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Abstract. In this paper we will present upper bounds for the length of a shortest closed

geodesic on a manifold M diffeomorphic to the standard two-dimensional sphere. The first
result is that the length of a shortest closed geodesic lðMÞ is bounded from above by 4r, where
r is the radius ofM. (In particular that means that lðMÞ is bounded from above by 2d, whenM

can be covered by a ball of radius d=2, where d is the diameter of M.) The second result is that
lðMÞ is bounded from above by 2ðmaxfr1; r2g þ r1 þ r2Þ, when M can be covered by two
closed metric balls of radii r1; r2 respectively. For example, if r1 ¼ r2 ¼ d=2, then lðMÞO 3d.
The third result is that lðMÞO 2ðmaxfr1; r2; r3g þ r1 þ r2 þ r3Þ, when M can be covered by

three closed metric balls of radii r1; r2; r3. Finally, we present an estimate for lðMÞ in terms of
radii of k metric balls covering M, where kP 3, when these balls have a special configuration.
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1. Introduction

The main purpose of this paper is to improve the known upper bounds for the length

of a shortest closed geodesic on a manifold diffeomorphic to the standard two-

dimensional sphere. The existence of a closed geodesic on any closed Riemannian

manifold M was proven by Lusternik and Fet, by looking at the space KM of all

continuous maps f : S1 !M taking the smallest i, such that piðKMÞ 6¼ f0g and

piðMÞ ¼ f0g, considering a noncontractible sphere f : Si ! KM and then trying to

deform it into M along the gradient flow of the energy functional. Any sphere of

dimension at most i is contractible to a point in M. So, we cannot succeed in

deforming f : Si ! KM into M because it will contradict the initial assumption about

this sphere being noncontractible. Therefore, the energy functional should have a

critical point, which is a closed geodesic (see [1], for a detailed proof). As a corollary

lðMÞO supt2Si length fðtÞ. The first curvature free upper bounds for the length of a

shortest closed geodesic on a manifold M diffeomorphic to the 2-sphere are due to
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Croke who proved that (1) lðMÞO 9d and (2) lðMÞO 31
ffiffiffiffi

A
p

, where A is the area of

M (see [2]). His approach can be described as the effectivization of the existence

theorem of Lusternik and Fet. In [2] Croke constructed a noncontractible map

g : S1 ! KM and estimated the length of curves through which it passes, thus ob-

taining an upper bound on lðMÞ. The map g is obtained by ‘slicing’ M into curves of

small length. Later Maeda observed that the method of Croke can be improved to

yield lðMÞO 5d (see [3]).

Both (1) and (2) were later improved by Nabutovsky and Rotman, and, in-

dependently, by Sabourau who proved that lðMÞO 4d, and lðMÞO 8
ffiffiffiffi

A
p

(see [4, 5]).

The later bounds were obtained by considering a new space C (initially defined in [6])

instead of KM, which, informally speaking can be viewed as a space, where each

element is a one-dimensional cycle that is either a closed curve or consists of two

closed curves. In the new approach one constructs a noncontractible g : S1 ! C,
estimates the length of curves through which this loop passes, thus, obtaining an

upper bound for lðMÞ. In particular, in [4] the loop is obtained by taking a non-

contractible map ~g : S2 !M and ‘slicing’ it into 1-cycles that consist of one or two

closed curves, where ~g : S2 !M appears as an obstruction to the extension process:

one starts with any diffeomorphism F : S2 !M, and then tries to extend it to a disc

D3, triangulated as a cone over a very fine triangulation of S2.

Nevertheless, even in this simplest case of M diffeomorphic to S2 the

optimal bounds remain unknown. In particular, it is unknown whether lðMÞO 2d, as

it can be expected. Observe that for the canonical metric on S2 lðMÞ ¼ 2d.

In this paper, we find a method that in most cases will allow one to obtain

estimates better than the previously known estimate of 4d, in many cases provides

the bound 2d, and in some cases (when M is long and narrow) allows to obtain

estimates that are significantly better than 2d. Observe that our upper bounds are

quite easy to evaluate for specific metrics on S2, and that they are not too sensitive to

small perturbation of the Riemannian metric in C 0 topology.

The bounds are found by improving the extension process in [4]. In [4] we tri-

angulated D3 in the most obvious way: as a cone over its boundary and did not care

where we mapped the new vertex. In the present paper we consider cell subdivisions

of D3 that take into account the shape of M, and map new zero-dimensional cells in

the optimal way.

In this paper we will prove the following theorems:

THEOREM 1. Let M be a manifold diffeomorphic to the two-dimensional sphere.

Then lðMÞO 4r, where r is the radius of M.

Note that r ¼ minx2M maxy2M distðx; yÞO d ¼ maxx2M maxy2M distðx; yÞ.
Therefore, the above estimate is stronger than the previous best known estimate

lðMÞO 4d. Observe that for a wide class of metrics on S2 r ¼ d=2, so we obtain

lðMÞO 2d for these metrics.
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THEOREM 2. Let M be a manifold diffeomorphic to the two-dimensional sphere, and

suppose M can be covered by k ðk 2 f2; 3gÞ closed metric balls of radii frigki¼1. Then
lðMÞO 2ðmaxki¼1 ri þ

Pk
i¼1 riÞ.

We observe that we do not know any examples of Riemannian metrics on S2 such

that Theorems 1 and 2 do not lead to a better estimate for lðMÞ than lðMÞO 4d

proved in [4, 5]. For some Riemannian metrics on S2 Theorems 1 and 2 yield upper

bounds for lðMÞ that are better than 2d (which is the best theoretically possible

estimate on lðMÞ in terms of the diameter).

