
Short geodesic loops on complete Riemannian

manifolds with finite volume.

Regina Rotman

August 30, 2008

Abstract

In this paper we will show that on any complete noncompact Rie-
mannian manifold with a finite volume there exist geodesic loops of
arbitrarily small length.

Introduction.

In the paper we will prove the following theorem:

Theorem 0.1 Let Mn be a complete noncompact Riemannian manifold of
a finite volume. Then, given ε > 0, there exists a geodesic loop on Mn of
length ≤ ε.

This theorem provides an answer to one of many questions about rela-
tionship between the volume of a complete non compact Riemannian man-
ifold and lengths of various stationary objects.

Previously, questions of a similar nature were investigated by C. B.
Croke, who has established a volume upper bound for the length of a shortest
periodic geodesic on a surface of finite volume, (see [C]) and by S. Sabourau,
who has indicated how to bound the length of a shortest geodesic loop on a
complete Riemannian manifold by its volume, (see [S2]). Note that it is not
known whether on any complete Riemannian manifold of finite volume of
dimension greater than two there exists a periodic geodesic, (though it was
shown by V. Bangert and G. Thorbergsson that there exist infinitely many
geodesics on a complete surface of a finite volume, (see [B], [T])).

On the other hand, when one assumes that a Riemannian manifold Mn

is closed, there are numerous results that connect the size, (i. e. the length
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or the area) of various stationary objects: geodesic loops, minimal geodesic
cycles and nets, minimal surfaces or submanifolds to the size of a manifold
as measured either by its volume or the diameter, (see, for instance, [Bl],
[NR2], [NR3], [NR4], [R2], [R3], [R4], [S2]). Presently there are no general
curvature-free upper bounds of this nature for the length of a shortest pe-
riodic geodesic on a simply connected manifold, except in dimension two,
(see [C], [M], [NR1], [R1], [S1]), though many results for manifolds with
non-trivial fundamental group are known, (see [BrZ], [CK] for surveys of
these results). The most notable is the result of M. Gromov, which gives
a volume estimate for the length of a shortest periodic geodesic on closed
Riemannian manifolds that are essential, (see [G]).

Our proof will make use of the following definition and result by M.
Gromov, (see [G] as well as recent papers by S. Wenger ([W]) and by L.
Guth, ([Gt1]) for simplifications of the original proof. The paper of Wenger
contains some improvements of the original result.) We will also use some
ideas from Gromov’s paper [G] and our approach of constructing “fillings”
of cycles in the absence of short geodesic loops used in [R3].

Definition 0.2 Filling Radius. Let Mn be an n-dimensional Rieman-
nian manifold in an arbitrary metric space X. Then the filling radius
FillRad(Mn ⊂ X) is the infimum of ε > 0, such that Mn bounds in the
ε-neighborhood Nε(M

n), that is i∗(Hn(Zn)) = {0}, where i∗ is induced by
the inclusion i : Mn −→ Nε(M

n) and, where Hn(Mn) is taken with coeffi-
cients in Z, when Mn is orientable, and with coefficients in Z2, when Mn

is nonorientable. The filling radius of an abstract Riemannian manifold is
then defined to be FillRad(Mn ⊂ L∞(Mn)), where the embedding of Mn

into L∞(Mn) is a map that to each point p of Mn assigns a distance func-
tion p −→ fp = d(p, q), (see [G]). Equivalently, FillRadMn can be defined
as the infimum of FillRad(Mn ⊂ X) over all metric spaces X and isometric
embeddings of Mn into X.

Theorem 0.3 ([G]) Let Mn be an n-dimensional manifold. Then

FillRadMn ≤ k(n)vol(Mn)
1

n , where k(n) is an explicit function of the di-
mension of a manifold.

Note that L. Guth has recently improved the above result by showing
that a complete Riemannian manifold with the filling radius R contains a
ball of radius R of volume bounded from below by c(n)Rn, (see [Gt2]).
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1 Three simple lemmas.

We will begin the proof of the main result with the following three lemmas:

Lemma 1.1 Let Mn be a complete noncompact Riemannian manifold of a
finite volume. Let σ(t) be a geodesic ray, starting at a point p. Then given
ε, T > 0 there exists a connected (n − 1)-dimensional submanifold Zε, such
that voln−1(Zε) < ε, Zε does not bound in Mn\{p} and the distance between
the point p and Zε is greater than T .

Proof. Let ̺δ : Mn −→ R be a function that is smooth on Mn\{p} and
that approximates a distance function ̺p from the point p in the following
way: (1) ̺δ = ̺ on a geodesic ball centered at p of radius smaller than the
injectivity radius of Mn at p; (2) |̺p − ̺δ| ≤ δ and (3) |grad̺δ| ≤ 1+ δ. The
details of constructing such a function can be found in M. P. Gaffney’s work
[Ga].

