every pair of minimizing geodesics starting at x and ending at a point
p ∈ Cx can be connected by a path homotopy that passes through paths of length ≤ Y ,
where Y ≥ d. Then examining our previous construction of the continuous family of paths
between x and points of π1

⋃
π2 and the construction of the path homotopy between π1
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and π2 we see that the length of paths in the path homotopy between π1 and π2 does not
exceed Y + δ, where δ > 0 can be made arbitrary small.

Thus, in order to prove Theorem 2 it is sufficient to construct a path homotopy between
an arbitrary pair of minimizing geodesics starting at x and ending at a point p ∈ Cx such
that the lengths of paths during the path homotopy do not exceed appropriate upper
bounds.

Our next observation is that one can reduce finding controlled path homotopies be-
tween pairs of minimizing geodesics with the same endpoints starting at x to finding
controlled contractions of based at x loops formed by these pairs. More precisely, Lemma
5 below implies that if a loop formed by a pair of these minimizing geodesics can be con-
tracted via loops of length ≤ L∗ then there is a path homotopy between these minimizing
geodesics passing through paths of length ≤ L∗ + d.

Lemma 5. Consider two paths τ1, τ2 from x to y. Assume that the loop τ1 ∗ τ−1
2 based

at x can be contracted to x via loops based at x of length ≤ K. Then there exists a path
homotopy between τ1 and τ2 that passes only through paths of length ≤ length(τ2) + K.
Proof: We start from τ2 and use the contraction of τ1 ∗ τ−1

2 in reverse time to create
τ1 ∗ τ−1

2 out of the point x. As the result we obtain τ1 ∗ τ−1
2 ∗ τ2. Then we contract τ−1

2 ∗ τ2

over itself. QED.
Combining these observation together we arrive at the following proposition:

Proposition A. Assume that every loop based at x and formed by a pair of minimizing
geodesics starting at x and ending at a point P ∈ Cx can be contracted to a point via
loops of length not exceeding L̃ based at x. Then the length of paths in a path homotopy
connecting π1 to π2 does not exceed L̃ + d.

Combining this proposition with the previous discussion we obtain:

Proposition B. Assume that for every z ∈ Cx and every two minimizing geodesics γ1, γ2

between x and z there exists a path homotopy contracting the loop γ1 ∗ γ−1
2 that passes

through loops of length ≤ L̃. Then there exists an (L̃ + d)-slicing of M .

Thus, we demonstrated that in order to prove Theorem 2 it only remains to find an upper
bound L for the maximal length of loops in optimal path homotopies contracting loops
formed by pairs of minimizing geodesics connecting x with a point on the cut locus Cx of
x. Below we will see how one can get such an estimate if there exists less than k short
geodesics between x and y. Our estimates will be L = (k2−3k+6)d, if there exist less than
k distinct geodesics of length ≤ 2d (see Corollary 7 below), or L = (2k − 2)d + 2dist(x, y),
if there exist less than k distinct geodesics of length ≤ 2d+2dist(x, y) (Corollary 9). Let S
be a non-negative number. Then one can also obtain similar upper bounds, if one assumes
the existence of at most k − 1 S-distinct geodesics (instead of assuming the existence of
k − 1 distinct geodesics.) In the first case our estimate becomes L = (k2 − 3k + 6)d + S (if
there exist less than k S-distinct geodesics of length ≤ 2d), in the second case it becomes
L = (2k − 2)d + 2dist(x, y) + S (if there exist less than k distinct S-geodesics of length
≤ 2d+2dist(x, y)). Combining this estimates with Proposition B, we immediately complete
the proof of Theorem 2 (in the considered now analytic case). Now it remains only to prove
the above mentioned Corollaries 7 and 9. This will be done in section 3.3.2 below (and is
the crucial part of the proof of all main results of the present paper).
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3.3.2. Path homotopies contracting loops formed by two minimizing geodesics.

