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Abstract. Let D be a Riemannian 2-disc of area A, diameter d and length of the
boundary L. We prove that it is possible to contract the boundary of D through

curves of length ≤ L+200d max{1, ln
√

A

d
}. This answers a twenty-year old question

of S.Frankel and M.Katz, a version of which was asked earlier by M.Gromov.
We also prove that a Riemannian 2-sphere M of diameter d and area A can be

swept out by loops based at any prescribed point p ∈ M of length ≤ 200d max{1, ln
√

A

d
}.

1. Main results

Consider a 2-dimesional disc D with a Riemannian metric. M. Gromov asked if
there exists a universal constant C, such that the boundary of D could be homo-
toped to a point through curves of length less than C max{|∂D|, diam(D)}, where
|∂D| denotes the length of the boundary of D and diam(D) denotes its diameter.
This question is a Riemannian analog of the well-known (and still open) problem in
geometric group theory asking about the relationship between the filling length and
filling diameter (see [Gr93]).

S. Frankel and M. Katz answered the question posed by Gromov negatively in
[FK]. They demonstrated that there is no upper bound for lengths of curves in
an “optimal” homotopy contracting ∂D in terms of |∂D| and diam(D). Then they
asked if there exists such an upper bound if one is allowed to use the area Area(D)
of D in addition to |∂D| and diam(D). In this paper we will prove that the answer
for this question is positive, and, moreover, provide nearly optimal upper bounds for
lengths of curves in an “optimal” contracting homotopy in terms of |∂D|, diam(D)
and Area(D). Note that S. Gersten and T. Riley ([GerR]) proved a similarly looking
result in the context of geometric group theory. Yet in the Riemannian setting
their approach seems to yield an upper bound with the leading terms const(|∂D| +
diam(D) max{1, ln

√
Area(D)

inj(D)
}), where inj(D) denotes the injectivity radius of the

disc, and so does not lead to a solution of the problem posed by Frankel and Katz.
Define the homotopy excess, exc(D), of a Riemannian disc D as the infimum of

x such that for every p ∈ ∂D the boundary of D is contractible to p via loops of
length ≤ |∂D|+x based at p. Let exc(d, A) denote the supremum of exc(D) over all
discs D of area ≤ A and diameter ≤ d. The examples of [FK] imply the existence of
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a positive constant const such that exc(d, A) ≥ const d max{1, ln
√

A
d
}. The first of

our main results implies that this lower bound is optimal up to a constant factor:

Main Theorem A.

exc(d, A) ≤ 200d max{1, ln

√
A

d
}

In fact, we are able to prove that lim sup√
A

d
−→∞

exc(d,A)

d ln
√

A

d

≤ 12
ln 3

2

< 30 (see the remark

at after the proof of Theorem 1.2 in section 7). On the other hand, analysing the

examples of Frankel and Katz we were able to prove that lim inf √
A

d
−→∞

exc(d,A)

d ln
√

A

d

≥
1

8 ln 2
> 0.18 and believe that the same examples could be used to get a better lower

bound 1
2 ln 2

.
Here are some other upper estimates:

Theorem 1.1. For any Riemannian 2-disc D and a point p ∈ ∂D there exists a
homotopy γt of loops based at p with γ0 = ∂D and γ1 = {p}, such that

|γt| ≤ 2|∂D| + 686
√

Area(D) + 2diam(D)

for all t ∈ [0, 1].

It easy to see that any upper bound for the lengths of |γt| should be greater than
2diam(D). Therefore the upper bound provided by Theorem 1.1 is optimal for fixed
values of Area(D) and |∂D|, when diam(D) −→ ∞. However, the next theorem
provides a better bound, when Area(D) −→ ∞ or |∂D| −→ ∞ and immediately
implies Main Theorem A stated above.

Theorem 1.2. For any Riemannian 2-disc D and a point p ∈ ∂D there exists a
homotopy γt of loops based at p with γ0 = ∂D and γ1 = {p}, such that

|γt| ≤ |∂D| + 159diam(D) + 40diam(D) max{0, ln
√

Area(D)

diam(D)
}

for all t ∈ [0, 1].

