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Abstract. Let M be a Riemannian manifold homeomorphic to S2. The pur-
pose of this paper is to establish the new inequality for the length of a shortest
closed geodesic, l(M), in terms of the area A of M . This result improves pre-
viously known inequalities by C.B. Croke (1988), by A. Nabutovsky and the
author (2002) and by S. Sabourau (2004).

Let l(M) denote the length of a shortest closed non-trivial geodesic on a closed
Riemannian manifold M and let A be the area of M . In this paper we will prove
the following theorem.

Theorem 0.1. Let M be a manifold diffeomorphic to the 2-dimensional sphere.
Then l(M) ≤ 4

√
2
√

A.

The first upper bounds for the length of a shortest closed geodesic on a 2-
dimensional sphere were found by C.B. Croke (see [2]). In his paper Croke found
estimates both in terms of the diameter and in terms of the area of a 2-dimensional
sphere. Those results were later improved in [5] and in [9]. In particular, Croke
proved that l(M) ≤ 31

√
A, Sabourau proved that l(M) ≤ 12

√
A, and A. Nabu-

tovsky and the author proved that l(M) ≤ 8
√

A, which was the best known estimate
prior to this paper.

The estimate that we will obtain in this paper is not sharp. We are aware of
only three sharp bounds for the length of a shortest closed geodesic in terms of the
area. These results are due to K. Loewner, in the case when M is diffeomorphic to
the 2-dimensional torus, to P. Pu in the case of M being diffeomorphic to RP 2 and
to C. Bavard, in the case when M is diffeomorphic to the Klein bottle (see [3]).

It was suggested by E. Calabi and C.B. Croke that the sharp bound for the
length of a shortest closed geodesic on a manifold diffeomorphic to S2 should be
l(M) < (12)

1
4
√

A. (It is not hard to see that the optimal constant is at least 12
1
4 ;

see [2].)
The existence of a closed geodesic on an arbitrary closed Riemannian manifold

was proven by L. Lusternik and A. Fet (see [1]). Their proof uses Morse theory
on the space ΛM of closed curves on M . One approach to estimating the length
of a shortest closed geodesic can be interpreted as effectivization of this existence
theorem. In particular, this approach is used in papers [2], [6].
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The classical proof of the Lusternik and Fet theorem suggests that in order to
estimate the length of a shortest closed geodesic it is enough to construct a non-
contractible map f : S1 −→ ΛLM , where ΛLM is the space of closed continuous
curves on M of length bounded from above by L.

However, in this paper, as in [5], we will replace the space ΛM with the space Γ
of parametrized 1-cycles made of two segments. In fact, this paper closely follows
the proof of Theorem 2 of [5].

The space Γ was introduced by E. Calabi and J. Cao. It is defined as follows:
Γ = {Φ|Φ = (φ1, φ2), φi : [0, 1] −→ S2 is a piecewise smooth path and φ1(1) +
φ2(1) − φ1(0) − φ2(0) = 0}; see ([4]). They defined the length functional on Γ by
letting L(Φ) = L(φ1) + L(φ2). They further defined a distance on Γ that makes L
into a continuous map.

The critical points of L on Γ are defined as in geometric measure theory: Let
χ(M) denote the set of all smooth vector fields on M . Any X ∈ χ(M) generates
a one-parameter group of diffeomorphisms ht. The derivation of L at φ ∈ Γ in the
direction of X is defined by δLΦ(X) = d

dt (L(ht ◦ Φ))|t=0. If δLΦ(X) = 0 for all
X ∈ χ(M), then Φ is called a critical point of L on Γ and L(Φ) is called a critical
value of L.

Following J. Pitts, E. Calabi and J. Cao observed that critical points of L in
Γ, in the case when M is diffeomorphic to S2, satisfy the property that both
of the segments together form either a single closed geodesic, or a pair of closed
geodesics, if we assume that both of the segments are smooth. Note, that without
this assumption, the conclusion would be false.

Indeed, applying the first variational formula for the length functional, it is easy
to see that any critical point of L on any Riemannian manifold is either a closed
geodesic (possibly a constant geodesic), a pair of closed geodesics, or two geodesic
loops emanating from the same point. In the last case the sum of four unit tangent
vectors at the singular point coming out of this point must be zero. If the manifold
is two-dimensional this implies that these two-geodesic loops form a self-intersecting
closed geodesic.

Finally, Calabi and Cao note that if f : S1 −→ Γ is non-contractible, then there
exists a closed geodesic on M of length ≤ maxt∈S1 length(f(t)) (see also Proposition
5 in [7] for a rigorous proof of this assertion).

So, the approach that we will use here is to construct a non-contractible f :
S1 −→ Γ corresponding to the fundamental homology class of M and to estimate
maxt∈S1 L(f(t)). Using this approach, we have established in [5] that l(M) ≤ 4d.
We will use this result in this paper.

We will improve the technique used in [2] by Croke to obtain a bound for l(M)
in terms of the area of M . We will need the following definition from [2].