3.3.2.1 Let γ1, γ2 be two minimizing geodesics from x to a point p ∈ Cx. We would like
to find a bound L ≥ d such that there exists a path homotopy contracting γ1 ∗γ−1

2 passing
through loops based at x of length ≤ L. We are going to assume either that there exist at
most k − 1 geodesics between x and y of length ≤ 2d (or 2d + dist(x, y)) or at most k − 1
S-distinct geodesics between x and y of length ≤ 2d (or ≤ 2d + dist(x, y)), where S is a
non-negative number.
3.3.2.2. Obstructing pairs. Let us first try to find the desired path homotopy as follows.
Connect p with y by a minimizing geodesic σ. Apply a curve shortening process in the
space of paths starting at x and ending at y to γ1∗σ and γ2∗σ. We end at geodesics between
x and y of length ≤ 2d providing local minimuma for the length functional. Denote these
geodesics by ω1, ω2. If ω1 = ω2 then we can combine these two homotopies into a path
homotopy

γ1 ∗ γ−1
2 −→ γ1 ∗ σ ∗ σ−1 ∗ γ−1

2 −→ ω1 ∗ σ−1 ∗ γ−1
2 −→ ω1 ∗ ω−1

2 = ω1 ∗ ω−1
1 −→ {x},

and hence obtain a path homotopy contracting γ1 ∗ γ−1
2 via loops based at x of length

≤ 4d. The difficult case is when ω1 6= ω2. In this case we will call the (unordered) pair
of geodesics ω1, ω2 an obstructing pair. If ω1 and ω2 are S-distinct, we will call them an

S-obstructing pair. If they are not S-distinct, then we can contract ω1 ∗ ω−1
2 via loops of

length S + 4d, thereby obtaining a homotopy that contracts γ1 ∗ γ−1
2 via loops of length

≤ S + 4d.
3.3.2.3. Obstructing geodesics. Here is another approach to contracting γ1 ∗ γ−1

2 .
Fix one of the minimizing geodesics between x and y and denote it γ. Consider the
following path between x and y : γ1 ∗ γ−1

2 ∗ γ. If we apply a curve-shortening process
to this path we will end at a geodesic τ of length ≤ 2d + dist(x, y) between x and y
providing a local minimum for the length functional on the space of paths between x
and y. If this geodesic is not γ, we will call it an obstructing geodesic corresponding to
the pair γ1, γ2. If S is a non-negative number, and this geodesic is S-distinct from γ,
we call it an S-obstructing geodesic. Note that γ1 ∗ γ−1

2 can be connected by a path
homotopy first with γ1 ∗ γ−1

2 ∗ γ ∗ γ−1, and then with τ ∗ γ−1. If τ = γ, we can contract
τ ∗ γ−1 over itself, obtaining a path homotopy contracting γ1 ∗ γ−1

2 via loops of length
≤ 2d + 2dist(x, y). If τ and γ are not S-distinct, then τ ∗ γ−1 can be contracted via loops
of length ≤ 2d + 2dist(x, y) + S. Therefore, in the last case, γ1 ∗ γ−1

2 can be contracted
via loops of length ≤ 2d + 2dist(x, y) + S.
3.3.2.4. These considerations provide the base of inductive proofs of the following two
lemmae (Lemma 6, Lemma 8):

Lemma 6. Let γ1 and γ2 be minimizing geodesics between x and a point p ∈ M , D
be a domain in M bounded by γ1

⋃
γ2, and S be a non-negative number. Denote the

union of the set of all vertices of Cx inside D and the one point set {p} by Q. For every
q ∈ Q and every pair of minimizing geodesics between x and q consider the corresponding
obstructing pair (respectively, S-obstructing pair), if it exists. Let N be the cardinality of
the resulting set of obstructing pairs (respectively, S-obstructing pairs). Then there exists
a path homotopy contracting loop γ1 ∗ γ−1

2 via loops of length ≤ (2N + 4)d (respectively,
(2N + 4)d + S).
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Corollary 7. Let γ1 and γ2 be minimizing geodesics between x and a point p ∈ M .
Assume that there exists at most k−1 geodesics (respectively, S-distinct geodesics) between
x and y of length ≤ 2d providing local minima for the length functional on the space of
curves connecting x and y. Then the loop γ1 ∗ γ−1

2 can be contracted via loops of length
≤ (k2 − 3k + 6)d (respectively, (k2 − 3k + 6)d + S).

Indeed, it is obvious that N in Lemma 8 is majorized by by the number (k−1)(k−2)/2
of all possible pairs of distinct geodesics of length ≤ 2d between x and y that provide a
local minimum of the length functional on Ωx,y(M).