One can prove similar results in the case when M is covered by k > 3 balls. Yet we

do not see any practical applications for such results unless a configuration of these

balls is especially simple. In such special cases one can find quite good upper bounds

for lðMÞ, for example:

THEOREM 3. Let M be diffeomorphic to S2. Assume that M is covered by kP 3

metric balls fBiðpiÞgki¼1 of radii ri, such that BiðpiÞ \ BjðpjÞ 6¼ ; if and only if ji� jjO 1

(see Figure 7). Then lðMÞO 2maxi2f2;3;���;k�1gðriþ maxfri�1; riþ1g
þmaxfri�1; ri; riþ1gÞ.

EXAMPLES

(1) Suppose M can be covered by two closed metric balls of radii d=2. Then

lðMÞO 3d.

(2) Assume that in the situation of Theorem 3 all ri ¼ d=2. Then lðMÞO 3d in-

dependently of k.

(3) If M is long and thin, so that ri O �d for some small � (see Figure 7) then

lðMÞO 6�d.

As in papers [4, 5] one of the key ideas is to use the methods coming from the

geometric measure theory developed by Almgren and Pitts (see [7, 8]) and adapted by

Calabi and Cao to studies of closed geodesics on surfaces. Following Calabi and Cao

we will consider the space that consists of parametrized closed curves and pairs of
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p

1

p
2

p
3

p
4

p (a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 1.

THE LENGTH OF A SHORTEST CLOSED GEODESIC 145



closed curves, formally defined as follows: let C ¼ fUjU ¼ ð/1;/2Þ;/i : ½0; 1� !M is

a piecewise smooth path and f/1ð1Þ;/2ð1Þg ¼ f/1ð0Þ;/2ð0Þgg. One can define the

length functional LðUÞ simply as LðUÞ ¼ Lð/1Þ þ Lð/2Þ (see [6]). Assume that M is

isometrically embedded in a Euclidean space. The distance between ð/1;/2Þ and
ðw1;w2Þ is defined as

sup
t2½0;1�;i2f1;2g

j/iðtÞ � wiðtÞj þ R2
i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Z 1

0

j/0iðtÞ � w0iðtÞj
2dt

s

(this definition is somewhat different from the definition in [6].) This distance then

induces the topology on C that makes L into a continuous function. Now, let vðMÞ
denote the set of all smooth vector fields on M. Any X 2 vðMÞ generates a one-

parameter group of diffeomorphisms ht. The derivation of L at / 2 C in direction of

X is defined by dLUðXÞ ¼ d=dtðLðht � UÞÞjt¼0. If dLUðXÞ ¼ 0 for all X 2 vðMÞ, then
U is called a critical point of L on C and LðUÞ. As Pitts, Calabi and Cao have shown,

almost all critical points of L correspond to closed geodesics in the case when M is

two-dimensional (see [6] as well as [9] for more details). In particular, let f : S1 ! C
be a closed curve in C. Consider BðfÞ ¼ maxt2S1 LðfðtÞÞ: Calabi and Cao observed

that the infimum of BðfÞ over all noncontractible closed curves f in C is achieved at

some noncontractible loop f0 such that Bðf0Þ is achived at t0 2 S1 so that f0ðt0Þ is
either a nontrivial closed geodesic or consists of two geodesics at least one of which

is nontrivial. One can find a detailed proof of this fact in the Proposition 5 in [9].

Therefore for any noncontractible closed curve f in C, Bðf Þ is an upper bound for

the length of a shortest closed geodesic.

So our goal will be to construct a noncontractible f : S1 ! C and to estimate Bðf Þ
which will be automatically an upper bound for lðMÞ.

2. Proofs of the Theorems

We will now proceed with the proofs of the theorems. Note that the proof of The-

orem 1 is parallel to the proof of Theorem 1 in [4] with one important improvement

explained below.

Proof of Theorem 1. Let us assume that lðMÞ > 4r. Then all curves of length O4r

can be contracted to a point without length increase using the Birkhoff curve

shortening process. We will begin by considering an arbitrary diffeomorphism

h : S2 !M between the standard sphere S2 and our manifold M. Let D3 be the

standard three-dimensional disc that has S2 as its boundary. It should be clearly

impossible to extend the map h to that disc. So, we will try to construct a new map

H : D3 !M, such thatHjS2 ¼ h and as an obstruction to this extension obtain a map

H : S2 !M, so that there will be a control over the size of curves that compose that

sphere.
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Wewill proceed as follows: triangulate S2 so that the diameter of any simplex of the

induced triangulation on M is at most as large as some small �. Triangulate D3 as the

cone over S2. The procedure that we perform will be inductive to the skeleta ofD3. To

extend to the 0-skeleton, let p 2M be a point such that dðp; qÞO r for any q 2M. Let

~p be the center of the disc D3. Then we will let Hð~pÞ ¼ p. To extend to the 1-skeleton

we will map all edges in D3=S2, i.e. the ones that connect ~p with the vertices of S2 to

shortest geodesic segments that connect the point pwith the corresponding vertices on

M. To extend to the 2-skeleton, we have to extend to all of the 2-simplices of the form

½~p; ~v1; ~v2� where ~v1; ~v2 are vertices of the triangulation of S2. By our assumption, the

closed curve that is formed by two geodesics ½p; v1�, ½p; v2� that connect the point pwith
vertices v1 ¼ gð~v1Þ and v2 ¼ gð~v2Þ, respectively, and by the edge ½v1; v2� is contractible
to a point along the curves of length O2rþ �. We let the image of ½~p; ~v1; ~v2� be the

surface generated by the above homotopy.

