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THE LENGTH OF A SHORTEST GEODESIC LOOP AT

A POINT

Regina Rotman

Abstract

In this paper we prove that given a point p ∈ Mn, where Mn

is a closed Riemannian manifold of dimension n, the length of a
shortest geodesic loop lp(M

n) at this point is bounded above by
2nd, where d is the diameter of Mn. Moreover, we show that on
a closed simply connected Riemannian manifold Mn with a non-
trivial second homotopy group there either exist at least three
geodesic loops of length less than or equal to 2d at each point of
Mn, or the length of a shortest closed geodesic on Mn is bounded
from above by 4d.

Introduction and main results

Let Mn be a closed Riemannian manifold of dimension n. In 1983,
M. Gromov asked whether one can bound above the length of a shortest

closed geodesic l(Mn) on Mn by c(n)vol (Mn)
1

n , where vol (Mn) is the
volume of Mn and c(n) is a constant that depends on the dimension
of Mn only. A similar question can be asked about the relationship
between l(Mn) and the diameter d of a manifold. The fact that on each
manifold there exists a closed geodesic was shown by L. Lusternik and
A. Fet. A similar argument shows that there exists a geodesic loop at
each point of a closed Riemannian manifold. So, one can also ask if
there exists a constant k(n) such that for each point p ∈ Mn, the length
of a shortest geodesic loop lp(M

n) at this point is bounded above by
k(n)d. Note that, although it is quite easy to see that lp(M

n) ≤ 2d in
the case of a closed Riemannian manifold that is not simply connected,
this is not true in general, as it was recently shown by F. Balacheff, C.B.
Croke, and M. Katz in [BlCK].

Note also, that for no constant C(n) we can bound above lp(M
n)

by C(n)vol (Mn)
1

n for every p ∈ Mn. For example, consider a prolate
ellipsoid E that is an ellipsoid generated by an ellipse rotated around its
major axis. Let us denote its polar radius by R. Let p ∈ E be the north
pole of E. Then all geodesics and, thus, geodesic loops passing through

Received 03/23/2007.

497



498 R. ROTMAN

p are ellipses (see Fig. 1). Therefore, the ratio
lp(E)√
A(E)

will approach

infinity as R goes to infinity and the smaller semiaxis is fixed.

R

p

l  (E)p

Figure 1. Prolate Ellipsoid.

Here is the main result of our paper.

Theorem 0.1. Let Mn be a closed Riemannian manifold of dimen-

sion n. Let q denote the smallest integer for which πq(M
n) 6= {0}. Then

for each p ∈ Mn there exists a geodesic loop based at p of length ≤ 2qd,

where d is the diameter of Mn. In particular, the length of a shortest

geodesic loop based at p is ≤ 2nd.

A related problem is the problem of estimating the length of a shortest
geodesic loop, α(Mn) on a closed Riemannian manifold Mn without
fixing a basepoint. The first such curvature-free estimates were obtained
in 2004 and are due to S. Sabourau, who established that α(Mn) is

bounded above by c(n)vol (Mn)
1

n for some constant c(n) that was not
explicitely calculated in his paper [S2]. He also demonstrated that

α(Mn) ≤ (8·3n
−2)d
3 . Our estimate for the length of a geodesic loop

in terms of the diameter is, however, qualitatively different from that
of Sabourau, since we estimate the length of a geodesic loop at each
point of a manifold, whereas Sabourau shows that there exists a point,
at which the length of a geodesic loop can be estimated. In this paper
we obtain an estimate for α(Mn) in terms of the Filling Radius of Mn.
The following definition is due to M. Gromov (see [G]).

Definition 0.2 (Filling Radius). Let M be a Riemannian manifold
topologically imbedded into an arbitrary metric space X. Then the
filling radius FillRad (M ⊂ X) is the infimum of ε > 0, such that M

bounds in the ε-neighborhood Nε(M), that is i∗(Hn(Mn)) = {0}, where
i∗ is induced by inclusion i : Mn −→ Nε(M

n) and where Hn(Mn) is
taken with coefficients in Z, when Mn is orientable, and with coeffi-
cients in Z2, when Mn is nonorientable. Filling Radius of an abstract
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Riemannian manifold is FillRad (M ⊂ X), where X = L∞(M), i.e., the
Banach space of bounded Borel functions f on M , and the embedding
of M into X is a map that to each point p of M assigns a distance
function p −→ fp = d(p, q) (see [G]). Equivalently, FillRadM can be
defined as the infimum of FillRad (M ⊂ X) over all metric spaces X

and isometric embeddings of M into X.

Theorem 0.3. Let Mn be a closed Riemannian manifold. Then the

length of a shortest geodesic loop, α(Mn) on Mn, is bounded above by

c(n)FillRadMn, where c(n) = 3 · 4n−1.

The volume inequality then follows from the previous theorem and
from the volume upper bound for the filling radius due to Gromov.

Corollary 0.4. Let Mn be a closed Riemannian manifold Mn. Then

the length of a shortest geodesic loop α(Mn) ≤ 3 · 4n−1(n + 1)nn(n +

1)!
1

2 vol (Mn)
1

n , where vol (Mn) is the volume of Mn.

Proof. This corollary immediately follows from the above theorem
and from Gromov’s estimate for the filling radius of Mn in terms of the

volume of Mn, namely FillRadMn ≤ (n + 1)nn(n + 1)!
1

2 vol (Mn)
1

n (see
[G]). �

This corollary provides an explicit value for the constant in the in-

equality α(Mn) ≤ const (n)vol (Mn)
1

n . We believe that this value is
better than the one that can be obtained after some computations us-
ing the methods of [S2]. Our proof is also simpler than the proof in
[S2], as it does not involve the results from [GrP].

At present, there do not exist similar curvature-free upper bounds for
the length of a shortest closed geodesic l(Mn) in the general case of a
closed Riemannian manifold Mn, though such bounds do exist for sta-
tionary 1-cycles, ([NR2]) and minimal surfaces, ([NR3]), as well as for
some topological types of Riemannian manifolds, namely, 2-dimensional
sphere, ([C, M, S1, NR1, R1, R2]), and 1-essential manifolds, ([G]).
(Gromov’s estimate generalizes results of many people, who worked on
estimating systoles in case of surfaces, namely, C. Loewner, P. Pu, R.
Accola, C. Blatter, C. Bavard, T. Sakai, Ju. Burago and V. Zalgaller,
J. Hebda and others (see [BZ], [CK])). Thus one of the central prob-
lems in this subject remains to find upper bounds of similar nature for
l(Mn). With this goal in mind, we will prove the following theorem.