Proof of Lemma 6: The proof will be by induction with respect to N . The base of
induction N = 0 was provided by an argument that followed the definition of obstructing
and S-obstructing pairs in 3.3.2.2. To prove the induction step assume that the lemma
is true for N − 1. We will prove the induction step only in the case, when N is the
number of the obstructing pairs. The proof in the case, when N measures the number of
S-obstructing pairs is nearly identical.

The main idea is to use the following obvious observation: If γ1 ∗ γ−1
2 and another

geodesic loop λ have the same obstructing pair ω1, ω2, then γ1 ∗γ−1
2 can be connected with

either λ or λ−1 by a path homotopy passing through ω1 ∗ ω−1
2 and involving only loops of

length ≤ max{length(λ), length(γ1∗γ2)}. This observation will enable us to reduce finding
of a path homotopy contracting γ1 ∗ γ−1

2 to finding a path homotopy contracting the loop
λ formed by the innermost in D pair of minimizing geodesics between x and a vertex
of Cx that has the same obstructing pair as γ1, γ2. Then, we will reduce finding a path
homotopy contracting λ to finding path homotopies between pairs of minimizing geodesics
(with the same endpoints) that are even deeper inside D. Therefore the obstructing pair
ω1, ω2 cannot appear anymore, and the induction assumption will apply. Here are the
details.

First, we are going to introduce a partial order on the set of all pairs of minimizing
geodesics connecting x with points of Q. For brevity we will call such pairs MGD (an
abbreviation of “minimal geodesic digons”). Note that no pair of such MGD can intersect
at points other than their common endpoints. (Otherwise, the intersecting geodesics will
stop being minimizing.) In particular, they can intersect γ1

⋃
γ2 only at x and, possibly

at p (if p is an endpoint of the considered MGD). Therefore each of the considered MGD
bounds a unique domain contained in D. We say that one such MGD is less than the other
if the domain inside D bounded by the first MGD is properly contained in the domain
bounded by the second. It is clear that γ1, γ2 is the maximal element of this (finite) poset.
Denote the resulting poset P (γ1, γ2, D).

Note that N is the cardinality of the set of obstructing pairs of all MGDs from
P (γ1, γ2, D). If γ1, γ2 do not have an obstructing pair, then the assertion of Lemma 6
immediately follows from 3.3.2.2. So, we can assume that γ1, γ2 have an obstructing pair.
Among all considered MGD that have the same obstructing pair as γ1, γ2 choose an MGD
µ that has the following property: Consider the set of MGD that are less than µ . None
of these MGD has the same obstructing pair as γ1, γ2. (In other words, µ is a minimal
element in the set of all MGDs in P (γ1, γ2, D) that have the same obstructing pair as
γ1, γ2.) The existence of µ follows from the finiteness of P (γ1, γ2, D). µ consists of two
minimizing geodesics with common endpoints. Denote these minimizing geodesics by δ1
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and δ2. Let D1 be the domain bounded by δ1, δ2 and contained in D. Denote the common
endpoint of δ1, δ2 different from x by p∗.

As we already observed, γ1 ∗ γ−1
2 can be connected with δ1 ∗ δ−1

2 via loops of length
≤ 4d. Therefore it is sufficient to contract δ1 ∗ δ−1

2 .

Consider the intersection of Cx with D1. There are three cases:

Case 1. This intersection is empty. Then according to 3.1 there is a length non-increasing
path homotopy from δ1 to δ2, that can be used to find a length non-increasing contraction
of δ1

⋃
δ2.

Case 2. There is exactly one edge of Cx approaching p∗ from inside of D1. We can slide
δ1, δ2 along this edge to the nearest vertex (see 3.1.6). This sliding will provide us with
a homotopy of the loop δ1 ∗ δ−1

2 via loops of length ≤ 2d. At the end of this process we
will obtain a MGD that bounds a proper subdomain D2 of D1. We can define a set Q2

and a number N2 for D2 exactly as Q and N were defined for D in the text of Lemma 6.
The definition of µ implies that N2 < N . Now we can apply the induction assumption to
contract the loop formed by this new MGD that bounds D2.

