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Abstract

In this paper we will present two upper bounds for the length of a
smallest “flower-shaped” geodesic net in terms of the volume and the
diameter of a manifold. Minimal geodesic nets are critical points of the
length functional on the space of graphs immersed into a Riemannian
manifold. Let Mn be a closed Riemannian manifold of dimension n.
We prove that there exists a minimal geodesic net that consists of one
vertex and at most 2n− 1 geodesic loops based at that vertex of total
length ≤ 2n!d, where d is the diameter of Mn. We also show that
there exists a minimal geodesic net that consists of one vertex and at
most 3(n+1)2 loops of total length ≤ 2(n + 1)!23(n+1)3FillRadMn ≤

2(n + 1)!
5

2 3(n+1)3(n + 1)nnvol(Mn)
1

n , where FillRadMn denotes the
filling radius and vol(Mn) denotes the volume of Mn.

Introduction

Question 1. In 1983 M. Gromov asked whether there exists a constant c(n)
such that the length of a shortest closed geodesic, l(Mn), on a closed Rie-

mannian manifold Mn is bounded above by c(n)vol(Mn)
1
n , where vol(Mn)

is the volume of Mn, (see [G]).

A similar question can be asked about the relationship between l(Mn)
and the diameter d of the manifold. Namely on can ask the following

Question 2. Is there a constant c̃(n), such that l(Mn) ≤ c̃(n)d?

Note that in the later case, one can easily see that the length of a shortest
periodic geodesic is bounded above by twice the diameter when a manifold
has a non-trivial fundamental group.

The answers to these questions are well-studied in dimension 2, (see [BZ],
[CK] for surveys of these results) and, also, in the special case of essential
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manifolds for which a volume bound was established by M. Gromov in his
seminal paper [G].

The latest developement in the area of estimating the length of a periodic
geodesic in terms of the diameter of a manifold is due to F. Balacheff, C.
Croke and M. Katz who found an example of a Zoll sphere for which the
length of a shortest periodic geodesic is greater than twice the diameter of a
manifold, which, until this example, seemed like a natural hypothesis, (see
[BCK]).

Other than that, the answers to questions (1) and (2) are still unkknown
in full generality, and, in fact, it is quite possible that such upper bounds
do not exist. However, in [NR1] we have proven that one can find diameter
and volume upper bounds of the same type for the length of the shortest
stationary 1-cycle. This paper gave little information about a possible shape
of the cycle. So, it is interesting to find such bounds for cycles of a particular
shape.

In this paper we prove an analog of these inequalities for geodesic flowers.

Definition 0.1 A minimal geodesic flower is a bouquet of (finitely
many) geodesic loops based at the same point which satisfies the following
stationarity condition: the sum of unit vectors at the base point tangent to
all geodesic arcs of the flower and directed from the base point equals to zero.
A minimal geodesic flower that has less than or equal to m loops will also be
called a minimal geodesic m-flower, (see fig. 1 (b)). Note that we do not
require that all of these m loops are distinct. In other words, distinct loops
can have positive integer multiplicities, but the sum of the multiplicities has
to be at most m.

Note that closed geodesics are minimal geodesic flowers, and that geode-
sic loops are minimal geodesic flowers if and only if they are closed geodesics.
The stationarity condition implies that minimal geodesic flowers are station-
ary 1-cycles. This means that if X is a smooth vector field on the manifold,
ΦX

t is the corresponding 1-parameter flow of diffeomorphisms and F is a
minimal geodesic flower, then t = 0 is a critical point for the function L(t)
defined as the mass (=length counted with weights) of ΦX

t (F ).