Theorem 0.5. Let Mn be a simply connected closed Riemannian

manifold with π2(M
n) 6= {0}. Then either the length of a shortest closed

geodesic is bounded above by 4d, or at each point of Mn there exist three

distinct geodesic loops based at that point of length bounded above by 2d.

One can view this theorem in the following way: unless there are
three geodesic loops of length ≤ 2d based at each point of Mn, which
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seems to be unlikely for many Riemannian manifolds, there exists a
closed geodesic of length ≤ 4d. This theorem strengthens a previous
result by F. Balacheff, (see [Bl]).
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thor’s visit of the Max-Planck Institute at Leipzig. The author would
like to thank the Max-Planck Institute for its kind hospitality. The
author gratefully acknowledges a partial support of Natural Sciences
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DMS-0604113 during her work on the present paper. The author is also
most grateful to the anonymous referee for the helpful suggestions with
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1. The proof of Theorem 0.1: The basic ideas

We will begin with the two simple lemmas. The following is a basic
Morse-theoretic type lemma.

Lemma 1.1. Let Mn be a complete Riemannian manifold. Let p ∈
Mn. Suppose that the length of a shortest geodesic loop lp(M

n) based

at p is greater than L. Then given any piecewise differentiable closed

curve γ : [0, 1] −→ Mn of length ≤ L such that γ(0) = γ(1) = p, there

exists a length decreasing path homotopy that connects this curve with p.

Moreover, this homotopy depends continuously on a curve γ. In other

words, the space of loops of length ≤ L based at p is contractible.

Proof. A standard way to prove the assertion of the lemma is via the
Birkhoff curve shortening process (BCSP), which is an explicit length
nonincreasing deformation of the space of loops based at p of length
≤ L, to the space of constant loops. One can find a detailed description
of the BCSP for closed curves in [C]. The BCSP for loops is completely
analogous. One just keeps the end points fixed. �

Lemma 1.2. Let Mn be a Riemannian manifold. Let p, q ∈ Mn. Let

γ1(t), γ2(t) be two curves connecting the point p to the point q of lengths

l1, l2 respectively. Consider the curve γ2∗−γ1, that is a product of γ2 and

−γ1. This curve is a loop based at p. If this loop is contractible to p by a

path homotopy along the curves of length ≤ l1 + l2, then there is a path

homotopy hτ (t), τ ∈ [0, 1], such that h0(t) = γ1(t), h1(t) = γ2(t) and

the length of curves during this homotopy is bounded above by 2l1 + l2.

(Note that by a path homotopy we mean a homotopy that fixes the end

points of a curve.) Moreover, when Mn has no geodesic loops of length

≤ l1 + l2, this path homotopy can be made to continuously depend on a

digon formed by γ1 and γ2. Alternatively, we can find a path homotopy

with the same properties in which the length of curves is bounded by

l1 + 2l2.
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Proof. Let h̃τ (t) be a homotopy that connects γ2 ∗ −γ1 with a point p

(see Fig. 2 (a) and (b)). Then let us consider the following homotopy

γ1 ∼ h̃1−τ ∗ γ1 ∼ γ2 ∗ −γ1 ∗ γ1 ∼ γ2 (see Fig. 2 (a)-(g)). The length of
curves during this homotopy is ≤ 2l1 + l2.

Note that, assuming there are no geodesic loops of length ≤ l1 + l2,
one can contract γ2 ∗ −γ1 via the BCSP, which will then continuously
depend on the initial curve (see Lemma 1.1). Thus, the path homotopy
between γ1(t) and γ2(t) will also continuously depend on the initial
digon.

The last assertion follows from the fact that we can reverse the role
of l1 and l2 and construct a path homotopy between l2 and l1 passing
through curves of length l1 + 2l2. Then we reverse the direction of
this path homotopy, obtaining a path homotopy from l1 to l2 with the
required properties.

γ1(t) γ2 (t)

p

q

γ2(t)γ1(t) γ2 ∗ _ γ1

p

q

h   (t)τ
~

(c) (d) (e) (f) (g)

(a) (b)

Figure 2. Illustration of the proof of Lemma 1.2.

�

(A similar argument is used by C.B. Croke to prove Lemma 3.1 in
[C].)

Let us first provide a short explanation of the proof of Theorem 0.1.
The proof of Theorem 0.3 will be similar.

Note that in the case of a manifold with π1(M
n) 6= {0} (which is

the case of Theorem 0.1 in which q = 1), there are many easy and
well-known proofs. For instance, given a closed Riemannian manifold
Mn with a nontrivial fundamental group and a point p ∈ Mn, one
can consider its universal covering space E together with the covering
metric. Consider two distinct points p1, p2 ∈ π−1(p) from the adjacent
fundamental domains, where π : E −→ Mn is a covering map. Join
two points by a minimal geodesic in the covering space of length ≤ 2d,
where d is the diameter of Mn. This geodesic segment projects to a
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geodesic loop based at p of length ≤ 2d. Another proof, as suggested by
the referee, goes as follows: consider a shortest noncontractible geodesic
loop based at a fixed point p ∈ Mn. Suppose that its length L > 2d, and
connect the midpoint of the loop with p by a shortest geodesic segment
of length ≤ d. We thus obtain two loops based at p, each of length < L,
at least one of them noncontractible, and reach a contradiction with the
assumption that the original loop was shortest.

We will, however, present a different, thought slightly more compli-
cated, proof of the lemma, which is more indicative of what will happen
in higher dimensions.

Lemma 1.3. Let Mn be a closed Riemannian manifold with a non-

trivial fundamental group. Then at each point p ∈ Mn there exists a

geodesic loop of length ≤ 2d.

Proof. Consider any non-contractible map f : S1 −→ Mn. Suppose
S1 is partitioned (triangulated) into very small segments, so that the
diameter of each edge in the induced triangulation on f(S1) is smaller
than some δ > 0. Let D2 be the standard disc that is triangulated as
a cone over S1. Assume that for some p ∈ Mn the length of a shortest
geodesic loop lp > 2d + δ. We will show that in this case we can extend
f : S1 −→ Mn to D2, thus reaching a contradiction with the fact that
this map is non-contractible. The extension procedure will be inductive
to skeleta of D2. The 0-skeleton of D2 consists of one additional simplex,
namely, the center of the disc that we will denote by p̃. We will let
f(p̃) = p. Next to extend to the 1-skeleton, consider an arbitrary edge
of the form [p̃, ṽi], where ṽi is a vertex of the triangulation of S1. We
will assign to this edge a minimal geodesic segment [p, vi] connecting
the point p with vi = f(ṽi). Next to extend to the 2-skeleton, consider
a 2-simplex [p̃, ṽi, ṽi+1]. The boundary of this simplex is mapped to a
closed curve of length ≤ 2d + δ, consisting of two minimizing geodesic
segments and an edge [vi, vj ] of length ≤ δ. This curve passes through
p. Let us apply the BCSP with a fixed p. Since we have assumed that
there are no geodesic loops of length ≤ 2d + δ based at p, this curve is
contractible to p. Thus, we can assign to the above 2-simplex, surface
generated by the homotopy contracting this curve to p. Therefore, we
have succeeded at extending f : S1 −→ Mn to D2, which contradicts
our assumption about non-contractibility of f .

