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Abstract Let Mn be a closed 2-connected Riemannian manifold, such that
π3(Mn) �= {0}. In this paper we prove that either there exists a periodic geodesic
on Mn of length ≤ 6d, where d is the diameter of Mn, or at each point p ∈ Mn there
exists a geodesic loop of length ≤ 2d.

Introduction and main results

In 1951, L. Lusternik and A. Fet proved that on any closed Riemannian manifold
there exists at least one periodic geodesic. Their proof uses Morse theory on the space
�Mn of all continuos maps f : S1 −→ Mn. In a similar way one can show that at
every point p of a closed Riemannian manifold there exists a non-trivial geodesic
loop based at that point. The later statement also follows from a well-known result by
Serre [19] that states that for any two points of a closed Riemannian manifold there
exist infinitely many geodesics connecting them.

It is, therefore, reasonable to ask whether there is a connection between the length
of a shortest periodic geodesic/geodesic loop at a point and other geometric param-
eters of a manifold. For example, in 1983 M. Gromov asked whether one can bound

above the length of a shortest periodic geodesic l(Mn) on Mn by c(n)vol(Mn)
1
n , where

vol(Mn) is the volume of Mn and c(n) is a constant that depends on the dimension
of Mn only, (see [7, p. 135]). A similar question can be asked about the relationship
between l(Mn) and the diameter of a manifold d. In particular, one can state the
following
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Conjecture A Let Mn be a closed Riemannian manifold of dimension n. There exists
a periodic geodesic of length ≤ c̃(n)d, where d is the diameter of the manifold.

Moreover, it is possible that the length of a shortest periodic geodesic is always
bounded by 2d.

Similarly, one can conjecture

Conjecture B Let Mn be a closed Riemannian manifold of dimension n. Then there
exists a geodesic loop of length ≤ 2d, where d is the diameter of Mn at every point
p ∈ Mn.

Theorem 0.1 below asserts that for every closed Riemannian manifold with
π1(Mn) = π2(Mn) = {0} and π3(Mn) �= {0} either the conclusion of Conjecture
A or the Conjecture B is true.

In Rotman [14] we have established that for every point p ∈ Mn the length of a
shortest geodesic loop at p, where Mn is a closed Riemannian manifold of dimension
n is bounded by 2nd and even ≤ 2qd, where q = min{i : πi(Mn) �= {0}}. However, the
question about whether the length of a shortest geodesic loop is bounded by 2d at
each point of Mn still remains unanswered for simply connected manifolds, even when
Mn is diffeomorphic to S2 and even in the case of convex metrics on a 2-dimensional
sphere.

Note that prior to Rotman [14] there existed only the result of Sabourau [18] assert-
ing that the shortest length of a non-trivial geodesic loop on the whole manifold is
≤ k̃(n)d, where k̃(n) = (8·3n−2)d

3 . In this case the base point p is not prescribed.
We would also like to mention that the length of a shortest geodesic loop cannot

be uniformly bounded in terms of the volume of a manifold at each point p ∈ Mn.
That is, there does not exist a constant k(n), such that lp(Mn) is bounded above by

k(n)vol(Mn)
1
n for every p ∈ Mn. As an example consider an ellipsoid E that is also a

surface of revolution, that is a surface generated by an ellipse that is rotated around its
major axis. Let R denote its polar radius and p ∈ E be its north pole. All the geodesic
loops based at p are ellipses, (in this case the geodesic loops also happen to be periodic
geodesics) (see Fig. 1). Therefore, when the smaller semiaxis is fixed and R goes to
infinity, the ratio lp(E)√

A(E)
approaches infinity as well.

However, one can estimate the shortest length of a geodesic loop on the whole
manifold by volume, as it was first indicated by Sabourau [18].

It is easy to see to prove the following

Observation C Let Mn be a non-simply connected closed Riemannian manifold. Then
both the length of a shortest periodic geodesic and the length of a shortest geodesic loop
at each point p ∈ Mn are bounded by twice the diameter of a manifold.