Minimal geodesic flowers are comparatively rare. For a generic analytic
closed Riemannian manifold the set of minimal geodesic flowers, (or even
the set of all stationary 1-cycles) is countable. This makes the considered
problem different from, for instance, a problem of finding the length of a
shortest geodesic loop on a manifold considered by S. Sabourau in [S] as
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there are geodesic loops based at every point of a manifold and, thus, the
set of all geodesic loops is uncountable. Note that S. Sabourau established
curvature-free upper bounds c(n)vol(Mn)

1
n and c̃(n)d for the length of a

shortest geodesic loop in Mn, where d is the diameter and vol(Mn) is the
volume of a Riemannian manifold Mn, (see [S], which is one of the first
papers where such curvature-free upper bounds for a solution of a geometric
variational problem were proven in such generality). Thus, the considered
problem is closer to the problem of finding the upper bounds for the length
of a shortest geodesic loop at a prescribed point of a closed Riemannian
manifold. In [R3] the author has established an upper bound of 2nd for
the length of a shortest geodesic loop at each point of a closed Riemannian
manifold. A simple example shows that there is no similar volume bounds.
Other recent result concerning curvature-free upper bounds on a Riemannian
manifold of an arbitrary dimension are due to F. Balacheff, who has shown
that on any simply connected closed Riemannian manifold with a non-trivial
second homology group there either exists a geodesic loop of length at most
twice the diameter at each point or a periodic geodesic of length at most
four times the diameter, (see [B]). This result was generalized in [R2] to
manifolds with a non-trivial third homology group. Finally, there are results
of A. Nabutovsky and the author, who estimate the length of a “kth longest”
geodesic segment between an arbitrary pair of points of a closed Riemannian
manifold in terms of its diameter, (see [NR3], [NR4], [NR5]).

In this paper we prove the following theorems:

Theorem 0.2 Let Mn be a closed Riemannian manifold of dimension n

and of diameter d. Let q be the smallest number such that πq(M
n) 6= {0}.

Then there exists a non-trivial geodesic flower F on Mn, consisting of at
most 2q − 1 geodesic loops, at most q of which are distinct, such that the
length of F is bounded above by 2q!d ≤ 2n!d.

Theorem 0.3 Let Mn be a closed Riemannian manifold of dimension n.
Then there exists a non-trivial geodesic flower F that consists of at most
3(n+1)2 geodesic loops, at most n2+3n

2 of which are distinct, of total length

≤ 2(n+1)!
5
2 3(n+1)3(n+1)nnvol(Mn)

1
n , where vol(Mn) is the volume of Mn.

This paper is a continuation of our work on geodesic nets , [NR1], [NR2],
[R1]. In [NR1] we have obtained curvature-free upper bounds for the length
of a smallest stationary 1-cycle in terms of the volume and in terms of the
diameter of a manifold. Stationary 1-cycles are critical points of the length
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functional on the space of integral 1-cycles. So, geodesic flowers can be
regarded as stationary 1-cycles. They can be viewed as homological analogs
of closed geodesics. In [NR2] and [R1] we found similar estimates for the
length of a smallest stationary geodesic net of a particular shape that was
called a stationary m-cage. In fact, geodesic flowers form a subclass of a
class of minimal cages. Below is a rigorous definition of minimal geodesic
nets and minimal cages.

Definition 0.4 (a) We define a minimal (or stationary) geodesic net Γ to
be a graph immersed into a Riemannian manifold Mn satisfying the follow-
ing two conditions:
(1) each edge of Γ is a geodesic segment;
(2) the sum of unit vectors at each vertex tangent to the edges and directed
from this vertex equals to zero.

(b) If a minimal geodesic net Γ has exactly 2 vertices joined by at most
m segments, (counted with multiplicities), or if Γ is a minimal geodesic m-
flower, it is called a minimal geodesic m-cage, (or just a minimal geodesic
cage), (see fig. 1).

(c) A (not necessarily minimal or geodesic) immersion of a graph will be
called a net. Also, nets that consist of a vertex together with at most m (not
necessarily geodesic) loops based at that point will be referred to simply as
flowers and nets that are made of two vertices connected by at most m (not
necessarily geodesic) segments or nets that are m-flowers will be referred to
as m-cages, (or cages).

Note that in our definition of a graph we allow it to have loops and
multiple edges between vertices. This object is sometimes referred to as a
multigraph.

It is easy to see that the conditions of Definition 0.4 ensure that a
minimal geodesic net is a stationary point for the length functional on the
space of immersed graphs, where the length of a graph is defined as a sum of
lengths of the edges and the length of each edge is taken with the multiplicity
corresponding to the multiplicity of the edge.