This shows that there must be a geodesic loop of length ≤ 2d + δ

based at p. We conclude by letting δ approach 0, which shows that
there must be a geodesic loop of length ≤ 2d. �

Now we are going to explain how to prove Theorem 0.1 in the case
when π1(M

n) = {0}, but π2(M
n) 6= {0}. This is the case of Theo-

rem 0.1, in which q = 2. This will only be done to better illustrate the
ideas of the proof in the general case.
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Proposition 1.4. Let Mn be a closed Riemannian manifold with the

trivial fundamental group, but with π2(M
n) 6= {0}. Then at each point

p ∈ Mn there exists at least one (non-constant) geodesic loop of length

≤ 4d.

Proof. Let f : S2 −→ Mn be a non-contractible map from the standard
2-dimensional sphere to Mn. Suppose S2 is endowed with a fine trian-
gulation in such a way that the diameter of any simplex in the induced
triangulation of f(S2) is smaller than some δ > 0. Furthermore, suppose
that D3 is a disc that is triangulated as the cone over S2. Assume that
lp(M

n) > 4d for some p ∈ Mn. We will extend the map f : S2 −→ Mn

to D3, thus reaching a contradiction. The procedure will be inductive
to skeleta of D3. We will begin by extending f to the 0-skeleton of D3

that consists of a single additional point p̃ at the center of the disc. We
will let the image of p̃ be the given point p ∈ Mn. Next, let us extend to
the 1-skeleton as follows: we will assign to an edge [p̃, ṽi] that connects
the center of the disc with a vertex ṽi a minimal geodesic segment [p, vi]
connecting the point p with the vertex vi = f(ṽi). Next we extend to
the 2-skeleton. Consider an arbitrary 2-simplex σ̃i = [p̃, ṽi1 , ṽi2 ]. Its
boundary ∂σ̃2

i = [p̃, ṽi1 ] − [p̃, ṽi2 ] + [ṽi1 , ṽi2 ] is mapped to a closed curve
of length ≤ 2d + δ. Assuming that the length of a shortest geodesic
loop based at p is greater than 2d + δ, this curve can be contracted to
a point by the BCSP that fixes p, i.e., all the curves in the homotopy
will start and end at p. Recall that the BCSP denotes the Birkhoff
Curve Shortening Process (see the proof of Lemma 1.1). We will map
the 2-simplex to the surface generated by this homotopy, which will be
denoted as σ2

i .
Note that we should not be able to extend the map f any further.

That means that there exists a 3-simplex σ̃3
i such that f : ∂σ̃3

i −→ Mn

is not contractible. On the other hand, let σ̃3
i = [p̃, ṽi1 , ṽi2 , ṽi3 ]. Then

∂σ̃3
i = Σ3

j=0(−1)j [ṽi0 , . . .
ˆ̃vij , . . . , ṽi3 ], where ṽi0 = p̃. Let us denote

[p̃, ṽij ] by ẽj and [p, vij ] by ej . Since [vi1 , vi2 , vi3 ] can be made arbitrarily
small, we will treat it here as a point q for the sake of simplicity of the
exposition (see the Remark and Lemma 1.5 that follows the proof).
Note also that assuming that there are no geodesic loops based at p of
length ≤ 4d we can contract f : ∂σ̃3

i −→ Mn to the point p as follows:

1. By Lemma 1.2 there is a path homotopy between e1 and e2 that
passes through curves eτ12 , where 1 ≤ τ12 ≤ 2 of length ≤ 3d. This
homotopy continuously depends on e1 and e2. We claim that it
can be used to construct a homotopy between the above sphere
and a point.

2. We will define S2
τ12

as follows: consider the two points p and q

joined by two geodesic segments e2, e3 and the curve eτ12 , (see
fig. 3 (a)). Assuming that there are no geodesic loops based at p

of length ≤ 4d, both curves e2∗−eτ12 and eτ12∗−e3 are contractible
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to the point p without their lengths increasing by the BCSP. Let
us call the discs obtained during this homotopy (D2

2)τ12 (see Fig. 3
(b)), and (D2

3)τ12 respectively. They change continuously with τ12.
Then S2

τ12
is obtained by the obvious gluing of the three discs:

σ2
i0,i2,i3

, (D2
2)τ12 and (D2

3)τ12 along their boundaries. There σ2
i0,i2,i3

denotes the two-dimensional simplex obtained by filling the digon
formed by e2 and e3 by a 2-disc during the previous step of the
induction. Note that when τ12 = 1, S2

τ12
is the original sphere

and when τ12 = 2 it is a sphere constructed as follows: we begin
with two points p and q, join them with three segments, two of
which coincide: e2, e2, e3. Next obtain three discs. One of them is
degenerate and constructed by contracting a curve e2 ∗ −e2 along
itself, and the other two coincide, but have opposite orientation:
both of the discs are obtained by contracting the curve e2∗−e3, but
the curves in each disc are taken with the opposite orientations (see
Fig. 3 (c)). So the sphere that we obtain consists of two identical
discs with opposite orientation glued along their boundary, and it
is contractible along itself. Thus, we obtain a homotopy between
the above sphere and a point and, therefore, reach a contradiction.

�

Here it is also important to note that the main idea behind the above
proof is the following: Given two points and three geodesic segments
connecting them and faces between each pair of geodesics that together
form a 2-sphere, we can first construct a 3-disc that “fills” this 2-sphere,
assuming that there are no geodesic loops of length ≤ 4d. In fact, the
faces were first constructed from each of the three given pairs using the
assumption that there are no geodesic loops of length ≤ 2d.

A similar operation can be performed for a pair of points and ar-
bitrary three paths that connect those points, assuming there are no
“short” geodesic loops. Moreover, these fillings continuously depend on
the initial triple of paths. A multidimensional generalization of this idea
will be used later in the proof.