As a consequence of the previous theorems we obtain related results about diastoles
of Riemannian 2-spheres M . A diastole of M was defined by F. Balacheff and S.
Sabourau in [BS] as

dias(M) = inf
(γt)

sup
0≤t≤1

|γt|

where (γt) runs over families of free loops sweeping-out M . More precisely,the family
(γt) corresponds to a generator of π1(ΛM, Λ0M), where ΛM denotes the space of
free loops on M and Λ0M denotes the space of constant loops.
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In [S, Remark 4.10] S.Sabourau gave an example of Reimannain two-spheres with

arbitrarily large ratio dias(Mn)√
Area(Mn)

. In [L] the first author gave an example of Rie-

mannian two-spheres Mn with arbitrarily large ratio dias(Mn)
diam(Mn)

. We show that if both

diameter and area of M are bounded, the diastole can not approach infinity. More-
over, for every p ∈ M one can define Bdiasp(M) by the formula

Bdiasp(M) = inf
(γt)

sup
0≤t≤1

|γt|

where (γt) runs over families of loops based at p sweeping-out M . Now define the
base-point diastole Bdias(M) as supp∈M Bdiasp(M). It is clear that Bdias(M) ≥
dias(M). We prove the following inequalities:

Theorem 1.3. (Main Theorem B.) For any Riemannian 2-sphere M we have

A. Bdias(M) ≤ 664
√

Area(M) + 2diam(M);

B. Bdias(M) ≤ 159diam(M) + 40diam(M) max{0, ln
√

Area(M)

diam(M)
}.

Moreover, as diam(M)√
Area(M)

−→ 0,

Bdias(M) ≤ (
12

ln 3
2

+ o(1))diam(M) ln

√

Area(M)

diam(M)
.

We noticed that one can modify the examples from [FK] to construct a sequence of

Riemannian metrics on S2 such that diam√
Area

−→ ∞ but Bdias ≥ 2diam+const
√

Area

for an absolute positive constant const. (A formal proof involves ideas from [L]
and will appear elsewhere. The resulting Riemannian 2-spheres look like very thin
ellipsoids of rotation with a disc near one of its poles replaced by a Frankel-Katz
2-disc with area that is much larger than the area of the ellipsoid.) Combining this

observation with inequality A we see that Bdias(M) = 2diam(M)+O(
√

Area(M)),

when

√
Area(M)

diam(M)
−→ 0, and the dependence on Area(M) in O(

√

Area(M)) cannot

be improved. One can also use the examples in [FK] (as well as the ideas from [L]) to
demonstrate that inequality B provides an estimate for Bdias(M), which is optimal

up to a constant factor, when diam(M)√
Area(M)

−→ 0.

Note that in [BS] F.Balacheff and S.Sabourau show that that if 1-parameter fami-
lies of loops in the definition of the diastole are replaced with 1-parameter families of
one-cycles, then for every Riemannian surface Σ of genus g the resulting homological
diastole diasZ(Σ) satisfies

diasZ(Σ) ≤ 108(g + 1)
√

Area(Σ).
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The proof of Theorem 1.1 will proceed by first considering subdiscs of D of small
area and small boundary length and then obtaining the general result for larger and
larger subdiscs by induction. The parameter of the induction will be ⌊log 4

3

Area D′

ǫ(D)
⌋,

where D′ denotes a (variable) subdisc and ǫ(D) > 0 is very small. As it is the case
with many inductive arguments, it is more convenient to prove a stronger statement.
To state this stronger version of Theorem 1.1 we will need the following notations:

Definition 1.4. For each p ∈ D dp(D) = max{dist(p, x)|x ∈ D}. Let dD =
max{dp(D)|p ∈ ∂D}.

From the definition we see that dD ≤ diam(D).
If l1 and l2 are two non-intersecting simple paths between points p and q of D,

then l1 ∪ −l2 is a simple closed curve bounding a disc D′ ⊂ D. We will show that
there exists a path homotopy from l1 to l2 such that the lengths of the paths in this
homotopy are bounded in terms of area, diameter and length of the boundary of D′.