Case 3. There exist more than one edge of Cx approaching p∗ from D1. In this case there
is a sequence of minimizing geodesics between x and p∗ β1 = δ1, β2, . . . , βq−1, βq = δ2,
q > 2 such that for every i βi and βi+1 bound a proper subdomain D∗

i of D1 such that
no geodesic βj passes inside D∗

i . One can construct a path homotopy between δ1 and δ2

by joining path homotopies between βi and βi+1 for all i. Because of the definition of µ
every pair βi, βi+1 satisfies conditions of Lemma 6 with some number Ni < N of potential
obstructing pairs instead of N . Therefore, the induction assumption implies that loops
βi ∗β−1

i+1 can be contracted via loops of length ≤ 2(N −1)+4 = 2N +2. Therefore Lemma
5 implies the existence of path homotopies between βi and βi+1 that pass through paths
of length ≤ 2N + 3. These path homotopies together form a path homotopy δt, t ∈ [1, 2]
between δ1 and δ2. We can contract δ1 ∗ δ−1

2 by, first, going through loops δt ∗ δ−1
2 , and

then cancelling δ2 ∗ δ−1
2 along itself. QED.

We can prove analogues of Lemma 6 and Corollary 7, where the notion of obstructing pair
is replaced by the notion of obstructing geodesic.

Lemma 8. Let γ1 and γ2 be distinct minimizing geodesics between x and a point p ∈ M ,
D be a domain in M bounded by γ1

⋃
γ2, and S be a non-negative number. Let Q be

the set of points formed by p and all vertices of Cx inside D. For every vertex q ∈ Q and
every pair of minimizing geodesics between x and q consider the corresponding obstructing
geodesic (respectively, S-obstructing geodesic), if it exists. Let N be the cardinality of the
resulting set of obstructing geodesics (respectively, S-obstructing geodesics). Then there
exists a path homotopy contracting γ1 ∗ γ−1

2 and passing only through loops of length
≤ (2N + 2)d + 2dist(x, y) (respectively, ≤ (2N + 2)d + 2dist(x, y) + S).

Corollary 9. Let γ1 and γ2 be minimizing geodesics between x and a point p ∈ M .
Assume that there exists at most k − 1 geodesics (respectively, S-obstructing geodesics)
between x and y of length ≤ 2d+dist(x, y) providing local minima for the length functional
on the space of curves connecting x and y. Then γ1 ∗ γ−1

2 can be connected by a path
homotopy via loops of length ≤ (2k − 2)d + 2dist(x, y) ≤ 2kd (respectively, ≤ (2k − 2)d +
2dist(x, y) + S ≤ 2kd + S).
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Indeed, if there exist at most k − 1 distinct geodesics between x and y, then there
exist at most (k− 1)− 1 = k− 2 distinct obstructing geodesics. So, N in Lemma 8 cannot
exceed k − 2.

Proof of Lemma 8. The proof of Lemma 8 uses induction with respect to N . It is
completely parallel to the proof of Lemma 6. The difference is that the notion of obstructing
geodesic replaces the notion of obstructing pair. Correspondingly, the construction of a
path homotopy contracting γ1 ∗γ−1

2 , when it has no obstructing geodesic (correspondingly,
S-obstructing geodesic) replaces a similar argument for obstructing pairs. (Recall that this
argument was given right after the definition of obstructing and S-obstructing geodesics
in 3.3.2.3.) QED.

3.4. The smooth case. In the previous sections we proved Theorem 2 (and thereby
the rest of the results of this paper) in the case when M is a real analytic Riemannian
manifold. Here we demonstrate that the analiticity is not necessary.

First, approximate a given smooth Riemannian metric g on S2 by a converging se-
quence of analytic Riemannian metrics gn, limn−→∞ gn = g in C3-topology on the space
of smooth Riemannian metrics on S2. Denote (S2, gn) by Mn and (S2, g) is M .

We are going to use the curve shortening flow introduced at the end of section 3.2 in
order to construct path homotopies between a path from x and y and a geodesic between
x and y.

Let i = 1 or 2. The already proven analytic case of Theorem 2 implies that for every
n either Ai or Bi hold for Mn. Consider two cases. In the first case Ai holds not only for
the considered value, S0, of S but also for every value of S in the interval [S0, S0 + ζ] for
some small positive ζ and for all but finitely many gn. In the second case there exists a
decreasing sequence Sm < S0 + ζ converging to S and a strictly increasing sequence nm

such that Bi holds for Sn and Mnm
. We would like to prove that in the first case Ai holds

for M , and in the second case Bi holds for M thereby establishing Theorem 2 for M .