Remark. Let Mn be a closed Riemannian manifold. Let us con-
sider a sphere in the manifold Mn obtained by taking a small 2-simplex
[vi1 , vi2 , vi3 ] and a point p, connecting p with each vij by a minimal
geodesic segment ej , j = 1, 2, 3, and finally, by contracting each of the
closed curves ej + [vij , vij mod 3+1

] − ej mod 3+1, where j = 1, 2, 3 to the
point p as loops (see Fig. 4). Denote this sphere by S0. Next, let us
define a sphere S1. Take a point q ∈ [vi1 , vi2 , vi3 ], and connect it with
each vij in [vi1 , vi2 , vi3 ] by a short segment σj (see Fig. 4 (b)), j = 1, 2, 3
of length ≤ δ. Then instead of curves ej we can consider the new curves
e∗j = ej + σj of length ≤ d + δ (see Fig. 4 (c)). Note that each of the
digons of the form e∗j mod 3+1 ∗ −e∗j is contractible to p as loops without



THE LENGTH OF A SHORTEST GEODESIC LOOP AT A POINT 505
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The original sphere obtained by conracting three pairs of curves:

as loops.

sphere will also change continuously.

eτ12
e2e3

p

q

e1 e2
e3

p

q

D2
2 τ 12

( ) e2 eτ12

τ 12 τ 12

−

e1−e2

Here                is obtained by conracting                           to the point.
This disc changes continuously with          .  At          it is a disc obtained
by contracting                         .

*

*

e1

e2

p

q

eτ12

e2

D2
2 τ 12p

q

( )

e3
e1

p

q

τ 12 =2at time                 .
τ 12

2This is a sphere S

It is a disc taken twice
with the opposite 
orientation.

(a)

(b)

(c)

Figure 3. Construction of S2
τ12

the length increase (see Fig. 4 (d)). These three homotopies give rise
to three discs. Gluing them together results in a sphere that we will
denote by S1.

Lemma 1.5. For small enough δ the spheres S0 and S1 are homo-

topic.

Proof. For small δ spheres S0 and S1 are homotopic via the interme-
diate spheres St that are depicted on fig. 5. �

Therefore, S1 is not contractible whenever S0 is not contractible.
Note also, that one can apply Lemma 1.2 to show that e∗j is path ho-
motopic to e∗j mod 3+1 and the length of curves in this path homotopy
is bounded by 3d + 3δ. We can eventually let δ go to 0. Thus, we can
contract S1 instead of S0 in the proof of Proposition 1.4. So, for all
practical purposes, [vi1 , vi2 , vi3 ] can be treated as a point q.

Now, let us present the proof of the main theorem.

2. The proof of Theorem 0.1

Before giving the proof of Theorem 0.1 in the general case, let us
describe the main ideas behind it. Let Mn be a closed Riemannian
manifold, and suppose that q > 0 is the smallest natural number such
that πq(M

n) is not trivial. We consider a non-contractible sphere f :
Sq −→ Mn and show that, assuming there are no “short” geodesic loops,
it can be filled by a disc. To construct this disc we use the following
bootstrap procedure of constructing spheres and discs of progressively
growing dimensions. One begins with two points p and q joined by k

segments. Now, to construct a sphere of dimension s < k, one selects
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σ1 σ 2

σ3
v

i1
v

i2
v

i
3

q

e
1
* e2*

e3*

p

q
v

i1
v

i

(d)

2
v

i
3

e2* e
1
*−*

p

q

is contractible to p

v
i1

v
i2

v
i
3

e
1

e2

e3

v
i1

v
i2

v
i
3

p (a) (b)

(c)

Figure 4. Small 2-simplex can be ignored.

i 1
v

i 2
v

i 3

The sphere S  is obtained by gluing
four discs.  One disc is the star−shaped
center of the small simplex                      .

to the point p by path homotopy.

The other three discs are obtained by 
contracting three corresponding loops

v
i 3

v

v
i 1

v
i 2

p

t

Figure 5. Spheres St.

s + 1 segments. The sphere is constructed by a natural gluing of s + 1
s-discs. These discs are glued as the simplices in the boundary of s+1-
dimensional simplex, where one of the simplices degenerates to a point.

Each such disc corresponds to s segments that are selected out of
the given s+1 segments, and is generated by a one-parameter family of
(s−1)-dimensional spheres that starts with a sphere that is constructed
from those s-segments on the previous step of induction and ends with
a point.
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Definition 2.1. An m-cage Cgm is a graph on a Riemannian man-
ifold Mn that consists of two vertices p, q ∈ Mn and m piecewise
smoothly immersed edges e1, . . . , em that connect these vertices. We
will denote the space of all m cages with vertices p, q by Cp,q,m.

Thus, the idea behind the proof of Theorem 0.1 is that in the absence
of short geodesic loops, short m-cages can be “filled” first by spheres
and then by discs.

Definition 2.2. Let C
l1,l∗
p,q,m ⊂ Cp,q,m be a set of m-cages, such that

the length of e1 is bounded by l1 and the length of every other edge

ei, i > 1 is bounded above by l∗. An N -filling of cages (from C
l1,l∗
p,q,m, m ≤

N) is a set of continuous maps φm : C
l1,l∗
p,q,m −→ C(σm, Mn) for all

m = 1, 2, 3, . . . , N , where C(σm, Mn) denotes the space of singular m-
simplices in Mn satisfying the following properties:

(1) φm(Cgm) maps the (m − 1)-dimensional face [v1, . . . , vm] of the
standard simplex [v0, . . . , vm] into q.

(2) φm(Cgm) maps the edges [v0, vi] to edges ei of Cgm.
(3) The restriction of φm to [v0, . . . , v̂i, . . . , vm] coincides with

φm−1(Cgm−1
i ), where Cgm−1

i denotes the cage obtained from Cgm

by removing ei.

The informal meaning of this definition is the following. An N -filling
is a way to “fill” every “short” i-cage by an i-disc for every i. (The
edges of cages then become meridians in the boundary sphere of this
i-disc.) Moreover, the i-disc should depend continuously on the i-cage.
In addition, one should have the coherence condition (Definition 2.2,
part (3)) that asserts that the appropriate restrictions of a “filling” of
an i-cage should provide fillings of the (i − 1)-cages obtained from the
i-cage by deleting one of its edges. By a “short” i-cage we mean a cage
such that the length of its first edge is ≤ l1 and the lengths of remaining
edges are ≤ l∗. The following lemma asserts the existence of such an N -
filling provided that there are no “short” geodesic loops. This lemma
plays a crucial part in the proof of Theorem 0.1, as the existence of
such an N -filling almost immediately leads to a contradiction with the
assumption that πq(M

n) 6= {0}.
Lemma 2.3. Let N be a positive integer. Fix a point p ∈ Mn and

let q be any point in Mn. Suppose there are no geodesic loops in Mn of

length ≤ l1 + (2N − 3)l∗ based at p. Then there exists an N -filling of

m-cages in C
l1,l∗
p,q,m, m = 1, 2, 3, . . . , N .