Definition 0.2. Let γ be a simple closed curve on M dividing M into two com-
ponents. Then γ will be called convex to Ω, where Ω is one of those components if
there exists an ε > 0 such that for all x, y ∈ γ, satisfying d(x, y) < ε, the minimizing
geodesic τ from x to y lies in the closure of Ω.

Lemma 2.2 in [2] asserts that if γ is convex to Ω and Ω̄ is compact, then there
exists a “large enough” N such that if we apply Birkhoff curve shortening process
with N breaks to γ, then all curves in the resulting homotopy γt stay in Ω̄, or to
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be more exact, they satisfy the following two conditions:
(1) γt ∈ Ω̄,
(2) γt is simple and convex to Ωt = Ω − {x ∈ γs|0 ≤ s ≤ t}.
Therefore, assuming there are no geodesics in M of length ≤ length(γ), and

γ = ∂Ω is convex to Ω, γ can be contracted inside Ω by a homotopy that passes
through closed curves of length ≤ length(γ).

We are now ready to prove Theorem 0.1.

Proof. The notation that will be encountered in this proof is borrowed from the
proof of Theorem 2 in [5]. Let us begin by assuming that l(M) > 3

√
2A and that

the diameter d of M is greater than
√

2A. Otherwise, l(M) ≤ 4d ≤ 4
√

2A (Theorem
1 in [5]).

As in [5], in the proof of this theorem we use ideas of Croke’s proof of Theorem
4.2 in [2].

Step 1. Let x, y ∈ M be two points that are a diameter apart, that is, d(x, y) = d.
Let α(t) be a minimal geodesic joining x and y parametrized proportionally to its
arclength. Then either

(1) For some t ∈ (
√

2A
2 , d−

√
2A
2 ) there exist two geodesic loops γx and γy of length

≤
√

2A based at α(t) and intersecting only at that point, such that γx separates M
into two domains: Ωx and its complement, where x ∈ Ωx and γx is convex to Ωx;
γy separates M into two domains: Ωy and its complement, where y ∈ Ωy and γy is
convex to Ωy. Moreover Ωx ∩ Ωy = ∅, and γx ∪ −γy is convex to the complement
of Ωx ∪ Ωy in M ; see Figure 1(a), (b)).

or (2) There exists a simple closed geodesic loop γ of length ≤
√

2A not con-
tractible in M −{x, y} separating M into two domains Ωx and Ωy such that x ∈ Ωx

and y ∈ Ωy, and either γ is based at α(
√

2A
2 ) and is convex to Ωy, or γ is based at

α(d−
√

2A
2 ) and is convex to Ωx. Moreover, (a) γ intersects α only at its base point;

and (b) the tangent vectors to γ at its beginning and end lie on opposite sides of
the straight line tangent to α in the tangent plane of M at the base point of γ; see
Figure 2(a).

The following proof of the above statement is an improvement of the proof of
the similar fact in [2].

Let t0 be any number in the interval (
√

2A
2 , d −

√
2A
2 ).

We will begin by showing that there exists a simple closed geodesic loop based at
α(t0) that divides M into two domains, one containing x and the other containing
y. In order to prove this take the geodesic spheres S(x, t) in M centered at x of
radius t for all t ∈ [t0 −

√
2A
2 , t0 +

√
2A
2 ].

Note that for any generic t there exists a closed curve σ ⊂ S(x, t) with no self-
intersections that intersects α transversally at α(t), and this intersection with α

is unique. Now, compare the inequality
∫ t0+

√
2A
2

t0−
√

2A
2

length(S(x, t))dt < A and the

equality
∫ t0+

√
2A
2

t0−
√

2A
2

√
2A − 2|t − t0|dt = A. They imply that there exists a generic

t∗ ∈ [t0 −
√

2A
2 , t0 +

√
2A
2 ] such that the length of S(x, t) is less than

√
2A−2|t− t0|.

The same inequality will hold for σ, which, by Jordan Separation theorem, divides
M into two domains. Moreover, one of them will contain x and another will contain
y. Next consider a loop based at α(t0) that goes to α(t∗) along α, then along σ,
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and finally returns to α(t0) along α. This curve is not contractible in M \ {x, y}
(see the proof of Lemma 3.2(1) in [2]), and it has length smaller than

√
2A.

This implies that the length of a shortest closed curve passing through α(t0)
and not contractible in M \ {x, y} is also less than

√
2A. This shortest curve exists

(though it does not have to be unique), and is in fact a geodesic loop based at γ(t0).
If ρt0 is such a geodesic loop, it is a simple curve dividing two domains Mx and
My, such that x ∈ Mx and y ∈ My. The fact that this curve is the shortest among
curves satisfying the above properties implies that it has no self intersections, which
in turn implies that it divides M into two domains (see also the proof of Lemma 3.3
in [2]). Such a curve will also have the following property: the two tangents at its
endpoints will lie on opposite sides of the tangent to α, otherwise could homotop
this curve into M − α([0, 1]) and contract it there (see the proof of Lemma 3.3(2)
in [2]).