Let us now briefly describe the main new idea of the proofs of Theorems
0.2 and 0.3. In [R1] we obtained volume and diameter estimates for the
length of a shortest minimal geodesic m-cage.

Note, that if one applies a length shortening process to a (non-
degenerate) m-cage, it is possible for it to degenerate into a flower. That
is, the length of one of its edges can become zero, and the two vertices will
then coincide.
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Figure 1: A non-degenerate stationary 4-cage and minimal geodesic 3-flower.

The new idea is that we can define a weighted length functional on
the space of cages such that its gradient flow will “force” critical cages to
degenerate into geodesic flowers. In other words, it can be arranged so
that a (non-degenerate) stationary m-cage is not a critical point of the new
functional.

Example. Let us consider the space of 3-cages and let Γ be an element
of this space. That is Γ is a graph with two vertices p and q and three
edges e1, e2, e3. Define L(Γ) = length(e1) + length(e2) + 3length(e3). Then
a non-degenerate 3-cage can not be a critical point of L. Indeed, one of the
conditions for it to be critical is that v1 + v2 + 3v3 = 0, where v1, v2, v3 are
unit vectors tangent to e1, e2, e3 respectively at p. Obviously, this condition
cannot be satisfied. Therefore, if Γ is critical then one of the ei’s degenerates
into a point and the cage degenerates into a flower.

We then combine this idea with the techniques of [R1] that will be ex-
plained in the next section. Let us describe this more formally.

Definition 0.5 (1) Let Γ be a (not necessarily geodesic) net with edges
e1, ..., ei, ..., ek. Then L(Γ) = Σk

i=1milength(ei), where mi ∈ Z+ and
length(ei) is the length of the edge ei will be called a weighted length func-
tional with weights m1, ...,mk. (Note that it corresponds to the regular length
functional on the net, where each edge ei is taken with a multiplicity mi.)

(2) A net N is critical with respect to a weighted length functional L with
weights mi, i = 1, ..., k if for any one-parametric smooth flow of diffeomor-
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phisms Φt, t = 0 is a critical point of µ(t) = L(Φt(N)). It is equivalent to
all edges being geodesic segments combined with the following stationarity
condition satisfied at every vertex of N : the weighted sum of unit vectors
tangent to edges of N at that vertex and directed from it, equals to zero.

In this paper we will use certain specific generalized length functionals.
We will establish the existence of their non-trivial critical points which are
bouquets of geodesic loops of total length ≤ c̃(n)d and of total length ≤
c(n)vol(Mn), where d is the diameter and vol(Mn) is the volume of Mn,
using techniques of [R1], modified Gromov’s extension technique appearing
in [G] and the idea illustrated by the above example. Although their critical
points are not necessarily critical points of the length functional, one can
make them into such by taking some of the loops with appropriate integer
weights. Indeed, observe that if a geodesic flower F that consists of k distinct
loops e1, ..., ek is a critical point for the weighted length functional with
weights m1, ...,mk then a geodesic flower F̃ that consists of the geodesic loops
ei taken with multiplicities mi, i = 1, ..., k will be a minimal geodesic flower,
that is a critical point for the regular length functional. This observation
will be used throughout the paper.

1 The proof of Theorem 0.2.

Proof. The theorem will be proved by contradiction. Let Mn be a closed
Riemannian manifold, such that π1(M