Proof. The proof is by induction with respect to N . In the case
of N = 1, φ1(Cg1) = Cg1. Suppose, we have constructed a filling of

(N − 1)-cages in C
l1,l∗
p,q,N−1. We will next construct an N filling. In order

to do that, consider a cage CgN that is obtained by connecting points
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p and q by segments e1, . . . , eN each of length ≤ l∗. By Lemma 1.2
there exists a path homotopy between e1 and e2 that passes through
curves eτ12 of length at most l1 +2l∗. At each time 1 ≤ τ12 ≤ 2 consider
a cage CgN

τ12
that consists of vertices p and q joined by N segments

eτ12 , e2, . . . , eN . For each (N − 1)-tuple selected out of this N tuple,
there exists an (N − 1)-filling of this (N − 1)-tuple because the length
of eτ12 plus (2(N − 1) − 3)l∗ is less than or equal to l1 + 2l∗ + (2(N −
1) − 3))l∗ = l1 + (2N − 3)l∗, which, by our hypothesis, is the lower
bound for the length of a shortest geodesic loop at p required to apply
the induction assumption. Thus, by induction hypothesis, we have an
(N − 1)-disc corresponding to each (N − 1)-tuple. Glue these discs
together as in the boundary of an N -simplex and obtain an (N − 1)-
dimensional sphere SN−1

τ12
. At the time τ12 = 2, SN−1

τ12
corresponds to

two identical, but oppositely oriented discs, by which we mean that
the curves that generate these discs are oppositely oriented. Thus, this
sphere can be deformed to a point over itself. The resulting 1-parameter
family of spheres generates an N -disc, that corresponds to an N -filling
of e1, . . . , eN . As the BCSP is continuous with respect to a loop that
is being contracted, and as the (N − 1)-filling that has already been
constructed in the previous step of the induction is also continuous
(continuity being a part of its definition), the N -filling also continuously
depends on e1, . . . , eN . �

Remark. Note that this construction of N -fillings is recursive. That
is, in order to construct the N -filling, we use the construction of (N−1)-
fillings.

Proof of Theorem 0.1. Assume that the length of a shortest geodesic
loop based at p is ≥ 2qd. Then, according to Lemma 2.3, there exists a
filling of all m-cages e1, . . . , em, where m ≤ q, the length of e1 is ≤ 3d

and the length of ei is ≤ d for i > 1.

Let f : Sq −→ Mn be a non-contractible map. Assume Sq is tri-
angulated into fine simplices, and that f(Sq) has induced triangulation
such that diameter of any simplex in this triangulation is smaller than
δ. Number all vertices of this triangulation by integers beginning with
1. Let Dq+1 be triangulated as a cone over Sq. Assuming that the
length of a shortest geodesic loop based at p ∈ Mn is greater than 2qd,
we will extend our map to Dq+1, thus reaching a contradiction. To con-
struct this extension we use induction on skeleta of Dq+1. To perform
the first step of the induction procedure, we will map the center of the
disc p̃ to the point p above. Then we map new 1-simplices [p̃, ṽi0 ] into
arbitrary minimizing geodesics connecting p with vi0 = f(ṽi0). On each
of the remaining steps we proceed as follows: we need to fill a sphere
S0 = f : ∂[p̃, ṽi1 , . . . , ṽim ] −→ Mn, i1 < i2, . . . , < in, that is constructed
in the previous steps. Take a point v∗ ∈ [vi1 , . . . , vim ] = f([ṽi1 , . . . , ṽim ]).
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Extend paths ej connecting p with vij by adding small paths σj con-
necting vij with v∗. Denote the result by e∗j . Construct the sphere
S1 by filling m m − 1 cages e∗1, . . . , ê

∗

ij
, . . . , e∗m as in Lemma 2.3. The

spheres S0 and S1 are homotopic (see the Remark at the end of the pre-
vious section). The homotopy between S0 and S1 is based on shrinking
small simplex [vi1 , . . . , vim ] over itself to v∗ (see Fig. 5). Finally, we con-
tract S1 using the m-filling constructed in Lemma 2.3. (S1 will be the
boundary of the m-disc that “fills” e∗1, . . . , e

∗

m because of condition (3) in
Definition 2.2, which guarantees that the fillings agree as the dimension
increases.) �

For the sake of exposition, we are going to give a more detailed expla-
nation of how the extension process in the above proof of Theorem 0.1
via Lemma 2.3 really works. This explanation can be regarded as a less
formal but more transparent version of the above proof. In Section 1
we have already discussed the extension to the 3-skeleton. Let us now
describe how to extend to the 4-skeleton:

Assume that we have already extended to the 1, 2, and 3-skeleta, as
described in Section 1. Let us denote the image of a 3-simplex σ̃3

i0,...,i3
=

[ṽi0 , ṽi1 , . . . , ṽi3 ], where ṽi0 = p̃ by σ3
i0,...,i3

.
Now suppose we want to extend our map to the 4-skeleton. Let

us consider an arbitrary simplex σ̃i0,i1,i2,i3,i4 = [p̃, ṽi1 , ṽi2 , ṽi3 , ṽi4 ]. Its
boundary is mapped to the following 3-sphere Σ4

j=0(−1)jσi0,..,̂ij ,...,i4
.

Now let us construct the following homotopy contracting this sphere
to a point. Again, without loss of generality, assume that the simplex
[vi1 , . . . , vi4 ] is so small that it can, for our purposes, be treated as a
point, which we will denote by q. Each of the four edges [p, vij ] will

be denoted by ej . So we want to demonstrate that a 4-cage Cg4 that
consists of points p, q and four edges e1, e2, e3, e4 can be coherently filled
by a 4-disc. We know that e1 is homotopic to e2 by a path homotopy
along the curves eτ12 , 1 ≤ τ12 ≤ 2 of length ≤ 3d (see Lemma 1.2).
Let us “move” e1 to e2 and construct a homotopy of the 3-sphere that
will “follow” this move. That is, for each τ12, we want to construct a
sphere S3

τ12
that continuously depends on τ12. This sphere will be made

of four discs glued together. These discs are glued as four simplices in
the boundary of the 4-simplex, where the fifth simplex degenerates to a
point.

Disc (D3
1)τ12 will stay constantly equal to σ3

i2,i3,i4
.

(D3
2)τ12 is constructed as follows: take two points p, q connected by

three segments: eτ12 , e3, e4 (see Fig. 6 (a)). We know that in this situa-
tion, we can construct a sphere S2

τ12
and also continuously deform it to

a point as follows:

1. We construct S2
τ12

by taking three loops e3 ∗ −eτ12 , e4 ∗ −e3,
eτ12 ∗ −e4 and contracting them to p by a length decreasing path
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Figure 6. Constructing (D3
2)τ12 .

homotopy (see Fig. 6 (b)). Here we use the assumption that the
length of a shortest geodesic loop at p is greater than 2qd, and,
thus, greater than 4d. So each of the loops is contractible to p

without the length increase.
2. Now, by Lemma 1.2 there exists a path homotopy that connects

eτ12 with e3 along the curves eτ3τ12
, 1 ≤ τ3τ12 ≤ 2 of length ≤ 5d.