Now, we observe that we cannot extend our map to the 3-skeleton. That

means that there exists at least one 3-simplex r3 ¼ ½~p; ~v1; ~v2; ~v3�, such that the

map H : @½~p; ~v1; ~v2; ~v3� ! ð½v1; v2; v3� [ ½p; v1; v2� [ ½p; v2; v3� [ ½p; v1; v3�Þ, is a non-

contractible sphere. There ½v1; v2; v3� denotes a 2-simplex in the triangulation of the

sphere, and ½p; vi; vj� is a surface generated by the homotopy that connects the closed

curve formed by the 1-simplex ½vi; vj� and two geodesic segments ½p; vi�; ½p; vj� to a

point.

Let ci be a minimal geodesic connecting p and vi, i ¼ 1; 2; 3. Let e12 be the edge

connecting v1 and v2; e13 be the edge connecting v1 and v3 and e23 be the edge

connecting v2 and v3. Let a1 ¼ c2 [ �e12 [ �c1; a2 ¼ c1 [ e13 [ �c3; a3 ¼
c3 [ �e23 [ �c2; a4 ¼ e12 [ e23 [ �e13. Note that the length of ai O 2rþ �, i ¼ 1; 2; 3

and the length of a4 O 3�. Assume that � is less than the convexity radius of the

sphere, so that a4 is contractible to v1 without length increase inside ½v1; v2; v3�.
Observe that we have homotopies contracting ai to pi for i ¼ 1; 2; 3 without length

increase inside ½p; v1; v2�; ½p; v2; v3�; ½p; v1; v3�, respectively.
Next, we will use these homotopies to construct a loop f : S1 ! C and show that

it is noncontractible. We will write ð/1;/2Þ � ðw1;w2Þ, when the pairs of curves

are homotopic. We will start with a pair of constant maps U ¼ ð/1;/2Þ,
where /1ðtÞ ¼ p1 and /2ðtÞ ¼ p2. Now, we see that ðp1; p2Þ � ða1; a2Þ �
ðc2 [ �e12; e13 [ �c3Þ � ða3; a4Þ � ðp4; p3Þ � ðp1; p2Þ (see Figure 1). (Each of these

homotopies is a path in C. The union of these paths will be the desired loop in C.)
Figure 1(b)–(d) shows that ðp1; p2Þ � ða1; a2Þ and the total length of curves in the

homotopy is bounded from above by 4rþ 2�. Figure 1(d)–(f) shows that

ða1; a2Þ � ðc2 [ �e12; e13 [ �c3Þ and the total length of curves in the homotopy is

bounded from above by 4rþ 2�. Figure 1(f) and (g) shows that

ðc2 [ �e12; e13 [ �c3Þ � ða3; a4Þ and the length of the curves in the homotopy is

bounded from above by 2rþ 4�, and finally, Figure 1(g)–(i) shows that

ða3; a4Þ � ðp3; p4Þ and the length of curves in the homotopy is bounded above by

2rþ 4�. One can also see that the length of curves in the homotopy is bounded from

above by 4rþ 4�.

THE LENGTH OF A SHORTEST CLOSED GEODESIC 147



It remains to check that the obtained closed curve inC is noncontractible in order to

conclude that lðMÞO4rþ 4�. This can be done as follows: We are going to assign a

singular 2-cycle inM to the loop f : S1 ! C.Wewill show that this cycle does not bound

and that it implies a noncontractibility of f : S1 ! C. (The detailed proof of a very

general version of the last assertion can be found in Section 4 of [9].) The singular 2-

cycle is constructed as follows: Observe thatC is a subspace of the space of maps of the

disjoint union of two copies of [0,1] intoM (with the appropriate topology). So, we can

assign a map of a union of two cylinders S1 � ½0; 1� into M. This map can be factored

through the quotient X1 of
S2

i¼1 S
1
i � ½0; 1�i, where we identify points on their bound-

aries in accordance with the identification of the end points of two curves forming fðtÞ
for each t 2 S1. In our case X1 can be constructed in the following way: identify the

boundaries of the two disjoined cylinders S1
i � ½0; 1�i, i ¼ 1; 2 in the following way:

½0; 13�i � f0gi � ½0; 13�i � f1gi for i ¼ 1; 2; ½13 ; 23�1 � f0g1 � ½13 ; 23�2 � f1g2 and

½13 ; 23�1 � f1g1 � ½13 ; 23�2 � f0g2; finally ½23 ; 1�i � f0gi � ½23 ; 1�i � f1gi for i ¼ 1; 2. Let F be

the inducedmap fromX1 toM (see Figure 2). Note that F factors into the composition

of/ : X1 ! @r3 and the original mapH : @r3 !M.X1 is clearly a polytope, so for any

triangulation of X1, F generates a singular 2-cycle on M. This cycle does not bound,

because the original sphere H : @r3 !M is noncontractible. Now suppose that

f : S1 ! C is contractible. Then it can be contracted over a disc ~f : D2 ! C. In that case

we can construct a singular 3-chain onM that has the 2-cycle as its boundary. This 3-

chain can be constructed as follows: assign a map ~F from the quotient space X2 ob-

tained fromD2 � ð½0; 1�
S

½0; 1�Þwith four boundaries identified in accordance with the
identification of endpoints of two segments forming ~fðxÞ, wherex 2 D2.We claim that ~f

can be chosen so that X2 is a polyhedron (see Section 4 of [9] for the details). Trian-

gulating X2 we obtain a singular 3-chain that corresponds to a map of D2 into C.
Observe that if we consider the singular 3-chain corresponding to a map of D2 into C
under this correspondence, then its boundary will be a singular 2-cycle corresponding

to the restriction of this map to S1 ¼ @D2. Therefore, a map of S1 into C is contractible

only if the corresponding 2-cycle represents 0 in H2ðMÞ. Thus, f : S1 ! C is non-

contractible. Finally, let � go to 0 to obtain lðMÞO 4r. (

Proof of Theorem 2. Let fBiðpiÞgki¼1 be the set of closed metric balls of radii frigki¼1
respectively. The two cases: k ¼ 2, and k ¼ 3 will have to be considered separately,

X1

Figure 2.
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however, in both of them we will begin with a homeomorphism h : S2 !M, where S2

is triangulated so that diameter of any simplex in the induced triangulation of M is

smaller than �. Attempt to extend h to the disc D3 and as an obstruction to the

extension obtain a noncontractible sphere H : S2 !M, which we will then interprete

as a noncontractible loop in the space C.