Proof Let us begin by taking an arbitrary non-contractible map f : S1 −→ Mn, where
S1 is subdivided into small segments, in such a way that the diameter of each edge
in the triangulation of f (S1) induced by f is smaller than some small positive δ. Let
D2 be the 2-disc that is triangulated as a cone over the triangulation of S1. We will
attempt to extend f : S1 −→ Mn to D2, which is impossible. Thus, as an obstruction
to this extension we will obtain a non-contractible loop based at a prescribed point
p ∈ Mn of length ≤ 2d + δ. Then we can obtain a non-contractible periodic geodesic
by minimizing the length in the free homotopy class of the loop. We can also obtain
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Fig. 1 There is no uniform
volume bound for the length of
a shortest geodesic loop at a
point

R

p

l  (E)p

a non-contractible geodesic loop based at p by shortening this loop while keeping
p fixed. The extension process will be inductive on skeleta of D2. Let us begin by
extending to the 0-skeleton of D2. The center of the disc p̃ ∈ D2 is the only additional
vertex of D2, (the rest of the vertices are coming from S1). We will map p̃ to the point
p ∈ Mn. Next we will extend to the 1-skeleton. Consider an edge [p̃, ṽi], where ṽi is the
vertex in the triangulation of S1. We will map this edge to a minimal geodesic segment
[p, vi] connecting the point p with vi = f (ṽi). Finally, we will extend to the 2-skeleton
of D2. Take a 2-simplex [p̃, ṽi, ṽi+1]. The boundary of this simplex is mapped to a
closed curve of length ≤ 2d + δ, made of two minimizing geodesic segments and a
“small” edge [vi, vj] of length ≤ δ.

The map of the boundary of at least one of such simplices must be non-contractible,
since, otherwise, we could have extended f : S1 −→ Mn to the whole disc D2. Thus,
we obtain a non-contractible loop based at p of length ≤ 2d + δ.

Letting δ approach 0 we obtain a non-contractible loop based at p of
length ≤ 2d. ��

We would like to note in passing that there are numerous volume estimates for the
length of a shortest periodic geodesic on non-simply connected manifolds, especially
in the case of surfaces. The first such results are due to C. Loewner, P. Pu, followed by
R. Accola, C. Blatter, C. Bavard, Ju. Burago and V. Zalgaller, J. Hebda, T. Sakai and
others (see [3,6]) M. Gromov’s generalized the above results for the class of 1-essen-
tial manifolds, which include all aspherical manifolds as well as manifolds homotopy
equivalent to real projective spaces.

In the case of simply connected manifolds, the only curvature-free estimates exist
for manifolds diffeomorphic to the 2-dimensional sphere ([2,4,8,9,12,13,17]). In par-
ticular, these results imply Conjecture B for surfaces.

At present there are no known similar curvature-free upper bounds for the length of
a shortest closed geodesic l(Mn) in the general case of a closed Riemannian manifold
Mn, though such bounds do exist for stationary 1-cycles and geodesic nets ([10,15,16]),
and minimal surfaces ([11]). Moreover, one does not know if the length of a shortest
periodic geodesic can be estimated in terms of diameter or volume for any diffeomor-
phism type of simply-connected manifold Mn for n ≥ 3.

Even for a manifold diffeomorphic to S3 the only known estimate is that of Croke
([5]), who found that on a manifold Mn diffeomorphic to S3 the volume is bounded
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below by min{l(Mn), D(Mn)}, where D(Mn) is the minimal distance between the antip-
odal points.

In this paper we will prove the following

Theorem 0.1 Let Mn be a 2-connected closed Riemannian manifold with a non-trivial
3rd homotopy group. (For example, Mn can be diffeomorphic to S3). Then either the
length of a shortest periodic geodesic on Mn is bounded above by 6d, or at each point
p ∈ Mn there exists a geodesic loop of length ≤ 2d.

In particular, we obtain curvature-free upper bounds for the min{β(Mn), l(Mn)},
where β(Mn) denotes the supremum of the length of a shortest geodesic loop at p
taken over all of p and l(Mn) denotes the length of a shortest periodic geodesic on
Mn.