This is due to the fact that the loop eτ12 ∗−e3 is contractible to p

without the length increase (see Fig. 6 (c)).
3. As eτ12 moves to e3, we use the fact that the length of a geodesic

loop is also greater than 6d to construct a family of 2-dimensional
spheres S2

τ3τ12
that continuously depends on τ3τ12 and that coin-

cides with S2
τ12

, when τ3τ12 = 1. That is we repeat Step 1, but
with eτ3τ12

replacing eτ12 . Note also that when τ3τ12 = 2, we ob-
tain a degenerate sphere, consisting of a 2-disc taken twice with
the opposite orientation, that can be contracted to a point. This
family of spheres corresponds to a 3-disc (D3

2)τ12 . Note that at
τ12 = 1 it is σ3

i1,i3,i4
and at τ12 = 2 it is −σ2

i2,i3,i4
.

4. The other two discs (D3
3)τ12 and (D3

4)τ12 are obtained in a similar
way.

5. The sphere S3
τ12

is obtained by the obvious gluing. Furthermore,

S3
1 is the original sphere and S3

2 is a sphere that is obtained by
gluing σ3

i2,i3,i4
and −σ3

i2,i3,i4
, and so it is contractible to a point. We

will map σ̃4
i0,...,i4

to the disc generated by this family of 3-spheres.

Let us denote this disc by σ4
i0,...,i4

.

Now suppose we have extended the map f to the k-skeleton of Dq+1

in a similar fashion and now we want to extend it to the (k+1)-skeleton.

Consider an arbitrary (k+1)-simplex σ̃k+1
i0,...,ik+1

. Its boundary is mapped

to Σk+1
j=0(−1)jσk

i0,...,̂ij ,...,ik+1

. As before, we observe that σi1,...,ik+1
can be

treated as a point denoted by q, and we denote edges [p, vij ] as ej .
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We know that there is a path homotopy between e1 and e2 that passes
through the curves eτ12 of length ≤ 3d. We can extend this homotopy to
the homotopy between the underlying map of the boundary of a simplex
σ̃k+1

i0,...,ik+1
and a k-sphere that will then be contracted to a point. This

homotopy can be explained as follows. Its image is a q + 1-dimensional
disc σk+1

i0,...,ik+1
that is generated by the family of spheres Sk

τ12
, 1 ≤ τ12 ≤ 2,

such that Sk
1 = ∂σk

i0,...,ik+1
= f(∂σ̃k

i0,...,ik+1
) and Sk

2 is a sphere that

consists of two copies of a k-disc with opposite orientations glued along
their common boundary and is contractible along itself. This family of
spheres Sk

τ12
is constructed by taking two points p, q, joining them by

eτ12 , e2, . . . , ek+1, and repeating the whole process of constructing the
k-sphere based on two vertices and k + 1 curves connecting them, but
with eτ12 replacing e1. (We learned to construct such k-spheres on the
previous step of induction.) As the length of eτ12 can exceed the length of
e1 by 2d, so the length of curves in all of the homotopies can increase by
2d as well. At this step we use the assumption that lp(M

n) > 2qd > 2kd.

Recall that the family of spheres Sk
τ12

is constructed by gluing of k discs.

The disc (Dk
1)τ12 will be constantly equal to σk

i2,...,ik+1
. And, of course,

(Dk
2)τ12 = Dk

2(τ12) is constructed using the previous step of an inductive
construction: we begin with the two points p, q joined by k segments:
eτ12 , e3, . . . , ek+1. The disc is constructed by constructing a family of
spheres Sk−1

τ3τ12
that start with a sphere Sk−1

τ12
and with a sphere that is

easily contractible to a point, which we already learned to do at the
previous stage, etc. Other discs are constructed in a similar fashion.

Thus, we can continue until we extend to the (q+1)-skeleton of Dq+1,
reaching a contradiction.

3. Proof of Theorem 0.3

To prove Theorem 0.3 we will first need to define the notion of N -
filling of complete graphs in Riemannian manifolds that is similar to the
notion of N -filling of cages introduced in the previous section.

Definition 3.1. For a fixed value of l consider the spaces Km,l of
piecewise smooth immersions of the 1-skeleton of the standard simplex
σm+1 (or, equivalently, of the complete graph with (m + 2) vertices)
into Mn, such that each edge is mapped into a curve of length ≤ l.
An N -filling of Km,l is, by definition, a collection of continuous maps
φm : Km,l −→ C(σm+1, Mn), m = 1, 2, . . . , N , satisfying the following
properties:

1) For every k ∈ Km,l the restriction of φm(k) to the 1-skeleton of
σm coincides with k. (This property means that φm(k) fills k.)

2) For every k ∈ Km,l, (m ≤ N), the restriction of φm(k) to a m-
dimensional face of σm+1 coincides with φm−1 evaluated on the
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element of Km−1,l obtained from k by restricting k to the set of
all 1-dimensional simplices in the 1-skeleton of this face of σm.

Note that this definition, in particular, means that each n-filling
agrees with all of its subfillings and depends continuously on its 1-
skeleton.

Lemma 3.2. Assume that the length of the shortest geodesic loop on

Mn is greater than c̄(n)l, where c̄(n) = 3 · 4n−1. Then there exists an

n-filling of Km,l, m = 1, . . . , n.

Proof. We are going to prove the existence of i-fillng of Km,l, (m ≤ i),
for every i ≤ n. The proof will be by inducion with respect to i. On
every step we already have the restriction of φj that we want to construct
to ∂σj+1. This restriction is uniquely determined by condition 2 of the
definition of N -fillings and, if i > 1, by the previous steps of induction.
In other words, for every k ∈ Kj,l we already have a filling of k by a
j-sphere. It remains only to contract this sphere. The idea is to find
a path kt connecting k with a complete graph with (j + 2) vertices
immersed in Mn such that all its edges are mapped to some paths in a
tree. This path kt should continuously depend on k. Filling all kts by

spheres S
j
t we obtain a homotopy between the sphere φj(∂σj+1) and the

degenerate sphere S
j
1 that lives in a tree and is, therefore, contractible.

v
3

2

v
0

v
1

v

Figure 7. Collapsing triangles

To describe the homotopy kt we introduce the notion of a collapsing of

a triangle. Let ka, kb, kc be any three edges of k. As there are no geodesic
loops of length ≤ 3l in Mn, we can apply Lemma 1.2 to construct a
path homotopy between ka and kb ∗ kc. This homotopy passes through
paths of length ≤ 2 length (ka) + length (kb) + length (kc) ≤ 4l. This
homotopy induces a homotopy of triangles (ka)t, kb, kc, t ∈ [0, 1] that we
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call a collapsing of the triangle ka, kb, kc. At the end of this homotopy
ka is being replaced by another edge that goes along kb ∗ kc, and the
considered triangle becomes thin.