Definition 1.5. Let D be a Riemannian disc and D′ ⊂ D be a subdisc. Define a
relative path diastole of D′ as

pdias(D′, D) = supp,q∈∂D′inf(γt)supt∈[0,1]|γt|
where (γt) runs over all families of paths from p to q γt : [0, 1] → D with γt(0) = p,
γt(1) = q, where γ0 = l1 and γ1 = l2 are subarcs of ∂D′ = l1 ∪ −l2 intersecting only
at their endpoints p, q. Let pdias(D) = pdias(D, D).

Theorem 1.6. A. For any Riemannian 2-disc D with |∂D| ≤ 2
√

3
√

Area(D)

pdias(D) ≤ |∂D| + 664
√

Area(D) + 2dD.

B. For any Riemannian 2-disc D with |∂D| ≤ 6
√

Area(D)

pdias(D) ≤ |∂D| + 686
√

Area(D) + 2dD.

C. For any Riemannian 2-disc D with |∂D| > 6
√

Area(D)

pdias(D) ≤ |∂D|+ 2⌈log 4
3
(
|∂D| − 4

√

Area(D)

2
√

Area(D)
)⌉

√

Area(D) + 686
√

Area(D) + 2dD

≤ 2|∂D| + 686
√

Area(D) + 2dD.

D. Also, if d ≥ 3
√

A,

exc(d, A) ≤ 3d +
2

ln 4
3

√
A ln(

2

3
(

2d√
A

− 4)) + 686
√

A.
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Of course, Theorem 1.1 immediately follows from Theorem 1.6 C. The second in-

equality in Part C of the theorem can be easily proven by observing that
2 ln(

2(x−4)
3

)

(ln 4
3
)x

<

0.9735 < 1 for x ∈ [6,∞]. Setting x = |∂D|√
Area(D)

we obtain the desired inequal-

ity. The last inequality provides a much better upper bound for exc(d, A), when√
A << d and implies that lim√

A

d
−→0

exc(d, A) ≤ 3d.

Open problem. Is it true that, when d is fixed, and A −→ 0, exc(d, A) = 2d +

O(
√

A)?
Here is the plan of the rest of the paper. In the next section we recall Besicovich

theorem and use it to reduce Theorem 1.6 A-C to proving (slightly stronger) estimates

for subdiscs of D, where the length of the boundary does not exceed 6
√

Area(D).
In the same section we apply this result to prove the desired assertion for subdiscs
of D with area bounded by a very small constant. At the beginning of section 3 we
review a result by P. Papasoglu ([P]) asserting that for every Riemannian 2-sphere

S and every ǫ there exists a simple closed curve of length ≤ 2
√

3
√

Area(S) + ǫ
that divides the sphere into two domains with areas not less than 1

4
Area(S) and not

greater than 3
4
Area(S). Then we prove an analogous result for Riemannian 2-discs.

Section 4 contains two auxilliary results about a relationship of dD and dD′ for a
subdisc D′ of D. Section 5 contains the proof of the main Theorem 1.6 A-C (and,
thus, Theorem 1.1). In section 7 we deduce Theorem 1.2 from Theorem 1.1. Here the
key intermediate result is that an arbitrary Riemannian 2-disc D can be subdivided
into two subdiscs with areas in the interval [1

3
Area(S) − ǫ2, 2

3
Area(S) + ǫ2] by a

simple curve of length ≤ 2diam(S)+2ǫ connecting two points of ∂D, where ǫ can be
made arbitrarily small. The proof of this result will be given in section 6. It uses a
modification of Gromov’s filling technique and is reminiscent to a proof of a version
of the result of Papasoglu quoted above presented by F. Balacheff and S. Sabourau
in [BS]. In section 7 we also prove Theorem 1.6 D. At the end of section 7 we explain
how Theorem 1.3 follows from Theorems 1.1 and 1.2.

2. Besicovitch Lemma and reduction to the case of curves with

short boundaries

The main tool of this paper is the following theorem due to A.S.Besicovitch [B]
(see also [BBI] and [Gr99] for generalizations and many applications of this theorem).