Balacheff [1] proved an analog of our result in the case of simply connected mani-
fold Mn with a non-trivial second homotopy group. He showed that in this case, either
there exists a periodic geodesic of length ≤ 4d or for every p ∈ Mn there exists a
geodesic loop of length ≤ 2d based at p. In Rotman [14] we strengthened his result
by showing that on closed Riemannian manifolds with a non-trivial second homology
group with no periodic geodesics of length ≤ 4d for every p ∈ Mn there exists at least
three geodesic loops of length ≤ 2d based at p.

The proof of our theorem uses a modified version of Gromov [7] extension tech-
nique. It also uses our technique of contraction of k-spheres in Mn (in our case, for
k ≤ 3) using continuous homotopies of 1-dimensional objects. Note that the homoto-
pies do not use sweep-outs of spheres by these 1-dimensional objects. As in Rotman
[14] the proof will make a repeated use of Lemma 1.1 and of the following well-known

Observation D Let Mn be a complete Riemannian manifold. Let p ∈ Mn. Suppose
that the length of a shortest periodic geodesic l(Mn) is greater than L. Then given any
piecewise differentiable closed curve γ : S1 −→ Mn, of length ≤ L there exists a length
decreasing homotopy Hγ contracting γ to a point that depends continuously on a curve
γ . (In other words the space of closed curves of length ≤ L on Mn can be contracted
to Mn, regarded as the space of closed curves of length 0 on Mn by a homotopy that
decreases lengths.) Moreover, the homotopy Hγ can be chosen so that closed curves
obtained during this homotopy are geometrically the same, but have opposite orienta-
tion when compared to the curves obtained during the homotopy Hγ contracting the
curve −γ (t) = γ (1 − t).

A standard proof of this assertion involves the Birkhoff curve-shortening process,
(cf. [4] for the details).

The starting point for the proof of Theorem 0.1 will be a non-contractible map
f : S3 −→ Mn from the standard sphere with a fine triangulation, that we will then
try to extend to D4 triangulated as a cone over S3. That will be done by induction on
the skeleta of D4. Technically, the main difference with the approach of Rotman [14]
will be in the way we extend to the 4-skeleton of D4. We would like to note that a
similar technique will not lead to a similar estimate for the length of a shortest peri-
odic geodesic in the case of a closed Riemannian manifold without other topological
restrictions, as it will require a stronger assumptions about the length of a geodesic
loops (other than that their length is > 2d at some point p ∈ Mn).
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Fig. 2 Curves γ1 and γ2 are path homotopic

1 The proof of Theorem 0.1

Lemma 1.1 Let Mn be a Riemannian manifold.
Let γ1(t), γ2(t) be two curves connecting the points p, q ∈ Mn of lengths l1, l2 respec-

tively. Consider a (not geodesic) loop based at p γ2 ∗ −γ1, that is a product of γ2 and
−γ1. If this loop is contractible to p by a path homotopy (that is, as a loop based at p)
without the length increase then there is a path homotopy (that is a homotopy that fixes
the end points) Hτ (t), τ ∈ [0, 1], such that H0(t) = γ1(t), H1(t) = γ2(t) and the length of
curves during this homotopy is bounded above by 2l1 + l2.

Proof Let H̃τ (t) denote a homotopy that connects γ2 ∗ −γ1 with a p (see Fig. 2a, b).
Then below is a path homotopy between γ1(t) and γ2(t) satisfying the required prop-
erties. γ1 ∼ H̃1−τ ∗γ1 ∼ γ2 ∗−γ1 ∗γ1 ∼ γ2 (see Fig. 2a–g). The length of curves during
this homotopy is ≤ 2l1 + l2. ��

(A similar argument is used by Croke [4] to prove Lemma 3.1.)