After collapsing finitely many triangles, we can obtain an element of
Kj,l, where all edges run along the tree-shaped union k1 of edges of k

adjacent to one vertex of k, let’s say the vertex with the highest number
(see Fig. 7, which illustrates that the edge [v0, v1] is being collapsed to
the path [v0, v3, v1], the edge [v1, v2] is being collapsed to [v1, v3, v2], and
the edge [v0, v2] is being collapsed to [v0, v3, v2]).

Now we can continue the homotopy of complete graphs by contracting
all edges of k1 to a point (to v3 on Fig. 7) via the considered tree by a
length non-increasing homotopy. We can fill these complete graphs by
j-spheres using the induction assumption.

However, note that in order to construct the sphere S
j
t we will need to

apply the induction assumption to Km,4l, as the length of edges obtained
during the collapsing of triangles is bounded above by 4l. Therefore,
c̄(j+1) ≤ 4c̄(j). Note that Lemma 1.2 immediately implies that c̄1(1) =
3. Indeed, if j = 1, we need to contract a triangle of perimeter ≤ 3l.
Thus, we can take c̄(n) = 3 · 4n−1. �

Proof of Theorem 0.3. Let X = L∞(Mn). The fact that FillRad (Mn)
is the filling radius of Mn means, by definition, that for every ε > 0 there
exists a singular chain c in the (FillRad (Mn)+ ε

2)-neighborhood of Mn

in X, such that [Mn] = ∂c. Using a simplicial approximation we can
replace c by a polyhedron Wn+1 in the (FillRad (Mn)+ε)-neighborhood
of Mn. So, Mn bounds a polyhedron Wn+1 in its (FillRad (Mn) + ε)-
neighborhood. (This simple fact had been first observed and used by
Gromov, see Statement 1.2.C on page 10 in [G].) Also, it is important
to remember that the (Kuratowski) embedding of Mn in X is isometric.

Assume that the length of a shortest geodesic loop in Mn, α(Mn)
satisfies the following inequality:

(∗) α(Mn) > 2c̄(n)vol (Mn)
1

n = 6 · 4n−1 FillRad (Mn).

We are going to bring this assumption to a contradiction by extending
the identity map of Mn = ∂Wn+1 into itself to a map τ of Wn+1 −→
Mn, which would imply FillRad (Mn) = 0. (To see that this extension is
impossible, consider the induced homomorphisms on the nth homology
groups of Mn and Wn+1 with coefficients in Z if Mn is orientable,
and with coefficients in Z2 if Mn is not orientable, and observe that the
homomorphism induced by the inclusion of Mn into Wn+1 is trivial. Yet
the composition of the homomorphisms induced by τ and the inclusion
is the identity homomorphism. This is clearly impossible.)

To construct τ we first consider a very fine triangulation of Wn+1,
such that the diameter of any simplex of Wn+1 does not exceed ε. Each
of the 0-simplices of Wn+1 will be mapped to one of the closest points
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in Mn (in the metric of the ambient space X). Each of the 1-simplices
of Wn+1 \ Mn will be mapped into one of the minimizing geodesics in
Mn between the images of the endpoint of this simplex. Let vi1 , vi2

denote the respective images of two vertices ṽi1 , ṽi2 of Wn+1. Then
dist (vi1 , vi2) ≤ dist (vi1 , ṽi1)+dist (ṽi1 , vi2) ≤ dist (vi1 , ṽi1)+dist (ṽi1 , ṽi2)
+dist (ṽi2 , vi2) ≤ 2FillRad + ε̃, where ε̃ = 3ε. Thus, the length of the
image of each 1-simplex of Wn+1\Mn does not exceed 2FillRad (Mn)+ε̃,
where ε̃ can be made arbitrarily small by selecting a sufficiently small ε

and by refining the chosen triangulation of Wn+1.

Now the extension of τ to any closed (n + 1)-dimensional simplex of
Wn+1 \Mn is equivalent to filling the image of its 1-skeleton. Enumer-
ate all the vertices of the chosen triangulation of Wn+1 by increasing
successive integers. We will apply Lemma 3.2 to already constructed
images of 1-skeleta of all (n + 1)-dimensional simplices of Wn+1. In or-
der to do that we need to number vertices of every (n + 1)-dimensional
simplex of Wn+1 by numbers 0, 1, . . . , n+2. We use the already chosen
numbering of all of the vertices of Wn+1 and organize the vertices of
every (n + 1)-simplex in the increasing order. This would guarantee
that, when we apply Lemma 3.2, every k-simplex will be filled in the
same way when we consider it as a k-face of any (n + 1)-dimensional
simplex of Wn+1 adjacent to it.

Using the assumption in (∗) we can apply Lemma 3.2 to all (n + 1)-

dimensional simplices of Wn+1 providing that ε̃<
α(Mn)
3·4n−1 −2 FillRad (Mn).

Its application completes the proof of the theorem. �

4. Proof of Theorem 0.5

Now we are going to prove Theorem 0.5. In this theorem we show
that either there exists a “short” geodesic on a closed Riemannian man-
ifold with a non-trivial second homology group, or at each point of this
manifold there exist at least three distinct “short” geodesic loops, i.e.,
of length ≤ 2d.

Also note that F. Balacheff had shown that on a closed Riemannian
manifold with a non-trivial second homology group, there either exists
a “short” closed geodesic or at least one “short” geodesic loop at each
point of a manifold, (see [Bl]).

In 1951, A. Fet and L. Lusternik showed that on any closed Riemann-
ian manifold Mn there exists at least one periodic geodesic. Their proof
uses Morse theory on the space ΛMn of all piecewise differentiable closed
curves on Mn, by taking the smallest integer q, such that πq(M

n) 6= {0},
which implies that πq−1(M

n) = {0}, whereas πq−1(ΛMn) 6= {0}. One
then demonstrates that, unless there is a periodic geodesic, any map
f : Sq−1 −→ ΛMn can be deformed to Mn along the integral curves of
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the energy functional. The idea of the proof of Theorem 0.5 is an effec-
tivization of the proof of Fet and Lusternik’s existence theorem. That
is, assuming there is a point p ∈ Mn at which there do not exist at least
three geodesic loops of length ≤ 2d, we will construct a non-contractible
map f : S1 −→ ΛMn, where maxt length (f(t)) ≤ 4d. This will show
that there exists a periodic geodesic on Mn of length ≤ 4d. The map
f : S1 −→ ΛMn is constructed by providing appropriate sweep out of
a non-contractible sphere g : S2 −→ Mn by circles. Though there are
many ways of constructing sweep-outs of a 2-sphere, resulting in loops
in the space ΛMn of (piecewise differentiable) curves, the main idea be-
hind the following proof is to construct sweep-outs with the controlled
length upper bounds, assuming that at some point p ∈ Mn there are
not enough short geodesic loops.