Let us now consider the sublevel sets of ̺δ. For some small values of
t ∈ R, they will be geodesic spheres, because ̺δ agrees with the distance
function in some neighborhood of p. Let Sr(p) be a geodesic sphere centered
at p with radius r smaller than the injectivity radius at the point p. Then
Sr(p) is homeomorphic to Sn−1.

By the virtue of Mayer-Vietoris exact sequence it follows that Sr(p) does
not bound in Mn\{p}. Otherwise, Hn(Mn) 6= {0}, which would contradict
the assumption that Mn is not compact.

Let us denote a 1-parameter family of sublevel sets of ̺δ as St(p), t ∈
(0,∞). They are homologous for all t. Thus, for all t, St(p) does not bound
in Mn\{p}, which means that for all t there is a connected component of
St(p) that does not bound in Mn\{p}. Furthermore, dist(p, St(p)) ≥ t − δ.
Now the coarea formula implies that

∫
∞

0 voln−1St(p)dt ≤ (1+ δ)V , where V

is the volume of Mn. From above equality it follows that for every ε > 0,
and T > 0, there exists t > T + δ such that voln−1(St(p)) < ε. Moreover,
such t′s form a set of infinite measure. Since, by Sard’s theorem, St(p) is an
(n− 1)-dimensional submanifold of Mn for almost all t, we can choose such
a value of t so that St(p) is a smooth manifold, which proves the lemma. 2

The following two lemmas were used in [R3]. We will present them here
for the sake of completeness.

The first is a Morse-theoretic type lemma asserting that the space of
loops based at a fixed point q of length smaller than the length of a minimal
geodesic loop at q is contractible.
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Lemma 1.2 Let Mn be a complete Riemannian manifold. Let q ∈ Mn.
Suppose that the length of a shortest geodesic loop lq(M

n) based at q is greater
than L. Then given any piecewise differentiable loop γ : [0, 1] −→ Mn of
length ≤ L such that γ(0) = γ(1) = q there exists a length decreasing path
homotopy connecting this curve with q that depends continuously on initial
loop γ.

Proof. There is a standard explicit length shortening deformation of
the space of loops based at q of length ≤ L to the constant loop via the
Birkhoff Curve Shortening Process, (see [C] for the detailed description of
the Birkhoff Curve Shortening Process (BCSP) for closed curves. The only
difference between the BCSP for closed curves and the BCSP for loops is
that one fixes a base point during the homotopies in the latter case.)

2

The third lemma can be viewed as an effective version of an elementary
assertion that two curves γ1, γ2 connecting points q1, q2 are path homotopic
if and only if the loop γ2 ∗−γ1 is path homotopic to a point. Lemma 1.3 is
analogous to a similar statement in [C], namely, Lemma 3.1.

Lemma 1.3 Let γ1, γ2 be two curves with γ1(0) = γ2(0) = q1 and γ1(1) =
γ2(1) = q2 on a complete Riemannian manifold Mn of length l1, l2 respec-
tively.

Let γ2 ∗ −γ1 be the product of γ2 and −γ1 based at q1. If this curve is
contractible to q1 as a loop along the curves of length ≤ l1 + l2 then there is a
path homotopy, (i.e. a homotopy that fixes the end points), hτ (t), τ ∈ [0, 1],
such that h0(t) = γ1(t), h1(t) = γ2(t) and the length of curves during this
homotopy is bounded above by 2l1 + l2. Alternatively there exists a path
homotopy with the same properties, such that the length of curves in it is
bounded by l1 + 2l2. Moreover, when Mn has no geodesic loops of length
≤ l1 + l2, this path homotopy can be made to continuously depend on a
digon formed by γ1 and γ2, see ( 1.2).

Proof. Let h̃τ (t) be a homotopy that connects γ2 ∗ −γ1 with a point p,
(see fig. 1 (a) and (b)). Then let us consider the following homotopy
γ1 ∼ h̃1−τ ∗ γ1 ∼ γ2 ∗ −γ1 ∗ γ1 ∼ γ2, (see fig. 1 (a)-(g)). The length of
curves during this homotopy is ≤ 2l1 + l2.

Note that, assuming there are no geodesic loops of length ≤ l1 + l2, one
can contract γ2 ∗ −γ1 via the BCSP, which continuously depends on the
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initial curve, (see Lemma 1.2). Thus, the path homotopy between γ1(t) and
γ2(t) will also continuously depend on the initial digon.