Theorem 2.1. Let D be a Riemannian 2-disc. Consider a subdivision of ∂D into
four consecutive subarcs (with disjoint interiors) ∂D = a∪b∪c∪d. Let l1 denote the
length of a minimizing geodesic between a and c; l2 denote the length of a minimizing
geodesic between b and d. Then

Area(D) ≥ |l1||l2|



6 Y. LIOKUMOVICH, A. NABUTOVSKY, AND R. ROTMAN

In this section we use Besicovitch lemma to prove two lemmae. Lemma 2.2 implies
that the second inequality of Theorem 1.6 follows from the first. Lemma 2.3 says
that boundaries of small subdiscs of D can be contracted through short curves.

Lemma 2.2. (Reduction to Short Boundary Case) Let ǫ0, C be any non-
negative real numbers.
A. Suppose that |∂D| > 6

√

Area(D) and that for all subdiscs D′ ⊂ D satisfying

|∂D′| ≤ 6
√

Area(D) we have pdias(D′, D) ≤ (1 + ǫ0)|∂D′| + 686
√

Area(D) + 2dD′.
Then

pdias(D) ≤ (1+ǫ0)|∂D|+2⌈log 4
3
(
|∂D| − 4

√

Area(D)

2
√

Area(D)
)⌉

√

Area(D)+686
√

Area(D)+2dD.

B. Assume that D is contained in a disc D0, and all subdiscs D′ ⊂ D satisfying
|∂D′| ≤ 6

√

Area(D) satisfy pdias(D′, D0) ≤ (1 + ǫ0)|∂D′| + C
√

Area(D) + 2dD′.
Then

pdias(D, D0) ≤ (1+ǫ0)|∂D|+2⌈log 4
3
(
|∂D| − 4

√

Area(D)

2
√

Area(D)
)⌉

√

Area(D)+C
√

Area(D)+2dD.

Proof. A. First, we are going to prove A. For each subdisc D′ ⊂ D define

n(D′) = log 4
3
(
|∂D′| − 4

√

Area(D)

2
√

Area(D)
)

For each n ∈ {0, ..., ⌈n(D)⌉} (where ⌈ x ⌉ denotes the integer part of x+1) and
every subdisc D′ ⊂ D with n − 1 < n(D′) ≤ n we will show that pdias(D′, D) ≤
(1 + ǫ0)|∂D′| + 2n

√

Area(D) + C
√

Area(D) + 2dD′

For n = 0 we have |∂D′| ≤ 6
√

Area(D) so we are done by assumption in the
statement of the theorem.

Suppose the conclusion is true for all integers smaller than n. Let p, q ∈ ∂D′. Let
l1 and l2 be two subarcs of ∂D′ from p to q, |l2| ≤ |l1|. We will construct a homotopy

of paths from l1 to l2 of length ≤ (1 + ǫ0)(|l1| + |l2|) + (C + 2n)
√

Area(D′) + 2dD′.
Subdivide l1∪−l2 into four arcs a1, a2, a3 and a4 of equal length so that the center

of a2 coincides with the center of l2. By Besicovitch lemma there exists a curve α
between opposite sides a1 and a3 or a2 and a4 of length ≤

√

Area(D′).
We have two cases.
Case 1. Both endpoints t1 and t2 of α belong to the same arc li (i = 1 or

2). Denote the arc of li between t1 and t2 by β. Note that 1
4
(|l1| + |l2|) ≤ |β| ≤

3
4
(|l1| + |l2|). In particular, the disc D1 bounded by α ∪ −β has boundary of length

≤ 3
4
|∂D′|+

√

Area(D′) ≤ (4+2(4
3
)n−1)

√

Area(D). The induction assumption implies

that pdias(D1, D) ≤ (1 + ǫ0)|∂D1| + (C + 2n − 2)
√

Area(D) + 2dD1.
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We claim that dD1 ≤ dD′ + 1
2

√

Area(D′). Indeed, let y ∈ ∂D1. If y ∈ ∂D′ then
the geodesic from y to x does not cross α as both are minimizing geodesics, hence
the distance in D1 dD1(y, x) ≤ dD′. If x ∈ α then the triangle inequality implies that
dD1(y, x) ≤ 1

2
|α| + dD′.