Part I: Subdividing D3.

Case 1: k ¼ 2. Let B1ðp1Þ;B2ðp2Þ be two closed metric balls of radii, r1; r2 centered at

p1; p2 respectively, such that M ¼ B1ðp1Þ [ B2ðp2Þ. Without loss of generality we can

p~1

p~2

D2
+

D2
–

E

3

Figure 3.
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assume that open balls intB1ðp1Þ[ intB2ðp2Þ also cover M. (Otherwise we can just

consider concentric open balls centered at p1; p2 of radii r1 þ d; r2 þ d, where d can be

made arbitrarily small.)

Then by Mayer-Vietoris sequence there exists a set S in B1ðp1Þ \ B2ðp2Þ that is
homeomorphic to S1 and separates M into two sets M1 � B1ðp1Þ and M2 � B2ðp2Þ.
Both M1 and M2 are diffeomorphic to the 2-disc (see Lemma 4 in the Appendix).

Consider the standard sphere S2. Let D2
þ;D

2
� be closed sets that denote its northern

and southern hemispheres respectively, and let E be its equator. Let h : S2 !M be

a homeomorphism, such that hjD2
þ
; hjD2

�
; hjE are homeomorphisms onto M1;M2 and

S, respectively. We are going to try to extend h to the disc D3 that has S2 as its

boundary. We triangulate S2, so that D2
þ;D

2
� and E become subcomplexes of S2.

Next we assign to D3 the structure of a CW-complex: We will let its 0-skeleton

consist of the 0-skeleton of S2 and two additional vertices: ~p1 that lies in the

northern part of D3 and ~p2 that lies in its southern part. The 1-skeleton will consist

of the 1-skeleton of S2, the 1-skeleton of ~p1 �D2
þ and the 1-skeleton of ~p2 �D2

�.

Similarly, its 2-skeleton will consist of the 2-skeleton of S2, the 2-skeleton of

~p1 �D2
þ and the 2-skeleton of ~p2 �D2

�. Finally, the disc’s 3-skeleton will consist of the

3-skeleton of ~p1 �D2
þ and ~p2 �D2

� and one additional cell that is the part of the disc

which is bounded by the suspension of ~p1; ~p2 over E (see Figure 3). We will denote

this cell Cl.

Case 2: k ¼ 3. Let i1; i2; i3 2 f1; 2; 3g. There exist two balls Bi2ðpi2Þ;Bi3ðpi3Þ that
have a nonempty intersection. Let C ¼ Bi2ðpi2Þ [ Bi3ðpi3Þ. Then by Mayer-Vietoris

sequence there exists a set S1 � Bi1ðpi1Þ \ C that separates M into two discs:

D2
1 � Bi1ðpi1Þ and D2

2
0 � C (see the proof of Lemma 4 in the Appendix). Next by the

second application of the Mayer-Vietoris sequence there exists a finite collection of

sets fTig that separates the D2
2
0
into the discs and annuli, where each disc and each

annuli fully lies either in Bi2ðpi2Þ or in Bi3ðpi3Þ, and where each Ti is homeomorphic

either to S1 or to the unit interval (see Lemma 5 in the Appendix). Let us first consider

the two simplest cases, when fTig consists of one element only. The proof in the

general case (denoted Case 2C) is analogous to the proofs of those simple cases. In the

first case T1 is homeomorphic to [0,1]. Let us denote it by S2. In that case it separates

D2
2
0
into the two discs: D2

2 � Bi2ðpi2Þ and D2
3 � Bi3ðpi3Þ. We will call this Case 2A (see

Figure 5(a)). In the second case — Case 2B (see Figure 5 (b)) T1 is homeomorphic to

S1. We will denote it by S2
0 � Bi2ðpi2Þ \ Bi3ðpi3Þ \D2

2
0
and it separates D2

2
0
into a disc

D2
2 and an annulus A. Without loss of generality we can assume that in the first case

i1 ¼ 1; i2 ¼ 2; i3 ¼ 3 and in the second case that D2
2 � Bi3ðpi3Þ \D2

2
0
and that

A � Bi2ðpi2Þ \D2
2
0
.

Case 2A: Let E be the equator of the standard 2-sphere, and let R be the lower half

of a meridean. Let D2
N be the northern hemisphere of S2, and D2

SW;D
2
SE be its south-

western and south-eastern quaters respectively. Let h : S2 !M be a

homeomorphism that maps E onto S1, R onto S2 and D2
N;D

2
SW;D

2
SE onto D2

1;D
2
2;D

2
3

respectively.
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Let us now give D3 the structure of a CW-complex. Assume that

D2
N;D

2
SW;D

2
SE;E;R are subcomplexes of S2. We construct, the 0-skeleton of D3 by

combining the 0-skeleton of S2 with the points ~p1; ~p2; ~p3, where, ~p1 is a point that

lies in the northern half of D3, and the points ~p2, ~p3 lie in the south-western and

the south-eastern quarters, respectively. The construction of the 1- and the 2-

skeleta of D3 is analogous to that in the Case 1. The 3-skeleton will consist of the

3-simplices of the form ½~p1; ~vi1 ; ~vi2 ; ~vi3 �, or ½~p2; ~wj1 ; ~wj2 ; ~wj3 �, or ½~p3; ~qk1 ; ~qk2 ; ~qk3 � and of

one additional cell Cl described below. Let EL be the left half of the equator and

ER be the right half of the equator. Then Cl will have

~p1 � E [ ~p2 � ðEL [ RÞ [ ~p3 � ðER [ RÞ as its boundary.