n) = ... = πq−1(M
n) = {0} and

πq(M
n) 6= {0}. Let f : Sq −→ Mn be a non-contractible map of a finely

triangulated sphere to Mn. Assuming there are no “small” minimal geodesic
flowers, we will extend this map to the disc Dq+1 of dimension q + 1, thus
reaching a contradiction. To construct this extension, we will triangulate
the disc as the cone over the chosen triangulation of the sphere. The proce-
dure will then be inductive on skeleta of Dq+1. To begin with, the center of
the disc will be mapped to an arbitrary point in Mn and the edges will be
mapped to minimal geodesic segments that connect this point with corre-
sponding vertices of the triangulation of the image sphere. The rest of the
extension procedure reduces to “filling” m-cages by m-discs for all values
of m ≤ q + 1, which is an inductive bootstrap procedure similar to the one
used in [R1]: Assuming that we have extended our map to the k-skeleton,
we will explain how to extend it to the (k +1)-skeleton of Dq+1. In order to
do that we will extend f to each (k+1)-dimensional simplex of Dq+1 and in
order to extend to a (k+1)-simplex it will be necessary to “fill” (k+1)-cages
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by (k + 1)-dimensional discs. That is, consider the image of the boundary
of the above simplex. It consists of k + 2 k-dimensional simplices, one of
which is so small that it can be treated as a point, (see remark on page 13
in [R1], The idea is that we can contract this simplex to a point over itself,
reducing our situation to the situation, where the simplex is treated as a
point). Consider a (k + 1)-cage Cg that corresponds to 1-skeleton of this
simplex and apply a weighted length shortening process, where the weighted
length functional is taken with weights m1 = ... = mk = 1, mk+1 = k.

Observe that in the absence of “small” minimal geodesic flowers, there
will be no “small” critical points for the weighted length functional. As the
result we can introduce a “weighted” version of the Birkhoff curve shortening
process that will deform the space of all “small” flowers to the space of
constant flowers, (see [C] for the detailed description of the Birkhoff curve
shortening process). It can be formally defined as the usual Birkhoff-like
1-cycles shortening process described in a much more general situation in
[NR1] and [R1], but applied to the “weighted” flower, (i.e. the flower in
which each loop is taken with the appropriate multiplicity).

Then the cage can be contracted to a point along a 1-parameter family of
cages Cgτ , τ ∈ [0, 1] of smaller weighted length. Here we use the assumption
that there are no “small” geodesic flowers. We can now construct a 1-
parameter family of spheres Sk

τ of dimension k that starts with the image of
the boundary of the given simplex and ends with a point, and thus generates
a (k + 1)-dimensional disc. Spheres are constructed by the procedure of
“filling” cages Cgτ at each τ described in [R1]. That is given a (k + 1)-cage
Cgτ , consider its k + 1 “k-subcages”, i.e. k-tuples (e1)τ , ..., (êj)τ , ..., (ek+1)τ
obtained by ignoring one of the curves. By induction assumption, each of
these subcages can be “filled” by discs of dimension k. (The base of induction
is proved by contracting 2-cages, i.e. closed curves, by the usual Birkhoff
curve shortening process. At this point we are using the assumption that
there are no short periodic geodesics.)

We then glue these (k + 1) discs as in the boundary of (k + 1)-simplex
to obtain Sk

τ . It is important to note that this process is continuous with
respect to Cgτ . This one-parameter family of spheres generates the desired
(k + 1)-dimensional disc that can be used to extend f .

The factorial dependence on q arises as follows. During the shortening
of the weighted length of the (k + 1)-cage it might happen that at τ = τ∗
the length of every edge in the cage but one becomes very small, while
the length of that remaining edge becomes large. Although, it is large,
it cannot be larger than 2kd. This inequality holds because the weighted
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length is initially ≤ 2kd and is decreasing. Now recall that to construct a
sphere “filling” this cage we need to consider k+1 k-subcages and construct
discs that “fill” them. Without loss of generality, consider the subcage that
is formed by the edges e1, ..., ek. To construct a disc we need to apply
weighted length shortening with coefficients 1, 1, ..., 1, k − 1. The worst case
scenario is when the length of ek is almost 2kd and the lengths of e1, ..., ek−1

are very small. More formally, let li denote the length of ei, i = 1, ..., k + 1.
Then lk = 2kd−l1−l2−...−klk+1 and the total weighted length of the above
k-cage is at most 2(k−1)kd−(k−2)(l1+...+lk−1)−(k−1)klk+1 ≤ 2(k−1)kd.
If we continue with this reasoning until we get to the 2-cages, we will get
the factorial bound 2q!d. 2

Example. To illustrate the proof of Theorem 0.2 assume q = 2. Let
us begin with a non-contractible map f : S2 −→ Mn. The proof will be by
contradiction. We will assume that there is no 2-flowers on Mn of length
≤ 4d, where d is the diameter of Mn and will show that in this case we can,
indeed, extend f to D3 triangulated as a cone over S2 that is triangulated in
such a way that the image of a simplex under f has diameter at most δ for
some small delta that eventually will approach 0.. The extension procedure
will be inductive on skeleta of S2.