Proof of Theorem 0.1 Let f : S3 −→ Mn be a non-contractible map from the
3-dimensional sphere S3 that is triangulated so that the diameter of simplices in
the triangulation of f (S3) induced by f is smaller than some positive small δ. Let D4

denote the 4-disc triangulated as a cone over the triangulation of S3. The proof will
be by contradiction. Assume that l(Mn) > 6d and that lp(Mn) > 2d at some point p
of Mn. We will extend f to D4, thus reaching a contradiction. Firstly, we will extend f
to the 0-skeleton of D3. Let p̃ ∈ D3 be the center of this disc. We will let the image of
p̃ be the given point p ∈ Mn. Secondly, we will extend to the 1-skeleton by assigning
to an edge [p̃, ṽi] that connects the center of the disc with the vertex ṽi a minimal geo-
desic segment [p, vi] that connects the point p with the vertex vi = f (ṽi). Next we will
extend to the 2-skeleton. Take an arbitrary 2-simplex σ̃i = [p̃, ṽi1 , ṽi2 ]. Its boundary
∂σ̃ 2

i = [p̃, ṽi1 ] − [p̃, ṽi2 ] + [ṽi1 , ṽi2 ] is mapped to a closed curve of length ≤ 2d + δ by
the previous step of the extension procedure. Using our assumption that the length of
a shortest periodic geodesic is greater than 2d + δ, this closed curve can be contracted
to a point by a length-decreasing homotopy.

The 2-simplex is then mapped using this homotopy Its image will be denoted
as σ 2

i . At the next step we will extend to the 3-skeleton. Take an arbitrary 3-sim-
plex σ̃ 3

i = [p̃, ṽi1 , ṽi2 , ṽi3 ]. By the previous step of the extension, its boundary ∂σ̃ 3
i =

∑3
j=0(−1)j[ṽi0 , . . . ˆ̃vij , . . . , ṽi3 ], where ṽi0 = p̃. We will denote [p̃, ṽij ] = ẽj and [p, vij ]

as ej. Since [vi1 , vi2 , vi3 ] can be made arbitrarily small we will pretend here that it is a
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point q for the sake of simplicity of the exposition. The details of why it is possible to
treat small simplices as points will be explained in the remark.

Consider the image of its 1-skeleton. It consists of the three edges e1, e2, e3. Here
is the main idea behind the extension to the 3-skeleton:

1. In order to extend to the 3-skeleton, it is necessary to contract f |∂σ̃ 3
i

to a point.
2. This homotopy can be viewed as a 1-parameter family of 2-spheres, that begins

with f (∂σ̃ 3
i ) and ends with a point.

3. Here is how we will obtain this 1-parameter family of spheres. We will begin with
the 1-skeleton formed by e1, e2, e3 and will apply Lemma 1.1. This lemma allows us
to “move” e1 to e2, thus resulting in a 1-parameter family of “skeleta”. Using this
family, we construct a 2-sphere that “fills” any given skeleton, by gluing the three
discs, that are obtained by contracting three pairs of curves without the length
increase.

More specifically, by assuming that there are no “short” periodic geodesics and
no “short” geodesic loops based at p, we can contract f : ∂σ̃ 3

i −→ Mn to a point as
follows:

By our assumption, there is no geodesic loops based at p of length ≤ 2d. Therefore,
we can apply Lemma 1.1 to conclude that there is a path homotopy between e1 and e2
that passes through curves eτ12 , 1 ≤ τ12 ≤ 2 of length ≤ 3d. Now, let us define S2

τ12
. Take

the two points p and q joined by two geodesic segments e2, e3 and the curve eτ12 , that
now replaces e1 in the 1-skeleton of the future sphere S2

τ12
, (see Fig. 3a). Furthermore,

we have assumed that there is no periodic geodesics of length ≤ 4d(< 6d), therefore,
both curves e2 ∗−eτ12 and eτ12 ∗−e3 are contractible to a point by the length decreasing
homotopies mentioned in Observation D, (e.g. by the Birkhoff curve-shortening pro-
cess). Let us call the discs obtained during these homotopies (D2

2)τ12 , (see Fig. 3b) and
(D2

3)τ12 , respectively. These discs change continuously with τ12. This is due to the fact
that in the absence of “short” periodic geodesics, the length-decreasing homotopy is
continuous with respect to the initial curve.



Geodesic loops and periodic geodesics on a Riemannian manifold diffeomorphic to S3 433

S2
τ12

is obtained by gluing the three discs: σ 2
i0,i2,i3 , (D2

2)τ12 and (D2
3)τ12 along their

boundaries, just as we glue simplices in the boundary of a 3-dimensional simplex,
where one of the simplices is a point.