Case 2B: In the second case, let S1;S2
0 be as described before. Let P1;P2 be two

parallels on S2. Let P1 2 D2
þ, the upper hemisphere of S2 and P2 2 D2

�, its lower

hemisphere. Two planes passing through P1 and through P2 subdivide D
3 into three

parts: U;M;L and subdivide the sphere into three parts: ~U; ~M; ~L. Let

~p1 2 U; ~p2 2M; ~p3 2 L. Let h : S2 !M be a homeomorphism that maps P1;P2 onto

S1;S2
0 respectively and that maps ~U onto D2

1;
~M onto A and ~L onto D2

2
0
. Assume

that ~U; ~M; ~L;P1;P2 are subcomplexes of S2 that the diameter of any simplex in the

induced triangulation on M is smaller than �.

We will let 0-skeleton of D3 consist of three points ~p1; ~p2; ~p3 in addition to the

vertices of S2. Its 1-skeleton will be the 1-skeleton of ~p1 � ~U [ ~p2 � ~M [ ~p3 � ~L to-

gether with the 1-skeleton of S2. Likewise its 2-skeleton will consist of the 2-skeleton

of ~p1 � ~U [ ~p2 � ~M [ ~p3 [ ~L and the 2-skeleton of S2. Finally, its 3-skeleton will

consist of the 3-skeleton of ~p1 � ~U [ ~p2 � ~M [ ~p3 � ~L and two cells bounded by the

suspensions of ~p1; ~p2 over P1 and of ~p2; ~p3 over P2. Let us denote them Cl1;Cl2
respectively.

Part II: Extending to D3 and constructing f : S1 ! C.
Now we are going to try to extend our map to the disc. The procedure will be

inductive to the disc’s skeleta. To extend to the 0-skeleton, we will let the points ~pi be

mapped to the corresponding centers of the balls pi.

To extend to the 1-skeleton, we let each 1-simplex be mapped to a minimal geo-

desic segment between previously constructed images of its endpoints.

To extend to the 2-skeleton, consider any 2-simplex ~r2. Its boundary has been

already mapped to a closed piecewise geodesic curve of length at most 2ri þ �. As-

(a)

S1

S2 (b)

S1

S2

Figure 5.
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suming, there is no closed geodesics of length 2maxi ri þ � when � is small, we can use

the Birkhoff curve shortening process to contract this curve to a point without the

length increase. We will map the simplex to the surface generated by the above

homotopy. Likewise, we can extend to any 2-simplex.

We cannot extend this map further to the 3-skeleton, which means that there exists

a 3-cell ~r3, such that H : @~r3 !M is a noncontractible sphere.

In the Case 1: this cell ~r3 can have one of two shapes. It can either be a three-

dimensional simplex (Case 1(a)) or it can be a cell Cl described above (Case 1(b)). We

are going to interprete H : @~r3 !M as a noncontractible loop in C as follows:

Case 1(a): Without loss of generality, assume ~r3 ¼ ½~v0; ~v1; ~v2; ~p1�. Then

@~r3 ¼ ½~v1; ~v2; ~p1� � ½~v0; ~v2; ~p1� þ ½~v0; ~v1; ~p1� � ½~v0; ~v1; ~v2�. Let c1 ¼ ½v1; v2� þ ½v2; p1�þ
½p1; v1�, c2 ¼ ½p1; v2� þ ½v2; v0� þ ½v0; p1�, c3 ¼ ½p1; v0�þ ½v0; v1�þ ½v1; p1�, and finally

c4 ¼ ½v0; v2� þ ½v2; v1� þ ½v1; v0�. We have fixed curve shortening homotopies that

connect curves ci with points qi for i ¼ 1; � � � ; 4. We will denote curves in these

homotopies cit. We will now present a noncontractible loop in the space C:
ðq1; q2Þ � ðc1t; c2tÞ � ðc1; c2Þ � ð½v1; v2�þ ½v2; v0�; ½v0; p1� þ ½p1; v1�Þ and the length of

curves in these homotopies is bounded from above by 4r1 þ 2�. ð½v1; v2�þ ½v2; v0�;
½v0; p1� þ ½p1; v1�Þ � ð�c3;�c4Þ � ð�c3t; �c4tÞ � ðp3; p4Þ � ðq1; q2Þ, and the length of

curves in the homotopy is bounded from above by 2r1 þ 4�. So, we conclude that the

length of curves in the loop f : S1 ! C is bounded from above by 4r1 þ 4�.

Case 1(b): Let r3 be the cell Cl bounded by the suspension of ~p1 and ~p2 over E. We

will represent the map from its boundary to M as a nontrivial loop in C.