Also, one can reverse the role of γ1 and γ2 and construct a path homotopy
between γ2 and γ1 passing through curves of length l1+2l2. Then we reverse
the direction of this path homotopy obtaining a path homotopy from l1 to
l2 with the required properties.

γ1(t) γ2 (t)

p

q

γ2(t)γ1(t) γ2 ∗ _ γ1

p

q

h   (t)τ
~

(c) (d) (e) (f) (g)

(a) (b)

Figure 1: Illustration of the proof of Lemma 1.3.

2

2 Proof of Theorem 0.1.

In the following definition, (Definition 3.1 in [R3]), we let σm+1 denote the
standard (m + 1)-dimensional simplex, and C(X,Y ) denote the space of
continuous maps from X into Y .

Definition 2.1 Given l > 0 and a positive integer m, let Km,l be a space of
piecewise smooth maps of the 1-skeleton of the complete graph with (m + 2)
vertices into Mn, such that each edge is mapped into a curve of length ≤ l.
We define an N -filling of K∗,l as a a collection of continuous maps φm :
Km,l −→ C(σm+1,Mn),m = 1, 2, . . . ,N , satisfying the following properties:

(1) For every k ∈ Km,l the restriction of φm(k) to the 1-skeleton of σm+1

coincides with k, that is, each φm(k) extends k.

(2) For every k ∈ Km,l, (m ≤ N), the restriction of φm(k) to an m-
dimensional face of σm+1 coincides with φm−1 evaluated on the element
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of Km−1,l obtained from k by restricting k to the set of all 1-dimensional
simplices in the 1-skeleton of this face of σm.

Here is an informal description of the above definition: we are “filling”
graphs with “short” edges, (i.e. of length ≤ l) that correspond to the im-
mersed 1-skeleton of a simplex of dimension m + 1 by discs of dimension
m + 1, so that the map of the disc extends the map from 1-skeleton. More-
over, this extension is done in a coherent way, that is, if we consider the
restriction of this map to a face of the simplex, it will be a “filling” of the
1-skeleton of the face, in particular, that means that each N -filling agrees
with its subfillings and depends continuously on its 1-skeleton.

Lemma 2.2 Suppose that the length of a shortest geodesic loop on Mn is
greater than 3 · 4n−1l. Then there exists an n-filling of K∗,l. Moreover, if
k ∈ Km,l, (m ≤ n), the disc that fills k will lie in 6 · 4n−2l-neighborhood of
vertices of k, that is, the maximal distance between points of the disc and
the set of vertices of k is at most 6 · 4n−2l.

Proof. We will prove the existence of the i-fillings of K∗,l for every i ≤ n.
The proof will be by induction with respect to i. The base step corresponds
to i = 1. Let k1 ∈ K1,l. By Definition 2.1 it is an immersion of a full graph
that consists of three vertices and three edges. Let v0, v1, v2 be the vertices
of this immersed graph. The three edges form a loop based at v0. Since we
have assumed that there are no “short” geodesic loops, (and, in particular,
no geodesic loops of length ≤ 3l), this loop is contractible to v0 via shorter
loops based at v0. This homotopy generates a disc that “fills” k1.

At each subsequent step, to construct φj we consider its restriction to
∂σj+1. This restriction is uniquely determined by the definition of N -fillings
and, if i > 1, by the previous steps of the induction. That is, the previous
step of the induction results in a filling of elements of Kj−1,l obtained from
elements of Kj,l by deleting a vertex. Consider k ∈ Kj,l. Then the fillings of

j+2 elements of Kj−1,l that are obtained from k by deleting a vertex are
discs of dimension j provided by the previous step of the construction. They
together form a j-dimensional sphere, which, according to our definition, is a
restriction of φj to ∂σj+1. The required disc is then generated by a homotopy
that contracts this sphere to a point. To construct this homotopy we begin
by constructing a 1-parameter family kt of immersed graphs connecting k =
k0 with a complete graph k1 with (j + 2) vertices immersed in Mn such
that all of its edges are mapped to some paths in a tree. This path kt
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should continuously depend on the initial graph k. Next, we construct a 1-
parameter family of spheres S

j
t by filling all kts. This result in a homotopy

between the sphere φj(∂σj+1) and the degenerate sphere S
j
1 that lives in a

tree and is, therefore, contractible, (to contract this degenerate sphere we
contract k1 over itself and fill it by the n-sphere at each moment of the
homotopy).

v
3

2

v
0

v
1

v

Figure 2: Collapsing triangles

kt is constructed by several applications of an operation of a collapsing
of a triangle: Let ka, kb, kc be any of the three edges of k. As there are
no geodesic loops of length ≤ length ka+ length kb+ length kc in Mn,
we can apply Lemma 1.3 to construct a path homotopy between ka and
kb ∗ kc. This homotopy passes through paths of length ≤ 2length(ka) +
length(kb)+length(kc) ≤ 4l. This homotopy induces a homotopy of triangles
(ka)t, kb, kc, t ∈ [0, 1] that we call a collapsing of the triangle ka, kb, kc. At
the end of this homotopy ka is being replaced by another edge that goes
along kb ∗ kc, and the considered triangle becomes thin.