Case 1. Passing to a subsequence and changing the notations we can assume that Ai holds
for all Riemannian metrics gn for S = S0+ζ. We claim that it holds also for M for S = S0.
Otherwise, there will be less than k S0-distinct geodesics between x and y. Note that an
easy compactness argument implies that for every ε > 0 for all sufficiently large n every
geodesic of length ≤ 2d + dist(x, y) (correspondingly, 2d) between x and y on Mn will be
ε-close to a geodesic of length ≤ 2d + dist(x, y) (correspondingly, ≤ 2d) between x and y
on M . Therefore for all sufficiently large n there exist two (S0 + ζ)-distinct geodesics on
Mn that are ε-close to geodesics between x and y on M that are not S0-distinct. Choosing
ε sufficiently small we ensure that these geodesics on Mn are not (S0 + ζ)-distinct thereby
obtaining the desired contradiction.

Case 2. We would like to obtain an L-slicing of M for the postulated value of L as the limit
of (L+εm)-slicings that exist for Mnm

(possibly passing to a subsequence of nm). The only
thing that we need in order to ensure the existence of such a limit is a uniform bound for
the Lipschitz constant for all slicings of Mnm

(possibly after a suitable reparametrization of
S2 that is being mapped to Mnm

). Since these slicings were constructed by gluing several
path homotopies between paths between x and y and geodesics between x and y we need a
uniform bound for Lipschitz constant for these path homotopies. These homotopies were
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just applications of a chosen curve shortening process. We arrive to the question that had
been posed and resolved in 3.2: We demonstrated that one can choose a curve shortening
process so that such a bound always exists (for all paths of length ≤ 2d+dist(x, y)+S + δ
or ≤ 2d + S + δ and all Riemannian metrics from a compact set K. In our situation
K = {g}

⋃
{g1, g2, . . .}.) So, for the chosen curve shortening processes a limit L-slicing of

M exists. QED.

4. Concluding remarks.

4.1. One can find path homotopies between pairs of minimizing geodesics connecting x
and Pi (see 3.2) not using a path homotopy contracting the geodesic loops formed by such
pairs. An alternative approach enabled us to improve the Dichotomy Theorem (Theorem
2) for k = 2. We obtained the following result:

Theorem. Let M be a Riemannain manifold diffeomorphic to S2 of diameter d. Let
S ≥ 0. Let x, y be two points of M such that there exists only one geodesic between x and
y of length ≤ 2d (respectively, every two geodesics between x and y of length ≤ 2d can be
connected by a path homotopy that increases the length by a summand not exceeding S).
Then there exists a 3d-slicing (respectively, a (3d + S)-slicing) of M that maps the South
pole of S2 into x.

We omit the details of the proof of this Theorem. It implies that a Riemannian metric
on S2 for which the length of a second shortest geodesic between a pair of points can be
strictly greater than 2d cannot be too rugged. (Examples of such metrics were constructed
in [BCK].)
4.2. As it had been noted, the main purpose of chosing a curve shortening process as it
had been done in 3.2 was to extend the proof of main results from the analytic case to
the smooth case. Yet, such a choice of the curve shortening process can be used also to
prove some strenghenings of Theorem 2. Indeed, note that the curve shortening process
introduced in 3.2 applied to a closed curve can end only at a geodesic between x and y
that is a global minimum of the length on a connected component of Ωx,y(M)2d+S+δ (or,
correspondingly, Ωx,y(M)2d+dist(x,y)+S+δ.) (Here Ωx,y(M)R denotes the space of all paths
of length ≤ R between x and y.) Therefore, we can strengthen A1, A2 by demanding
that the k S-distinct geodesics minimize the length in different connected components of
Ωx,y(M)2d+dist(x,y)+S (or, correspondingly, Ωx,y(M)2d+S). As a corollary we obtain the
following dichotomy theorem:

Theorem 2.A. (Dichotomy theorem II.) Let M be a Riemannian manifold diffeomor-
phic to S2, d be the diameter of M and x and y be two arbitrary points of M .
A. For every k > 1 either the space of all paths between x and y of length ≤ 2d has at
least k connected components, or M admits a (k2 − 3k + 7)d-slicing that maps the South
pole of S2 into x.
B. For every k > 1 either the space of all paths between x and y of length ≤ 2d+dist(x, y)
has at least k connected components or M admits a (2k − 1)d + 2dist(x, y)-slicing that
maps the South pole of S2 into x.
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