Let us begin with the 0-skeleton of D3 that consists of the center of
the disc p̃. It will be mapped to an arbitrary point p ∈ Mn.

Next, let us extend to the 1-skleton of D3. For that, consider an edge
[p̃, ṽi]. Let us map it to a shortest geodesic segment [p, vi = f(ṽi)]. Its length
is, of course, ≤ d.

To extend to the 2-skeleton consider an arbitrary 2-simplex of the form
[p̃, ṽi1 , ṽi2 ]. Its boundary is mapped to a closed curve of length ≤ 2d + δ.
Assuming there is no closed geodesics of length ≤ 2d + δ, this curve is
contractible to a point by the Birkhoff curve shortening process. We will
map the 2-simplex to the disc [p, vi1 , vi2 ] generated by the curve shortening
homotopy.

Finally, let us extend to the 3-skeleton. In order to do that, consider an
arbitrary 3-simplex [p̃, ṽi1 , ṽi2 , ṽi3 ]. The image of its boundary is a 2-sphere
glued from four 2-simplices, one of which is very small. It is, in fact, so
small, that for the sake of the exposition we propose here to treat it as a
point that we will denote by q. So, this sphere is formed by connecting two
points p and q by geodesic segments e1, e2, e3 and contracting each pair of
closed curves to a point. Note also, that this construction provides us with
a natural cell decomposition of this sphere into two 0-cells: namely points
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p, q, three 1-cells: e1, e2, e3 and three 2-cells. Consider the 1-skeleton of this
sphere under this decomposition. It is a net.

Now we will apply a weighted length shortening process to this net.
That is, we will shorten the weighted length l(e1) + l(e2) + 2l(e3). It is the
same as shortening the length of a net, in which e1 and e2 are taken with
multiplicity 1 and e3 with the multiplicity 2. Critical points of this length
shortening process are of the following shape: (a) stationary figure 8; (b) a
closed geodesic. It is easy to see that a geodesic net consisting of two vertices
p and q, three distinct non-trivial geodesic segments connecting them and
a stationary condition at the vertices v1 + v2 + 2v3 = 0 cannot be a critical
point, since it can only be satisfied if e1 and e2 coincide. Thus, if we assume
that there is no stationary figure 8 or closed geodesic of length ≤ 4d then the
1-skeleton can be contracted to a point, (see fig. 2 (a)). In the process we
obtain a 1-parameter family of nets that we will denote Cgτ , which can be
extended to 1-parameter family of spheres S2

τ , that begins with the original
sphere and ends with a point, (see fig. 2 (b)). S2

τ is constructed as follows:
at each time τ we consider three pairs of curves and contract them to a
point without the length increase. It can and will happen at some point
that the length of one or two segments will decrease to zero and segments
themselves will degenerate to points, (see fig. 2). In that case, we can still
consider three pairs of curves, where one of the curves in two pairs will be
a constant curve. We then fill each of these three pairs of curves by discs
as we did above when we were extending to the 2-skeleton, i. e. using the
curve shortening process. These 3 2-discs glued together form S2

τ . Thus, if
there is no geodesic flowers of length ≤ 4d then we can extend our map f

to the 3-skeleton of D3, reaching a contradiction.

p=q
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γ 1 γ 2

γ3
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q

1−skeleton contracts to a point.

(b)

γ 2Segment   
collapses to a point.

2−sphere contracts to a point.

(a)

Figure 2: Deforming a 2-sphere to a point
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2 The proof of Theorem 0.3.

Note that by similar methods one can also prove Theorem 0.3. Let us begin
by stating the definition of the Filling Radius defined by M. Gromov in [G].