After collapsing finitlely many triangles, we can obtain an element of
Kj,4l, where all edges run along the tree-shaped union k1 of edges of k

adjacent to one vertex of k, let’s say the vertex with the highest number,
(see fig. 2 , which illustrates that the edge [v0, v1] is being collapsed to
the path [v0, v3, v1], the edge [v1, v2] is being collapsed to [v1, v3, v2], and the
edge [v0, v2] is being collapsed to [v0, v3, v2]).

Now we can continue the homotopy of complete graphs by contracting
all edges of k1 to a point, (to v3 on fig. 2) along the tree by a length
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non-increasing homotopy.
The resulting graphs are filled by j-spheres using the induction assump-

tion on Km,4l, since the length of edges that result in the process of collapsing
of triangles is bounded above by 4l.

Let k ∈ Km,l. Then k is a (map of) the complete graph with m + 2
vertices v0, v1, ..., vm+1. Let kt1 denote a one parameter family of graphs
obtained from k by collapsing triangles. We define ki1

t1
to be a subgraph of

kt1 obtained from it by removing a vertex vi1 . In general, let k
i1,...,ij−1

t1,...,tj
be a

family of complete graphs with m + 3 − j vertices obtained from k
i1,...,ij−1

t1,...,tj−1

by collapsing triangles and let k
i1,...,ij
t1,...,jk

be complete graph with m + 2 − k

vertices obtained from k
i1,...,j−1

t1,...,tj
by removing a vertex vj . Let a(j) be the

maximal possible length of an edge of k
i1,...,ij
t1,...,tj

. Note that a(1) ≤ 4l and that

a(j + 1) ≤ 4a(j). Thus, a(m − 1) ≤ 4m−1l. So, the length of loops that one
contracts in the recursive process described above is at most 3 × 4n−1l.

Note also, that as all the homotopies are constructed by contracting
loops to one of the vertices of k, the maximal distance from the points of
the resulting disc to one of the vertices is at most half the maximal length
of such loops. 2

Here is the informal description of the above proof when m = 2. We
would like to show that in the case when the length of a shortest geodesic
loop is > 12l we can fill K2,l. Let us recall that K2,l is the space of immersed
1-skeleta of simplices of dimension 3, such that the length of each edge
does not exceed l. We would like to extend each of the immersions to a 3-
simplex, so that these extensions are continuous with respect to the original
graph, and so that they are coherent. The last requirement means that
if we consider a restriction of the immersion to a subcomplex, which is a
1-skeleton of a 2-face, it will agree with the earlier extension. Thus, the
procedure is inductive and we will begin by filling K1,4l. In this case, if
k ∈ K1,4l then its total length is at most 12l. However, since the length of
a shortest geodesic loop is greater than 12l each such curve is contractible
via the BCSP as a loop to any of the vertices of k. Let us, however, choose
to contract to vertices with the biggest index. Here we use Lemma 1.3 to
construct the required path homotopy between one side of k and its two
other sides. Next let us consider k2

v0,v1,v2,v3
∈ K2,l. Note that, as we know

how to extend each k1
v0,,,,v̂i,...,v3

we, as the result of these extensions and a
natural identifications of the four 2-discs have a map of the 2-sphere into Mn

naturally assigned to k2
v0,v1,v2,v3

. Let us denote this (map of the) 2-sphere
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by S2
0 . We would like to construct a map of a 3-disc that fills 2-sphere. It

will be constructed as a 1-parameter family of 2-spheres S2
τ that begins with

the original sphere obtained in the previous step S2
0 and ends with a point.

Here is how we will construct S2
τ . Let us begin by constructing a 1-parameter

family of graphs k2
τ , τ ∈ [0, 2]. We will let k2

0 = k2
v0,v1,v2,v3

. Next, by Lemma
1.3 there is a homotopy that moves edges [vi, v(i+1) mod 3], 0 ≤ i ≤ 2 to
[vi, v3] + [v3, v(i+1) mod 3]. This path homotopy passes through curves of
length ≤ 4l. Let us denote the curves in these homotopies by ei

τ . So,
we will continuously replace edges ei = [vi, v(i+1) mod 3] by the edges ei

τ

respectively, thus forming k2
τ . Let us now consider all the subcomplexes of

k2
τ that correspond to elements of K1,4l. By the previous step they can all

be ”filled” by 2-discs. Gluing these discs together results in a 2-sphere S2
τ .