Hence, for an arbitrarily small δ > 0 we can homotop li to pt1 ∪ α ∪ t2q through
curves of length

≤ |li \ β| + (1 + ǫ0)|∂D1| + (686 + 2n − 2)
√

Area(D) + 2dD1 + δ

≤ (1 + ǫ0)|∂D′| +
√

Area(D) + (686 + 2n − 2)
√

Area(D) + 2dD +
√

Area(D) + δ.

Now consider the disc D2 bounded by pt1 ∪ α ∪ t2q ∪ −lj , where lj (j 6= i) is the
other arc. As in the case of D1, we can homotop pt1 ∪ α ∪ t2q to lj through curves

of length ≤ (1 + ǫ0)|∂D′| + 2n
√

Area(D) + C
√

Area(D) + 2dD′.
Case 2. t1 ∈ l1, t2 ∈ l2. Let βi denote the subarc of li from p to ti and σi denote the

subarc of li from ti to q. Consider the subdisc D1 ⊂ D′ bounded by β1 ∪α∪−β2. As
in Case 1 the inequality |∂D1| ≤ 3

4
|∂D′| +

√

Area(D′) combined with the induction

assumption implies that pdias(D1, D) ≤ (1+ǫ0)|∂D1|+(C+2n−2)
√

Area(D)+2dD1.

Using the estimate dD1 ≤ dD′ + 1
2

√

Area(D′) we can homotop l1 to β2 ∪ −α ∪ σ1

through curves of length

≤ (1 + ǫ0)|∂D′| + (2n + C)
√

Area(D) + 2dD′ + δ.

In exactly the same way we homotop β2 ∪ −α ∪ σ1 to l2 using the inductive
assumption for the other disc D2 = D′ \ D1.

This proves that pdias(D) ≤ (1 + ǫ0)|∂D|+ 2⌈n(D)⌉
√

Area(D) + C
√

Area(D) +
2dD.

This completes the proof of A. The proof of its relative verion B is almost identical
to the proof of A.

�

Lemma 2.3. (Small Area) Given a positive ǫ0 there exists a positive ǫ, such that
if D′ ⊂ D with Area(D′) < ǫ, then

pdias(D′, D) ≤ (1 + ǫ0)|∂D′|,

if |∂D′| ≤ 6
√

ǫ, and

pdias(D′, D) ≤ (1 + ǫ0)|∂D′| + 2⌈log 3
4
(
|∂D′| − 4

√

Area(D′)

2
√

Area(D′)
)⌉

√

Area(D′) + 2dD′,

if |∂D′| > 6
√

ǫ.
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Proof. Lemma 2.2 implies that in order to prove the second inequality it is enough
to find ǫ > 0 such that for all subdiscs D′′ of D′ with the length of the boundary not
exceeding 6

√
ǫ pdias(D′′, D) ≤ (1 + ǫ0)|∂D′| + +2dD′.

For all sufficiently small radii r every ball Br(p) ⊂ D is bilipschitz homeomorphic to
a convex subset of the positive half-plane R

2
+ with bilipshitz constant L = 1+O(r2).

Hence, for a sufficiently small ǫ if |∂D′′| ≤ 6
√

ǫ, then pdias(D′′, D) ≤ (1 +
O(ǫ))pdias(U, V ), where U ⊂ V ⊂ R

2
+, |∂U | ≤ (1 + O(ǫ))|∂D′| and V is convex.

We wil show that pdias(U, V ) ≤ |∂U | thereby proving the result.
Let p, q ∈ ∂U and l1 : [0, 1] → V , l2 : [0, 1] → V be two arcs of ∂U from p

to q. Let αi
t : [0, 1] → V denote a parametrized straight line from p to li(t). We

define a homotopy of paths from l1 to l2 as γt = α1
2t ∪ l1|[2t,1] for 0 ≤ t ≤ 1

2
and

γt = α2
2−2t ∪ l2|[2−2t,1]. We have |γt| ≤ max(|l1|, |l2|) ≤ |∂U |.

Now we can choose ǫ > 0 so that (1 + O(ǫ))pdias(U, V ) ≤ (1 + ǫ0)pdiast(U, V ),
and the desired assertion follows. �

Remark. Note that it is not difficult to prove the existence of ǫ > 0 such that for
each disc D′ ⊂ D of area ≤ ǫ pdias(D′, D) ≤ |∂D′|.Yet the proof is more complicated
than the proof above. Moreover, this strengthening of Lemma 2.3 does not lead to
any improvements of our main estimates. Therefore, we decided to state Lemma 2.3
only the its weaker form.