Proof of Theorem 0.5. Once again, let us begin with a non-contractible
map f : S2 −→ Mn, where S2 is the standard 2-sphere endowed with
a fine triangulation. Let p ∈ Mn. We will try to extend this map to
D3 triangulated as a cone over S2, which, of course, is impossible. The
procedure will be inductive to the skeleta of D3. We will begin as usual,
by extending to the 0-skeleton. This is done by assigning to the center
of the disc, p̃, the given point p. Next we extend to the 1-skeleton, by
assigning to an edge [p̃, ṽi] a minimal geodesic segment [p, vi] of length
smaller than d. Next we extend to the 2-skeleton. Consider an arbitrary
2-simplex σ̃i0,i1,i2 . Its boundary is mapped to a closed curve of length
≤ 2d + δ. This curve is either contractible to p by a path homotopy,
or there exists a geodesic loop based at p of length ≤ 2d. In such a
case we will release the point and will let the curve contract to a point
by a regular (not path) homotopy (see Fig. 8). In either of these cases,
the image of this simplex will be a disc generated by the homotopy
connecting the curve with a point. We will denote it as σi0,i1,i2 .

It is impossible to extend f : S2 −→ Mn to the 3-skeleton of D3.
Therefore, there exists a 3-simplex σ̃i0,i1,i2,i3 such that the map f :
∂σ̃i0,i1,i2,i3 −→ Mn is a non-contractible sphere. Let us consider this
sphere. It consists of three “big” discs: −σ̃i0,i2,i3 , σ̃i0,i1,i3 , −σ̃i0,i1,i2 , and
a “small” one σi1,i2,i3 . The “small” one is so small that it can be regarded
as a point q for all practical purposes, (see Lemma 1.5). The rest of the
discs were obtained by contracting their corresponding boundaries to
a point. Moreover, those three discs were either generated by a path
homotopy that connects the boundary to a point, or by a homotopy
that was a path homotopy until we encountered a critical geodesic loop,
and which then became a regular homotopy (see Fig. 8).

Let us consider the following three cases.

(1) The boundary of each face gets “stuck” on a distinct geodesic loop
based at p of length ≤ 2d + δ.
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p

q

e1
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Critical loop.

Figure 8. Extending to the 2-skeleton.

(2) The boundary of one of the simplices is contractible to p via path
homotopy.

(3) None of the boundaries are contractible to p via length-decreasing
path homotopy, but at least two of the geodesic loops that obstruct
this coincide.

In the first case, we are done. We have three distinct loops based at
p of length ≤ 2d + δ. We just need to let δ go to 0.

In the second case, without loss of generality, assume that e2 ∗−e1 is
contractible to a point p with a length-decreasing path homotopy. Then,
by Lemma 1.2, we know that e1 is path homotopic to e2 through curves
eτ12 of length less than or equal to 3d. Assume e1 ∗ −e3 is contractible
to a point q1 along the curves γ(τ) and that e2 ∗ −e3 is contractible to
a point q2 along the curves α(τ) of length ≤ 2d (see Fig. 9 (a)).

Therefore, we can construct the following homotopy in the space ΛMn

of closed curves. Here is a loop in ΛMn. q1 ∼ γ(1 − τ) ∼ e1 ∗ −e3 ∼
eτ12 ∗ −e3 ∼ e2 ∗ −e3 ∼ α(τ) ∼ q2 ∼ q1 (see Fig. 9 (b)-(d)). This
loop corresponds to the non-contractible sphere f : ∂σ̃3

i0,...,i3
−→ Mn,

as it was obtained from the above sphere by a sweep-out. Therefore,
it is a non-contractible loop that passes through curves of length ≤ 4d.
Therefore, there exists a closed geodesic of length ≤ 4d.

Finally, in the third case, we will construct a non-contractible loop
in the space ΛMn as follows.

Let us assume that e1∗−e2 and e2∗−e3 get “stuck” on the same loop
α1 (see Fig. 10 (a)), and e1 ∗ −e3 gets “stuck” on the loop α2, which
might or might not coincide with α1. Those loops are then contractible
to points q̃1 and q̃2 respectively (see Fig. 10 (a) and (b)). Denote the
curves in the homotopy that connects α1 with q1 by ατ , 1 ≤ τ ≤ 2.
Further, denote the curves in the homotopy that connects e3 ∗ −e1 and
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Figure 9. Loop in the space ΛM .
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Figure 10. Loop in the space ΛM .

q2 by γτ13 , 1 ≤ τ13 ≤ 2. Finally, denote the curves in the homotopy that
connects e1 ∗ −e2 and α1 by γτ12 and the curves in the homotopy that
connects e2 ∗ −e3 and α1 by γτ23 , 1 ≤ τ12, τ23 ≤ 2.

We will now describe a non-contractible loop in the space ΛMn (see
Fig. 10 (c)). It will be a sweep-out of the non-contractible sphere f :
∂σ̃3

i0,...,i3
−→ Mn by short loops.

q1 ∼ ατ ∗ατ ∼ α1 ∗α1 (that is we go around α1τ twice). Here we use
the “reverse” of the BCSP without a fixed point. The length of curves
in this homotopy is bounded by 4d, since the length of α1τ ≤ 2d.
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α1 ∗ α1 ∼ eτ12 ∗ eτ23 ∼ e1 ∗ −e2 ∗ e2 ∗ −e3. Here we use the “reverse”
of the BCSP applied to loops based at q1. The length of curves during
this homotopy is bounded by 4d as well.

e1∗−e2∗e2∗−e3 ∼ e1∗−e3. This is a homotopy of shortening −e2∗e2.
The length of the original curve was ≤ 4d and the curve becomes shorter
during the homotopy, so that the length of the final curve is ≤ 2d.

e1 ∗ −e3 ∼ γτ13 ∼ q2 ∼ q1. This is simply the BCSP applied to
e1 ∗ −e3, so the length of curves in this homotopy is bounded by 2d.

Note that we have constructed the loop in the space ΛMn that starts
and ends with a constant curve q1. �
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