Note that at the time τ12 = 1, S2
τ12

is the original sphere and at the time τ12 = 2 it
is a sphere that is essentially obtained from two discs that are geometrically the same,
but have opposite orientations, which are then glued along their common boundary.
That is, we begin with two points p and q, join them with three segments two of which
coincide: e2, e2, e3. Next obtain three discs, one of which is degenerate: it is obtained
by contracting a curve e2 ∗ −e2 along itself. As it is mentioned above, the other two
discs coincide, but have opposite orientation: one is obtained by contracting e2 ∗ −e3
and the second one, by contracting e3 ∗−e2 (see Fig. 3c). So, obviously, the sphere that
we obtain is contractible along itself. Thus, we obtain a homotopy between f |∂(σ̃ 3

i ) ans
a constant map. We will map simplex σ̃ 3

i using the above homotopy.
Let us denote the image of a 3-simplex σ̃ 3

i0,...,i3 = [ṽi0 , ṽi1 , . . . , ṽi3 ], where ṽi0 = p̃ by
σ 3

i0,...,i3 .
Finally, we will extend our map to the 4-skeleton. Let us consider an arbitrary sim-

plex σ̃i0,i1,i2,i3,i4 = [p̃, ṽi1 , ṽi2 , ṽi3 , ṽi4 ]. Its boundary is mapped to the following 3-sphere
∑4

j=0(−1)jσi0,...,îj,...,i4 .
Here are the main ideas behind the extension to the 4-skeleton:

1. In order to extend to the 4-skeleton, it is necessary to construct the homotopy
that contracts this sphere to a point. Again, without loss of generality, assume that
simplex [vi1 , . . . , vi4 ] is so small that it can, for our purposes, be treated as a point
q. Each of the four edges [p, vij ] will be denoted by ej.

2. This homotopy can be viewed as a 1-parameter family of 3-spheres, that starts with
the sphere f (∂σ̃ 3

i ) and ends with a point.
3. This 1-parameter family is constructed as follows: We consider the 1-skeleton that

consists of the edges e1, e2, e3, e4 and apply Lemma 1.1 to “move” e4 to e3. This
corresponds to a 1-parameter family of 1-skeleta. During the previous step we have
already learned how to construct 3-discs from 1-skeleton. The desired 3-spheres
are constructed by generating four 3-discs, that are then glued as in the boundary
of a 4-simplex, (taking into account that the fifth disc is just a point).

Here are the details of the proof.
By applying Lemma 1.1 we can see that e4 is homotopic to e3 by a path homotopy

along the curves eτ43 , 1 ≤ τ43 ≤ 2 of length ≤ 3d. This results in a 1-parameter family
of curves. Let us consider the new 1-skeleton of the future 3-sphere S3

τ43
in which

eτ43 has replaced e4. For each τ43 we will then construct a 3-sphere that “fills” the
new 1-skeleton. Than we will construct a 1-parameter family of 3-spheres S3

τ43
that

continuously depends on τ43. This family of spheres will generate the required 4-disc.
The sphere S3

τ43
will be made of four discs (D3

i )τ43 , i = 1, 2, 3, 4 that will be glued as
four simplices in the boundary of the 4-simplex, in which the fifth simplex is taken to
be a point.

As τ43 will change from 1 to 2 the disc (D3
1)τ43 will be constantly equal to σ 3

i1,i2,i3 .
Next, let us construct (D3

3)τ43 . This will be done by taking two points p, q, connected
by three segments: e1, e2, eτ43 , (see Fig. 4a), by constructing a 2-sphere that “fills” this
1-skeleton and, finally, by constructing a family of spheres that begins with this given
sphere and ends with a point. A sphere S2

τ43
is constructed, of course, by considering

the three closed curves that result from e1, e2, eτ43 and by contracting each to a point
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without the length increase, using the assumption that all the periodic geodesics are
“long”.