Definition 2.1 [G] Let Mn be a Riemannian manifold and let X =
L∞(Mn) be the Banach space of bounded Borel functions f on Mn. Let
Mn be isometrically imbedded in X, where the imbedding of Mn into
X is the map that assigns to each point p of Mn the distance function
p −→ fp = d(p, q). Then the filling radius FillRadMn is the infimum of
ε > 0, such that Mn bounds in the ε-neighborhood Nε(M

n), i.e. homo-
morphism Hn(Mn) −→ Hn(Nε(M

n)) vanishes, where Hn(Mn) denotes the
singular homology group of dimension n with coefficients in Z, when M is
orientable, and with coefficients in Z2, when M is not orientable.

Alternatively, one can give a different definition of the filling radius of Mn

by defining first FillRad(Mn ⊂ X), the filling radius of Mn isometrically
imbedded into some metric space X, as the smallest ε, such that Mn bounds
in the ε-neighborhood of Mn and then taking the infimum over all of the
isometric imbeddings. It was shown by M. Katz that FillRadMn ≤ d

3 ,
where d is the diameter of Mn, (see [K]).

In [G] M. Gromov had found an estimate for the filling radius of a closed
Riemannian manifold in terms of the volume of this manifold.

Theorem 2.2 [G] Let Mn be a closed connected Riemannian manifold.

Then FillRadMn ≤ gc(n)(vol(Mn))
1
n , where gc(n) = (n + 1)nn(n + 1)!

1
2

and vol(Mn) denotes the volume of Mn.

In this section we will prove the following

Theorem 2.3 Let Mn be a closed Riemannian manifold. Then there exists
a minimal geodesic flower that consists of at most 3(n+1)2 geodesic loops of
total length 2(n + 1)!3(n+1)3FillRadMn.

Theorem 2.3 combined with Theorem 2.2 leads to the volume bound for
the length of a smallest minimal geodesic flower as it was stated in Theorem
0.3.

The proof of Theorem 2.3 is based on the combination of the ideas from
the proof of Theorem 0.2 and an adaptation of the trick by M. Gromov from
[G] involving filling Mn by a polyhedron W n+1 in L∞(Mn), attempting to
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extend the identity map on Mn to W n+1 and obtaining a geodesic flower as
an obstruction to this extension.

The details of the proof of Theorem 2.3 are very similar to that of Theo-
rem 0.2, except that instead of contracting m-cages, we will be contracting
1-skeletons of simplices. The spheres and discs are then built out of those
1-skeletons in a similar fashion. Also, for each n the weighted length func-

tional applied to 1-skeletal net will be Σ
(n+1)(n+2)/2
i=1 3i−1length(ei), where

ei’s are the edges of 1-skeleton of an (n + 1)-dimensional simplex, satisfying
the condition that the edge e1 is coming out of the vertex w0, edges e2, e3

are coming out of the vertex w1, edges e4, e5, e6 are coming out of the vertex
w3, etc. Finally, the last (n + 1) edges are coming out of the same vertex
wn+1. This is the functional that will force a net to degenerate into a flower,
which will be proven in the Merging Lemma below.

Proof of Theorem 2.3. Let us begin by assuming that the length of a
shortest minimal geodesic flower is “large”.

By the definition of the Filling Radius of Mn, Mn bounds in the
(FillRadMn + δ)-neighborhood of Mn in L∞(Mn). We can assume that it
bounds a polyhedron W n+1, (see [G]). That is, ∂W n+1 = Mn, when Mn is
orientable and ∂W n+1 = ∂Mn mod 2, when Mn is not orientable and W n+1

lies in the (FillRadMn + δ)-neighborhood of Mn.
Let W n+1 and Mn be triangulated in such a way that the diameter of

any simplex in this triangulation is smaller than some small δ > 0.
Assuming there is no “small” minimal geodesic flowers one can construct

an extension of the identity map id : Mn −→ Mn to W n+1, thus reaching a
contradiction.

This extension is constructed by induction on the dimension of skeleta
of W n+1.

Let us begin with the 0-skeleton. Each vertex w̃i ∈ W n+1 will be
mapped to a vertex wi ∈ Mn, that is closest to w̃i. Thus, d(w̃i, wi) ≤
FillRadMn + δ.