3. Subdivision by short curves

The following theorem was proven by by P.Papasoglu in [P]. For the sake of
completeness we will present a proof which is a slightly simplified version of the
proof given by Papasoglu.

Theorem 3.1. (Sphere Subdivision) Let M = (S2, g) be a Riemannian sphere.
For every δ > 0 there exists a simple closed curve γ subdividing M into two discs D1

and D2, such that 1
4
Area(M) ≤ Area(Di) ≤ 3

4
Area(M) and |γ| ≤ 2

√
3
√

Area(M)+
δ

Proof. Consider the set S of all simple closed curves on M dividing M into two
subdiscs each of area ≥ 1

4
Area(M). To see that this set is non-empty one can take a

level set of a Morse function on M and connect its components by geodesics. From
arcs of these geodesics one can obtain paths between components of the level set that
can be made disjoint by a small perturbation. Traversing each of the connecting paths
twice one obtains a closed curve that becomes simple after a small perturbation.

Choose a positive ǫ. Let γ ∈ S be a curve that is ǫ−minimal. (In other words,
its length is greater than or equal to infτ∈S |τ | + ǫ.) Let D be one of the two discs
forming M \ γ that has area ≥ 1

2
Area(M). If we subdivide γ into four equal arcs

then by Besicovitch Lemma there is a curve α connecting two opposite arcs of length
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≤
√

3
2

√
A. Observe that α subdivides D into two discs, and at least one of these discs

has area ≥ 1
4
Area(M). Hence, the boundary of this disc is an element of S of length

≤ 3
4
|γ| + |α|. By ǫ−minimality of γ we must have

|γ| ≤ 3

4
|γ| +

√
3

2

√
A + ǫ.

Therefore, |γ| ≤ 2
√

3
√

A + 4ǫ. �

Our next result is an analog of the previous result for 2-discs.

Proposition 3.2. (Disc Subdivision Lemma) Let D be a Riemannian 2-disc.
For any δ > 0 there exists a subdisc D ⊂ D satisfying

(1)
1

4
Area(D) − δ2 ≤ Area(D) ≤ 3

4
Area(D) + δ2

(2) |∂D \ ∂D| ≤ 2
√

3
√

Area(D) + δ

Proof. Without any loss of generality we can assume δ ≤
√

Area(D). Attach a disc
D′ of area ≤ δ2 to the boundary of D so that M = D′ ∪ D is a sphere of area
≤ Area(D) + δ2. We apply Theorem 3.1 to M to obtain a close curve γ of length

≤ 2
√

Area(D) + δ that divides D into two subdiscs D1 and D2 with areas in the
interval [1

4
Area(D) − δ2, 3

4
Area(D) + δ2]. Without any loss of generality we can

assume that either γ does not intersect |∂D| or intersects it transversally. (Note that
the idea of attaching a disc of a very small area to the boundary of D and applying
Theorem 3.1 appears in [BS].)

If γ ∩ ∂D is empty then Di ⊂ D for one of Di’s and setting D = Di we obtain the
desired result.

A more difficult case arises when γ ∩ ∂D 6= ⊘. For each i = 1, 2 Di ∩ D may
have several connected components. Those components, Dj, are subdiscs of D of
area ≤ 3

4
Area(D) + δ2. If the area of one of them is ≥ 1

4
Area(D) − δ, then we can

choose this subdisc as D, and we are done. Otherwise, we can start erasing one
by one connected components of γ

⋂

D. When we erase a connected component of
γ

⋂

D, the two subdiscs adjacent to the erased arc merge into a larger subdisc of
area ≤ 1

2
Area(A) − 2δ2. We continue this process until we obtain a new subdisc of

area ≥ 1
4
Area(A) − δ2, and choose this subdisc as D. �

4. Bounds for dD′.

We will also need the following lemmae relating dD with dD′ for a subdisc D′ of
D.