Note that, being a geodesic loop, ρt0 is convex to one of these domains. Following
[2] let Sx denote the subset of (

√
2A
2 , d −

√
2A
2 ) formed by t0 such that there exists

such a ρt0 which is convex to Mx. One can similarly define Sy. Both Sx and Sy

are closed subsets of (
√

2A
2 , d −

√
2A
2 ). If both of these sets are non-empty, then

their intersection is non-empty, and thus there exists t0 ∈ (
√

2A
2 , d −

√
2A
2 ) and two

geodesic loops γx, γy based at α(t0) of equal length that is smaller than
√

2A as in
case (1) above. Note that γx and γy will intersect only at their base point (see the
proof of Lemma 3.3(3) in [2]). If one of these two sets, for example, Sx, is empty,
then for any t0 ∈ (

√
2A
2 , d −

√
2A
2 ), ρt0 will be convex to My. It is easy to see that

when t0 −→
√

2A
2

+
a subsequence of ρt0 converges to a geodesic loop γ of length

≤
√

2A based at α(
√

2A
2 ), as in case (2). (One needs to be a little careful about the

case when the length of γ is exactly
√

2A. Indeed, if γ passes through x it consists
of two minimizing geodesics between α(

√
2A
2 ) and x such that the angle between

them at x is equal to π. But this cannot happen because since α minimizes past
α(

√
2A
2 ), the segment of α between x and α(

√
2A
2 ) is the unique minimizing geodesic

between these points.)

Step 2. We are now ready to finish the proof of this theorem. Let us first consider
case (1). We have subdivided the manifold into three domains: Ωx, Ωy and Ω, which
denote the complement of Ωx ∪ Ωy. We have assumed that l(M) > 3

√
2A >

√
2A.

Therefore, γx is contractible in Ωx to px ∈ Ωx along the curves γxt, γy is contractible
in Ωy to a point py ∈ Ωy along the curves γyt of length ≤

√
2A, and γx ∪ −γy is

contractible to p in Ω along the curves γt of length ≤ 2
√

2A, since this curve is
convex to Ω.

We can now construct f : S1 −→ Γ, so that S1 passes through pairs of curves
of length ≤ 2

√
2A as shown on Figure 1: We begin with pairs of constant curves

(px ∪ py) (Figure 1(b)), which is homotopic to a pair of curves (γxt ∪−γyt) (Figure
1(c)). These maps are homotopic to the “figure 8” (γx ∪−γy) (Figure 1(d)), which
we can finally connect with p (Figure 1(f)) along the curves γt (Figure 1(e)). Note
that p ∼ (px∪py), and, thus, we have formed a loop in the space of the parametrized
1-cycles. Moreover, this loop is not contractible (the proof of Theorem 2 in [5]
contains the proof of a similar statement).
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Figure 1.

One can calculate that the total length of curves in the homotopy is bounded
from above by 2

√
2A.

In case (2), assume without loss of generality that there exists a simple closed
geodesic loop γ of length ≤

√
2A that is not contractible in M − {x, y} based at

α(
√

2A
2 ) and that is convex to Ωy.

Following [2] we use Berger’s lemma. It implies the existence of minimizing
geodesics α1, α2, joining points x, y such that α′

1(0), α′
2(0), α′(0) do not lie in an

open half plane. (It is possible that α1 = α2.)
Let a, b, c denote the unique points of intersection of γ with α, α1, α2, respectively.

(Having more than one point of intersection would contradict the minimality of γ;
see the proof of Theorem 4.2 in [2]). It follows that (1) the length of a geodesic
segment joining x and a and denoted αxa equals

√
2A
2 by assumption; (2) the length

of a geodesic segment joining x and b and denoted αxb is ≤
√

2A; (3) the length of
a geodesic segment αxc that connects x and c is ≤

√
2A.

Let us further denote the segments of γ that connect a and c, c and b and b and
a as γac, γcb and γba, respectively.

Since l(M) > 3
√

2A and since the closed curve β1 = αxa∪−γba∪−αxb is convex
to Ω1, it is contractible in Ω1 to a point p1 along the curves β1t. Its length does
not increase during this homotopy.

Similarly, β2 = αxa ∪ γac ∪ −αxc is contractible in Ω2 to a point p2 along the
curves β2t, β3 = −αxc ∪ αxb ∪ −γcb is contractible in Ω3 to a point p3 along the
curves β3t, and γ is contractible in the complement of Ω1∪Ω2∪Ω3 along the curves
γt without the length increase (see Figure 2(a)).

We are now ready to construct f : S1 −→ Γ:
(1) (p1 ∪ p2) ∼ (−β1 ∪ β2) (see Figure 2(b)-(d)).
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Figure 2.

(2) (−β1 ∪ β2) ∼ (αxb ∪ γba ∪ γac ∪ −αxc) = β4 (see Figure 2(d)-(f)).
(3) β4 ∼ (β3 ∪ γ) (see Figure 2(f)-(h)).
(4) Finally, (β3 ∪ γ) ∼ (p3 ∪ p4) ∼ (p1 ∪ p2).
Note that the length of curves during this homotopy is ≤ 4

√
2A.

It remains to check that this homotopy corresponds to a non-contractible map
of S1 to the space Γ. This argument is identical to the similar argument in [5]. �
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