Let f~signi¼1 be a sequence of vertices of E, where ~sn ¼ ~s1 and let fsign�1i¼1 be a

corresponding sequence of S. Let ½si; siþ1� be 1-simplices of S, and finally, let

ci ¼ ½siþ1; si� þ ½si; p1� þ ½p1; siþ1�, ri ¼ ½si; siþ1� þ ½siþ1; p2� þ ½p2; si�, where ½si; p1�;
½p1; siþ1�; ½siþ1; p2�; ½p2; si� are minimal geodesic segments connecting corresponding

points and directed from first to the second point. Assume ci is contractible to qi and

ri is contractible to ri without length increase. The nontrivial loop in the space C
follows (see Figure 4). ðq1; r1Þ � ðc1t; r1tÞ (see Figure 4(a) and (b)), and the length of

curves in the homotopy is bounded from above by 2r1 þ 2r2 þ 2�. ðc1t; r1tÞ �
ðc1; r1Þ, (see Figure 4(c)). ðc1; r1Þ � ð½s1; p1� þ ½p1; s2�; ½s2; p2� þ ½p2; s1�Þ, the curve of

length 2r1 þ 2r2, (see Figure 4(d)). The above curve is homotopic to the curve

ð½s1; p1� þ ½p1; s2� þ ½s2; p2� þ ½p2; s1�; q2Þ � ð½s1; p1� þ ½p1; s2� þ ½s2; p2� þ ½p2; s1�; c2tÞ �
ð½s1; p1� þ ½p1; s2� þ ½s2; p2� þ ½p2; s1�; c2Þ (see Figure 4(e) and (f)). The length of

curves in these homotopies is bounded from above by 4r2 þ 2r1 þ �. The above

curve is homotopic to ð½s1; p1� þ ½p1; s3� þ ½s3; s2�; ½s2; p2� þ ½p2; s1�Þ of length at most

2r1 þ 2r2 þ � (see Figure 4(g)). Now this curve is homotopic to the curve

ð½s1; p1�þ½p1; s3� þ ½s3; s2� þ ½s2; p2� þ ½p2; s1�; r2Þ�ð½s1; p1� þ ½p1; s3� þ ½s3; s2�þ ½s2; p2�þ
½p2; s1�; r2Þ � ð½s1; p1� þ ½p1; s3�; ½s3; p2�þ ½p2; s1�Þ (see Figure 4(h)) and the length of

curves in these homotopies is bounded from above by 2r1 þ 4r2 þ 2�. Similarly, we

obtain that ð½s1; p1� þ ½p1; s3�; ½s3; p2� þ ½p2; s1�Þ � � � � � ð½s1; p1� þ ½p1; sn�; ½sn; p2�þ
½p2; s1�Þ, where sn ¼ s1. The last pair of curves is homotopic to ðs1; s1Þ � ðq1; r1Þ.
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Case 2A: There is at least one 3-cell, such that the mapH restricted to its boundary

is a nontrivial sphere. It can either be a ‘small’ cell, like ½~p1; ~vi1 ; ~vi2 ; ~vi3 �, ½~p2; ~wj1 ; ~wj2 ; ~wj3 �
or ½~p3; ~qk1 ; ~qk2 ; ~qk3 � or a ‘large’ cell Cl. If it is a ‘small’ cell one can interpret its

boundary as a loop f : S1 ! C as it was done in Case 1(a). The loop will pass

through the curves of length at most 4ri þ 4�, i ¼ 1; 2; 3. Now suppose it is a ‘large’

cell. Then H : @Cl!M is noncontractible. We will next interprete this sphere as

f : S1 !M.

Let f~signi¼1 be a sequence of vertices of E, such that ~s1 ¼ ~sn. Let f~tjgmj¼1 be a

sequence of vertices of R, such that ~t1 ¼ ~s1 and ~tm ¼ ~sk for some k. Let fsigni¼1
and ftjgmj¼1 be corresponding sequences in M. Let ½p1; si�; ½p2; si�; ½p2; tj�; ½p3; si�; ½p3; tj�
denote minimal geodesic segments in M (see Figure 6). Let

ci ¼ ½p1; siþ1� þ ½siþ1; si� þ ½si; p1� for i ¼ 1; . . . ; n� 1 and assume that it can be con-

tracted to ai without length increase. Let ri ¼ ½p2; si� þ ½si; siþ1� þ ½siþ1; p2� for

i ¼ k; . . . ; n� 1 and suppose it contracts to bi. Let aj ¼ ½p2; tjþ1�þ ½tjþ1; tj� þ ½tj; p2� for
j ¼ 1; . . . ;m� 1 and suppose it contracts to xj. Let xj ¼ ½p3; tj� þ ½tj; tjþ1� þ ½tjþ1; p3�
for j ¼ 1; . . . ;m� 1 and suppose it contracts to yj, and finally, suppose that

bi ¼ ½p3; si� þ ½si; siþ1� þ ½siþ1; p3� for i ¼ 1; � � � ; k� 1 and contractible to zi. A loop

f : S1 ! C will follow. We will begin with a pair of constant maps:

ða1; z1Þ � ðc1; b1Þ � ð½s2; p1� þ ½p1; s1�; ½s1; p3� þ ½p3; s2�Þ � ð½s2; p1� þ ½p1; s1� þ½s1; p3�þ
½p3; s2�; a2Þ � ð½s2; p1� þ ½p1; s1� þ ½s1; p3� þ ½p3; s2�; c2Þ � ð½p1; s1� þ ½s1; p3� þ ½p3; s2�;
½s2; s3�þ ½s3; p1�Þ � ð½p1; s1�þ ½s1; p3� þ ½p3; s2� þ ½s2; s3�þ ½s3; p1�; z2Þ � ð½p1; s1�þ
½s1; p3�; ½p3; s3�þ ½s3; p1�Þ. Notice that the length of curves in this homotopy is