Next, we will extend to the 1-skeleton. Consider an edge of the form
[w̃i, w̃j ] ⊂ W n+1\Mn. It will be mapped to a minimal geodesic segment
[wi, wj ] that connects wi and wj of length ≤ 2FillRadMn + 3δ.

Now, let us go to the 2-skeleton. Let σ̃2
i0,i1,i2 = [w̃i0 , w̃i1 , w̃i2 ] be an

arbitrary 2-simplex. Its boundary is mapped to a closed curve of length
≤ 6FillRadMn + 9δ. The assumption about all flowers being small implies,
in particular that there are no closed geodesics of smaller length, therefore,
we can contract this curve to a point along the curves of smaller length.
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Moreover, the absence of “short” periodic geodesics implies that this curve
shortening homotopy can be arranged to depend continuously on a curve.
We will map σ̃2

i0,i1,i2
to a surface that is generated by the above homotopy,

denoted as σ2
i0,i1,i2

.

Next let us go to the 3-skeleton. Consider an arbitrary 3-simplex
σ̃3

i0,i1,i2,i3 = [w̃i0 , ..., w̃i3 ]. By the previous step of the induction, its bound-

ary is mapped to the following chain: Σ3
j=0(−1)jσ2

ii,...,̂ij,...,i3
. Consider its

1-skeleton. It will be a net, that we will denote by Ki. Let us apply weighted
length shortening process for nets to continuously deform it to a point. The
weighted length of Ki is defined as Σ6

j=13
j−1length(ej), where ej is an edge

of the 1-skeleton. (We will not explicitly describe this length shortening
process, but it can be found in [NR1] and it is very similar to the length
shortening process for m-cages in [R1]).

We claim that only minimal geodesic flowers can be minimal geodesic
nets with such a functional. This follows from the Merging Lemma below,
but in order to better illustrate what can happen during the considered
process we will present here a more transparent proof that works in this
simple case.

Proof of the claim.

Case 1. (See fig. 3 (a)). First we will show that a non-degenerate 1-skeleton
cannot be a minimal geodesic net with respect to the above functional. Let
vij denote the unit vector tangent to ei at wj . Stationarity conditions at
vertices w0, ..., w4 imply

(1) v10 + 32v30 + 33v40 = 0;

(2) v11 + 3v21 + 34v51 = 0;

(3) 3v22 + 32v32 + 35v62 = 0;

(4) 33v43 + 34v53 + 35v63 = 0.

These conditions cannot be satisfied unless each vertex merges with some
other vertex, which leads to configurations on fig. 3 (b), (c), (d).

Case 2. Let us consider the configuration depicted on fig. 3 (b). There
vertex w0 merges with w1 and w2 merges with w3. The stationarity condition
at w0 = w1 implies that

v10 + v11 + 3v21 + 32v30 + 33v40 + 34v51 = 0.

This condition cannot be satisfied unless this vertex merges with the
remaining vertex v2 = v3, but in that case we will have a flower. Note
that it is possible, although it is not shown on the figure, that either or
both of the loops e1 and e6 disappear. Althought, these cases need to be
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considered separately, a similar consideration will tell us that this graph
must degenerate into a flower as well.
Cases 3 and 4, depicted on fig. 3 (c) and (d), are done in a similar fashion,
which completes the proof of the claim. 2
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Figure 3: The graphs of the above shape cannot minimize the weighted
length functional l(Γ) = Σ6

j=13
j−1ej.

Now note that at each time t during this weighted length shortening
deformation, we can use the net (Ki)t to construct a 2-dimensional sphere
S2

t in a way that is analogous to the similar construction in the proof of
Theorem 0.2. This 1-parameter family of 2-spheres can be regarded as a
3-disc that we will denote as σ3

i0,...,i3. We will assign it to σ̃3
i0,...,i3.

We can continue in a similar fashion until we reach the (n + 1)-skeleton
of W , thus constructing a singular chain on Mn, that has the fundamental
class [Mn] as its boundary, and therefore, arriving at a contradiction. The
only somewhat non-trivial fact that we need in order to finish the induction
step is the following Merging Lemma.