Just as we have done when we extended the map f to the 3-skeleton, we can
continuously deform this sphere to a point as follows:

1. We have constructed S2
τ43

by taking three closed curves e2 ∗−e1, eτ43 ∗−e2, e1 ∗−eτ43

and contracting them to a point, (see Fig. 4b).
2. At the next step we will apply Lemma 1.1 again. It implies that there exists a path

homotopy that connects e1 with e2 along the curves eτ12 , 1 ≤ τ12 ≤ 2 of length ≤ 3d.
This is due to the fact, that the loop e2 ∗ −e1 is contractible to p without the length
increase, (see Fig. 4c), since all the loops based at p have length greater than 2d.

3. As e1 moves to e2, we construct a family of 2-dimensional spheres S2(τ12, τ43) that
continuously depends on τ12 and that coincides with S2

τ43
, when τ12 = 1. That is, we

consider a 1-skeleton consisting of eτ12 , e2, eτ43 and we obtain a 2-sphere by gluing
the three discs that result by length-decreasing homotopies contracting the three
closed curves obtained from this 1-skeleton to a point. This is analogous to the
first step, but applied to eτ12 , e2, eτ43 instead of e1, e2, eτ43 . Note that when τ12 = 2,
we obtain a sphere, consisting essentially of a 2-disc taken twice with the opposite
orientation, that can be contracted to a point. This family of spheres corresponds
to a 3-disc (D3

3)τ43 . Note that at τ43 = 1 it is σ 3
i1,i2,i4 and at τ43 = 2 it is −σ 3

i1,i2,i3 .
4. The other two discs (D3

2)τ43 and (D3
1)τ43 are similarly constructed. (D3

2)τ43 is con-
structed by “filling” the 1-skeleton that consists of e1, e3, eτ43 and (D3

1)τ43 is con-
structed by “filling” the 1-skeleton that consists of e2, e3, eτ43 . Note that at the time
τ43 = 2, both (D3

2)2 and (D3
1)2 degenerate into two discs of dimension 2 that are

geometrically the same, but have opposite orientation that are contracted to a
point along themselves.

5. We finally, glue the four 3-discs to obtain a sphere S3
τ43

. Note that S3
1 is the original

sphere and S3
2 is a sphere that is obtained by gluing σ 3

i1,i2,i3 and −σ 3
i1,i2,i3 , and so it

is contractible to a point. We will map σ̃ 4
i0,...,i4 to the disc σ 4

i0,...,i4 generated by this
family of 3-spheres. We have, thus, extended the map to the 4-skeleton, reaching a
contradiction. ��
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homotopy connecting three correspond

Remark. Here we explain why we can treat small simplices coming from the fine
triangulation of Sk as points, (in our case k = 2 or 3).

The explanation will be provided only in the two-dimensional case. It is, however,
similarly true for k = 3. Let us look at a 2-sphere that is constructed from a small
singular 2-simplex [vi1 , vi2 , vi3 ] in Mn and a point p ∈ Mn as follows: Connect the point
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p with vij , j = 1, 2, 3 by some minimal geodesic segments ej, j = 1, 2, 3. Next contract
each of the three closed curves ej +[vij , vij mod 3+1 ]− ej mod 3+1, where j = 1, 2, 3 without
the length increase, (see Fig. 5c).

In order to construct a new sphere S1, take a point q ∈ [vi1 , vi2 , vi3 ] and con-
nect it with each vertex vij by a small segment σj in [vi1 , vi2 , vi3 ], j = 1, 2, 3. Define
e∗

j = ej ∗ σj, j = 1, 2, 3.
The closed curves of the form e∗

j mod 3+1 ∗ −e∗
j are contractible to a point without

length increase, thus generating the three discs. Gluing them as in the boundary of a
3-simplex results in S1, (see Fig. 5d).

Also Lemma 1.1 can be applied to the digons e∗
j mod 3+1 ∗ −e∗

j , j = 1, 2, 3 that are
contractible as loops to p without length increase and thus, e∗

j is path homotopic to
e∗

j mod 3+1 and the length of curves in this path homotopy is bounded by 3d + 3δ.
One can easily show that S0 and S1 are homotopic, when δ is small enough. The

intermediate spheres St are depicted on Fig. 6. Therefore, if S1 is not contractible S0
is not contractible as well.
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