bounded from above by 2ðmaxfr1; r3gþ r1 þ r3 þ �Þ. Similarly, we see that

ð½p1; s1� þ ½s1; p3�; ½p3; s3� þ ½s3; p1�Þ � ð½p1; s1� þ ½s1; p3�; ½p3; sk� þ ½sk; p1�Þ and the

length of curves in the homotopy is still bounded by 2ðmaxfr1; r3g þ r1 þ r3 þ �Þ.
Now note that ð½p1; s1� þ ½s1; p3�; ½p3; sk� þ ½sk; p1�Þ � ð½p1; s1�þ ½s1; p3� þ ½p3; sk�
þ½sk; p1�; akÞ � ð½p1; s1�þ ½s1; p3� þ½p3; sk� þ ½sk; p1�; ckÞ � ð½p1; s1� þ ½s1; p3�
þ½p3; sk�; ½sk; skþ1� þ ½skþ1; p1�Þ � ð½p1; s1� þ ½s1; p3� þ ½p3; sk� þ ½sk; skþ1�þ
½skþ1; p1�; bkÞ �ð½p1; s1�þ½s1; p3�þ½p3; sk� þ ½sk; skþ1� þ ½skþ1; p1�;ckÞ �ð½p1; s1�þ ½s1; p3�þ
½p3; sk�;½sk; p2�þ½p2; skþ1� þ ½skþ1; p1�Þ � � � � �ð½s1; p3�þ ½p3; sk�; ½sk; p2�þ ½p2; s1�Þ, which
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is the same as ð½t1; p3� þ½p3; tm�; ½tm; p2�þ ½p2; t1�Þ. Note that the length of curves in

this homotopy is bounded from above by 2ðmaxfr1; r2g þ r1 þ r2 þ r3 þ �Þ. Simi-

larly, we can show that ð½t1; p3�þ ½p3; tm�; ½tm; p2� þ ½p2; t1�Þ � ð½t1; p3� þ ½p3; tm�
þ½tm; p2� þ ½p2; t1�; x1Þ � ð½t1; p3� þ½p3; tm� þ½tm; p2� þ ½p2; t1�; a1Þ � ð½t1; p3�þ ½p3; tm�þ
½tm; p2�; ½p2; t2�þ ½t2; t1�Þ � ð½t1; p3� þ ½p3; tm�þ ½tm; p2�þ½p2; t2� þ ½t2; t1�; y1Þ �
ð½t1; p3� þ ½p3; tm�þ½tm; p2�þ ½p2; t2� þ ½t2; t1�;x1Þ � ð½t2; p3� þ ½p3; tm�; ½tm; p2� þ ½p2; t2�Þ
� � � � � ð½tm; p3�þ ½p3; tm�; ½tm; p2� þ ½p2; tm�Þ � ðp3; p2Þ � ða1; z1Þ and the length of

curves in the homotopy is bounded from above by 2ðmaxfr2; r3g þ r2 þ r3Þ. We have

thus, constructed f : S1 ! C such that the length of curves through which it passes is

bounded from above by 2ðmaxfr1; r2; r3g þr1 þ r2 þ r3 þ �Þ.
Case 2B: Since, we cannot extend to the 3-skeleton, there should be a 3-cell such

that H : @r3 !M is a noncontractible sphere. This cell can either be a 3-simplex, or

Cl1 or Cl2. In the first case, this sphere correspond to f : S1 ! C that passes through

curves of length at most either 4r1 þ 4� or 4r2 þ 4� or 4r3 þ 4� depending on the type

of the simplex. In the second case the corresponding loop passes through the curves

that are at most 2ðmaxfri1 ; ri2g þ ri1 þ ri2 þ �Þ long and in the third case the length of

curves in the f : S1 !M is bounded from above by 2ðmaxfri2 ; ri3g þ ri2 þ ri3 þ �Þ.
The loop f is constructed exactly as in Case 1(b). Observe that in the situation of

Case 2B, when M is covered by 3 metric balls, two of which do not intersect, we

obtained a somewhat better estimate than in the general case. It coincides with the

estimate provided by Theorem 3, when k=3. For example, if M is covered by balls

of radii d=2; d=2 and d=3 Theorem 4 implies that lðMÞO 11d=3. However, if two of

these balls do not intersect, we can conclude that lðMÞO 3d.
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It remains to show that in all of the cases the constructed loops are non-

contractible. The proof, however is completely analogous to the proof of the same

fact in the Theorem 1. This follows from the fact that the corresponding 2-cycles on

M are not null-homotopic (see also Section 4 of [9] for a proof of a very general

version of the last assertion). Now let � approach 0 and obtain the bound.

Finally, let us look at the general case.

Case 2C: In the general case, when fTig consists of several elements, S1 and fTig
divide M into the domains Di1 ; fMi2;kg

m
k¼1, where Mi2;k � Bi2 for all k ¼ 1; . . . ;m and

fMi3;jg
l
j¼1, whereMi3;j � Bi3 , (see Lemma 5 in the Appendix). Each domain is either a

disc on an annulus. Similarly, decompose S2, and consider the homeomorphism

f : S2 !M, so that the equator E is mapped homeomorphically onto S1, the

southern hemisphere ~D2
1 is mapped homeomorphically to Di1 each interval or circle