Lemma 2.4 (Merging Lemma) Let K be a net corresponding to a 1-
skeleton of m + 1 dimensional simplex with vertices w0, ...., wm+1 in a Rie-

mannian manifold Mn. Let ei, i = 1, ..., (m+1)(m+2)
2 be the edges, enu-

merated as follows: e1 connects the vertices w0 and w1, e2, e3 share the
vertex w2, e4, e5, e6 share the vertex w3, e7, ...., e10 share the vertex w4,
etc. Consider the following weighted length functional on K: L(K) =

Σ
(m+1)(m+2)

2
j=1 3j−1length(ej). Then the only non-trivial critical points of this

functional are minimal geodesic flowers.
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Figure 4: Illustration of the Merging Lemma

Proof.

First note that a non-degenerate K cannot be a critical point for the
weighted length functional defined above, since the stationarity condition
will not be satisfied at any of the vertices of K. Now suppose the vertices of
K have merged with each other in some ways. We will show that K is not a
critical point unless all of them have merged. In order to see that, consider
a vertex wm+1 and some vertex ws with which it did not merge, (see fig. 4
(b)). Note that according to the hypothesis of the lemma, the last m edges
are all coming out of the vertex wm+1, (see fig. 4 (a)). Moreover, they are
connecting it with the remaining vertices w0, ..., wm. Let us look at all of the
edges that are coming out of ws. They will be of three types: (1) loops, (2)
edges connecting ws and wm+1 and (3) edges connecting ws with some other
vertex. Among all of these edges, the one with the highest index will be an
edge of type (2). Let us denote this edge as ei1 The stationarity condition
at ws is Σk

j=13
ij−1vij = 0, where k ≤ (m + 1)(m + 2), vij is a unit vector

tangent to one of the edges at ws and i1 > ij for all j > 1. (Note that each
edge of type (1) corresponds to two different vectors vip , viq .) Obviously, this
condition cannot be satisfied. Therefore, this configuration must degenerate
unless all the vertices coincide with wm+1 2

Finally, note that the estimate (that can definitely be improved) arises
as follows. Suppose we have extended the identity map id : Mn −→ Mn to
the k-skeleton of W n+1 and now want to extend it to the (k + 1)-skeleton.
Then consider an arbitrary (k + 1)-simplex of W n+1, its 1-skeleton and its
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image that we will denote as N . To extend the map to this simplex, we
will construct a (k + 1)-dimensional disc that fills N . N consists of at

most k + 2 vertices and at most (k+2)(k+1)
2 edges. Each edge has a weight

assigned to it as in the Merging Lemma above. Assuming there is no “small”
geodesic flowers, N can be deformed to a point along the 1-parameter family
of nets Nτ , τ ∈ [0, 1], where the weighted length of Nτ decreases with τ .
Next for each τ we construct a sphere Sk

τ that fills Nτ . It is consructed by
constructing k-dimensional discs and gluing them as in the boundary of a
(k + 1)-dimensional simplex. In order to construct those discs, we consider
subnets that are obtained by ignoring a vertex and all the edges that are
coming out of this vertex.

Let us estimate the maximal length of each edge in a subnet. Defi-

nitely it is ≤ 2FillRadMn (k+2)(k+1)
2 3

(k+2)(k+1)−2
2 , i.e. the maximal num-

ber of edges in Nτ times the maximal weighted length of the edges in
Nτ . Therefore, the total weighted length of the whole subnet is ≤

2FillRadMn (k+1)k(k+2)(k+1)
22 3

(k+1)k−2
2 3

(k+2)(k+1)−2
2 . If we continue in such a

manner starting from the (n+1)-skeleton of W n+1 we would obtain a bound

of 2FillRadMn (n+2)!(n+1)!
2n 3Σn

k=0
(k+2)(k+1)−2

2 ≤ 2FillRadMn(n + 1)!23(n+1)3 .
Note also that the maximal number of geodesic loops in the geodesic

flower can be estimated by the number of edges in N , but taken with mul-
tiplicities that correspond to weights, thus it is bounded by geometric sum

Σ
(n+2)(n+1)

2
j=1 3j−1 ≤ 3(n+1)2 . 2
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