Lemma 4.1. Let D′ ⊂ D be a subdisc, p ∈ ∂D and p′ ∈ ∂D′ be two points connected
by a minimizing geodesic α in D. Then dD′ + |α| ≤ dD + |∂D′|
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Proof. Let β be a minimizing geodesic in D′ from a point on the boundary to a point
x ∈ D′, s.t. |β| = dD′ (It exists by compactness). Let γ be a minimizing geodesic
from p to x. Denote by γ1 the arc of γ from p to the point where it first intersects
∂D′ and by γ2 the arc from the point where it last intersects ∂D′ to x. Then by
triangle inequality

|α| ≤ |γ1| +
1

2
|∂D′|,

|β| ≤ |γ2| +
1

2
|∂D′|.

Hence, dD′ + |α| ≤ dD + |∂D′|. �

Lemma 4.2. Suppose D′ ⊂ D is a subdisc with ∂D′ ∩ ∂D non-empty. Then dD′ ≤
dD + |∂D′ \ ∂D|.

Proof. Note that ∂D′ \∂D is a colection of countably many open arcs with endpoints
on ∂D.

Let β be a minimizing geodesic in D′ from a point p ∈ ∂D′ to a point x ∈ D′, such
that |β| = dD′. Let α be a minimizing geodesic in D from p to x.

We will construct a new curve α′ which agrees with α on the interior of D′ and
lies entirely in the closed disc D′. If α does not intersect any arcs of ∂D′ \ ∂D we set
α′ = α. Otherwise, let a1 denote the first arc of ∂D′ \ ∂D intersected by α. Let p1

(resp. q1) denote the point where α intersects a1 for the first (resp. last) time. (If
p ∈ ∂D′ \ ∂D, then p1 = p.) We replace the arc of α from p1 to q1 with the subarc of
a1. We call this new curve α1. We find the next (after a1) arc a2 ⊂ ∂D′ \∂D that α1

intersects and replace a subarc of α1 with a subarc of a2. We continue this process
inductively until we obtain a curve α′ = αn that lies in D′.

Note that |β| ≤ |α′| ≤ |α| + |∂D′ \ ∂D|. Hence, if p ∈ ∂D, then |α| ≤ dD and we
are done.

If p belongs to an arc a ⊂ ∂D′ \ ∂D, then let a′ be a subarc of a connecting p
to a point of ∂D, such that a′ ∩ α′ = {p}. (Note, that in this case p = p1.) Then
|α′| + |a′| ≤ |α| + |∂D′ \ ∂D|. �

5. Proof of Theorem 1.1 A-C.

We are now ready to prove statements A to C of Theorem 1.6.
Let ǫ0 be an arbitrary positive number less than 0.001. Fix an ǫ = ǫ(ǫ0) > 0 small

enough for Lemma 2.3.
Let N be an integer defined by

(
4

3
)N−1ǫ ≤ Area(D) < (

4

3
)Nǫ
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Let δ < min{ǫ, (4
3
)Nǫ−Area(D)}. For each n ∈ {0, 1, ..., N} and for every subdisc

D′ ⊂ D with (4
3
)n−1ǫ − δ

2N−n+1 ≤ Area(D′) < (4
3
)nǫ − δ

2N−n we will show

A. If |∂D′| ≤ 2
√

3
√

Area(D) then

pdias(D′, D) ≤ |∂D′| + 664
√

Area(D′) + 2dD′.

B. If |∂D′| ≤ 6
√

Area(D) then

pdias(D′, D) ≤ |∂D′| + 686
√

Area(D′) + 2dD′.

C. If |∂D′| > 6
√

Area(D) then

pdias(D′, D) ≤ (1+ǫ0)|∂D′|+2⌈log 4
3
(
|∂D′| − 4

√

Area(D′)

2
√

Area(D′)
)⌉

√

Area(D′)+686
√

Area(D′)+2dD′

≤ 2|∂D′| + 686
√

Area(D′) + 2dD′.

Passing to the limit as ǫ0 −→ 0, we will obtain the assertion of the theorem.
For n = 0 we have Area(D′) ≤ ǫ, and so by Lemma 2.3 we are done. Assume the

result holds for every integer less than n. By Lemma 2.2 statement C can be reduced
to the following statement:

C’. For every subdisc D′′ ⊂ D′ such that |∂D′′| ≤ 6
√

Area(D′) we have

pdias(D′′, D) ≤ |∂D′′| + 686
√

Area(D′′) + 2dD′′.