~Ti is mapped homeomorphically onto the corresponding Ti and finally each domain:
~M2;k is mapped homeomorphically onto the corresponding Mi2;k and each domain
~M3;j is mapped onto the corresponding Mi3;j. We will try to extend h : S2 !M to the

disc D3 and as an obstruction obtain a noncontractible H : S2 !M, that can be

interpreted as a nontrivial loop in C. In order to perform the extension process D3 is

given the structure of a CW-complex. 0-Skeleton is constructed by placing inside D3,

lþmþ 1 additional vertices that will be denoted ~p1; ~p2;k and ~p3;j. Vertex ~p1 will be

placed below the equator; each vertex of the form ~p2;k will be placed ‘close’ to the

corresponding domain ~M2;k and each vertex of the form ~p3;j will be placed ‘close’ to

the domain ~M3;j. We assume that sphere S2 has a fine triangulation and that all

relevant curves and domains are the subcomplexes. The new vertices ~p1; ~p2;k; ~p3;j
should be constructed so that when they are joined with the vertices of the corre-

sponding domain, the new edges do not intersect, except at the endpoints. The

construction of the 1, 2, and 3-skeleta is similar to that in cases A and B. We next

perform the extension process. To extend to the 0-skeleton, we will map ~p1 to pi1 , ~p2;k
to pi2 for all k ¼ 1; . . . ;m and ~p3;j to pi3 for all j ¼ 1; . . . ; l. The rest of the proof is

quite similar to that in cases A and B, but is more awkward. Therefore we will skip

the details. (

Proof of Theorem 3. The proof of Theorem 3 is completely analogous to Case 1B

in the proof of Theorem 2. The idea is to finely triangulate S2 and then extend this

triangulation to a cell subdivision of D3 with k new vertices ~p1; . . . ; ~pk inside the ball

and ðk� 1Þ cells Cli bounded by suspensions of ~pi and ~piþ1 over parallels on S2 (see

Figure 8). Then proceed as in Case 1(b). (

Appendix

LEMMA 4. Let M be a Riemannian manifold diffeomorphic to the standard 2-sphere.

Let B1 and B2 be two open metric balls that jointly cover M, such that neither B1 nor B2

covers M by itself. Then there exists a set S 2M that is homeomorphic to S1 that

separates M into two discs D2
1 2 B1 and D2

2 2 B2.
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Proof. First, we will show that B1 \ B2 is connected. Consider the

following segment of the reduced Mayer-Vietoris sequence: ~H1ðB1 [ B2Þ !
~H0ðB1 \ B2Þ ! ~H0ðB1Þ 	 ~H0ðB2Þ. Since M is simply connected and both B1;B2 are

connected, ~H0ðB1 \ B2Þ ¼ f0g. Therefore, B1 \ B2 is connected. Next, we will con-

sider another segment of the Mayer-Vietoris sequence:

H2ðB1Þ 	H2ðB2Þ ! H2ðB1 [ B2Þ ! H1ðB1 \ B2Þ. Since, H2ðB1Þ and H2ðB2Þ are

both trivial, and since H2ðB1 [ B2Þ is Z then Z is a subgroup of H1ðB1 \ B2Þ.
Moreover, if we examine the corresponding zig-zag lemma, we will see that the

generator of this subgroup can be represented by a cycle c1 that is a common

boundary of two 2-chains of B1 and B2 that jointly represent the fundamental class

ofM. c1 can be represented by a finite union of simple closed curves faig, which, with
a little modification can be arranged to be pairwise disjoint. If c1 is represented by

one curve only then we are done, since it is then homeomorphic to S1, and thus, by

the Jordan curve theorem separates M into the two discs. Suppose the number of

curves representing c1 is two: a1; a2. Let a1 2 a1 and a2 2 a2. Since, B1 \ B2 is con-

nected, there exists a path P in the intersection that connects the points a1 and a2. It

is possible to find such a1; a2;P that P intersects ai only at ai for i ¼ 1; 2. Now, the

chain ~c1 ¼ a1 [ P [ a2 [ �P is homologous to c1, where �P is P with the opposite

orientation. Since B1 \ B2 is open we can perturb the above curve, so that it will

become simple, and so that the corresponding chain is homologous to the original

chain. The rest of the proof follows by induction on the number of curves. (

LEMMA 5. Let M be a Riemannian manifold diffeomorphic to the standard 2-di-

mensional sphere. Let B1, B2, B3 be three metric balls that jointly cover M, but no two

of them cover M by themselves. Then there exists a set S1 homeomorphic to S1 that

separates M into two discs D2
1 and D2

2
0
, where D2

1 � Bi1 ;D
2
2
0 � Bi2 [ Bi3 , ij 2 f1; 2; 3g,

j ¼ 1; 2; 3, and a finite collection of sets fTig (where each Ti is either homeomorphic to

S1 or the interval) that decomposes D2
2
0
into the collection of discs and annuli, where
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each disc and annulus is a subset of Bi2 or of Bi3 .

Proof. There exists at least one pair of balls with a non-empty intersection. We will

denote them as Bi2 and Bi3 . Let Bi2 [ Bi3 ¼ C. Then by Mayer-Vietoris sequence

there exists a set S1 � Bi1ðpi1Þ \ C homeomorphic to S1 that separates M into two

discs: D2
1 � Bi1ðpi1Þ and D2

2
0 � C. Next, let us denote D2

2
0 \ Bi2ðpi2Þ as K2 and

D2
2
0 \ Bi3ðpi3Þ as K3 and consider the relative Mayer-Vietoris sequences:

H2ðK2;K2 \ S1Þ 	H2ðK3;K3 \ S1Þ ! H2ðD2
2
0
; S1Þ ! H1ðK2 \ K3;K2 \ K3 \ S1Þ.

Since the first term in this sequence is trivial and the second is isomorphic to Z, there

exists a nontivial 1-cycle in the group of the relative chains of the intersection

K2 \ K3, which is a common boundary of the relative 2-chains of K2 and K3, which

sum represents the relative fundamental class of the disc. This 1-cycle can be re-

presented by a finite union of the intervals and circles, and with a small modification

those intervals and circles can be made pairwise disjoint. (
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