When τ = 1 this sphere will degenerate to (a map of the 2-sphere into)
a tree with root at v3 and three edges connecting v3 with v0, v1, v2. This
sphere fills a degenerate element of K2,2l where all edges are mapped into
this tree. This element can be contracted over itself to the constant map of
the complete graph into v3. Filling the resulting homotopy by spheres we
obtain a family of 2-spheres S2

τ , τ ∈ [1, 2] that connects S2
1 and S2

2 = {v3}.
Thus, we obtain a 3-disc that “fills” any k2

v0,...,v3
∈ K2,l.

Proof of Theorem 0.1. Let ε > 0 be given. By Lemma 1.1 there exists a
connected (n−1)-dimensional manifold Zε ⊂ Mn, such that voln−1(Zε) ≤ ε.
Moreover Zε does not bound in Mn − p, where p is some point of Mn that

is located at the distance greater than T = 4nk(n − 1)ε
1

n−1 from Zε. Here
k(n− 1) is a constant of Theorem 0.3. Let X = L∞(Zε). By Definition 0.2,
Zε isometrically embedds into X and for every δ > 0 there exists a singular
chain c in the (FillRad(Zε) + δ)-neighborhood of Zε in X, such that Zε

bounds c. Without loss of generality we can take c to be an n-dimensional
polyhedron, (see Statement 1.2.C on page 10 in [G].) Also, recall that the
Kuratowski embedding of Zε in X is an isometry, (see Def. 0.2).

Assume that lengths of all nontrivial geodesic loops in Mn are greater
than

ε̃ = 6 · 4n−1k(n − 1)ε
1

n−1 > 6 · 4n−1k(n − 1)voln−1(Zε)
1

n−1 (∗).

Furthermore, Gromov’s Theorem 0.3 implies that ε̃ > 6 ·
4n−1 FillRad(Zε)

We will extend the inclusion map of Zε = ∂c into Mn − p to a map
τ : c −→ Mn − p, which would imply Zε bounds in Mn − p, thus reaching a
contradiction.
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Let us begin with a triangulation of c into simplices of diameter at most
δ > 0, that will eventually approach zero. The extension will be done by
induction on the skeleta of c. Each of the 0-simplices of c, (excluding those
in Zε), will be mapped to one of the closest points in Zε (in the metric of
the ambient space X). Each of the 1-simplices of c \ Zε will be mapped
into a minimizing geodesic in Mn between the images vi1 , vi2 of the vertices
ṽi1 , ṽi2 respectively of this simplex. Then dist(vi1 , vi2) ≤ dist(vi1 , ṽi1) +
dist(ṽi1 , vi2) ≤ dist(vi1 , ṽi1) + dist(ṽi1 , ṽi2) + dist(ṽi2 , vi2) ≤ 2FillRad + δ̃,
where δ̃ = 3δ. Thus, the length of the image of each 1-simplex of c\Zε is at
most 2FillRad(Zε) + δ̃, where δ̃ can be made arbitrarily small by selecting
a sufficiently small δ and by refining the chosen triangulation of c.

The desired extension of τ to any closed n-dimensional simplex of c \Zε

is accomplished by filling the image of its 1-skeleton described in Lemma
2.2. One, however, has to take care to fill every k-simplex identically, when
it is considered as a k-face of different n-simpleces.

Let us begin by enumerating all the vertices of the chosen triangulation of
c by increasing successive integers. We will apply Lemma 2.2 to previously
constructed images of 1-skeleta of all n-dimensional simplices of c. In order
to do that we need to number vertices of every n-dimensional simplex of c

by numbers 0, 1, ..., n. To do this we take the numbering of all of the vertices
of c and then renumbering the vertices of every n-simplex by {0, 1, ..., n} in
the increasing order. Next apply Lemma 2.2 using (∗) and taking δ̃ to be
sufficiently small. As the result, we obtain an extension to the n-skeleton of
c. Note that the resulting image does not pass through the point p, because
the distance between p and the image is sufficiently large. Thus, we have
reached a contradiction refuting the assumption in (∗). Finally, note that as
ε becomes arbitrarily small so does ε̃, and so there must be a geodesic loop
of arbitrarily small length. 2
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