In particular this imples statement B. We will be proving C’ sometimes making
special considerations for the case |∂D′′| ≤ 2

√
3
√

Area(D′), which will imply state-
ment A.

For any p, q ∈ ∂D′′ we will construct a homotopy between the two arcs satisfying
this bound.

Let l1 and l2 be two arcs of ∂D′′ connecting p and q. Let D ⊂ D′′ by a subdisc
satisfying the conclusions of Proposition 3.2 with δ equal to our current δ divided by
2N+2.

We have two cases.
Case 1. ∂D ∩ ∂D′′ is nonempty. Then ∂D \ ∂D′′ is a collection of arcs {ai}.

For each arc ai we have a corresponding subdisc Di ⊂ D′′ \ D with ai ⊂ ∂Di and
Area(Di) ≤ 3

4
Area(D′′) + δ

2N−n+2 < (4
3
)n−1ǫ − δ

2N−n+1 ≤ Area(D′).
If li1 = l1 ∩ ∂Di is a non-empty arc, we use the inductive assumption to define a

path homotopy of li1 to ∂Di \ li1 through curves of length

≤ 2|∂Di| + (

√
3

2
686 + 4

√
3)

√

Area(D′′) + 2dD′′ + O(δ),

≤ |∂Di| + 686
√

Area(D′′) + 2dD′′ + O(δ),
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where we have used Lemma 4.2 to bound dDi
.

This procedure homotopes l1 to a curve l ⊂ l2 ∪ ∂D. Now using the inductive
assumption for D we continue our homotopy from l1 to l2 without exceeding the
length bound. (At this stage we get rid of D̄.) At the end of this stage it remains
only to homotope arcs on ∂D̄ to corresponding arcs of l2 through some of the discs
Di. This step is similar to the already described step involving arcs of l1.

Virtually the same argument proves statement A for this case.
Note that diameter term dD is not used in an essential way in this case. Its

necessity comes from Case 2.
Case 2. ∂D does not intersect ∂D′′. Denote ∂D by γ. D′′ \ γ is the union of an

annulus A and an open disc D. Let α1 (resp. α2) be a minimizing geodesic from p
(resp. α2) to γ. Let γi denote the arc of γ, such that li ∪ α2 ∪ −γi ∪ −α1 bounds a
disc Di whose interior is in the annulus A. Note that Area(Di) ≤ 3

4
Area(D′′)+O(δ).

Proposition 5.1. A. If |li| ≤ 2
√

Area(D′) + O(δ) then there is a homotopy from li
to α1 ∪ γi ∪ −α2 through curves of length ≤ 664

√

Area(D′) + 2dD′′ + O(δ).

B. If 2
√

Area(D′) < |li| ≤ 6
√

Area(D′) + O(δ) then there is a homotopy from li
to α1 ∪ γi ∪ −α2 through curves of length ≤ 686

√

Area(D′) + 2dD′′ + O(δ).

To prove Proposition 5.1 we will need the following lemma.

Lemma 5.2. If |∂Di| > M = max{10
√

3
√

Area(D′), 4|li|+2
√

3
√

Area(D′)}+O(δ),

then there exists a geodesic β of length ≤
√

3
2

√

Area(D) + O(δ) connecting α1 to α2

such that the endpoints of β divide ∂Di into two arcs of length ≤ 3
4
|∂Di|.

Proof. We subdivide ∂Di into 4 equal subarcs, starting from point p. By Besicovitch

lemma we can connect two opposite arcs by a curve β of length ≤
√

3
2

√

Area(D′′) +
O(δ). Now we consider different cases.

Suppose first that β connects a point of αk (k = 1 or 2) with another point of

αk. Since αk is length minimizing we obtain 1
4
|∂Di| ≤

√
3

2

√

Area(D′′) + O(δ) so

|∂Di| ≤ 2
√

3
√

Area(D′) + O(δ).
If β connects a point of li to another point of li then |li| ≥ 1

4
|∂Di|. Similiarly, if β

connects two points of γi then |∂Di| ≤ 8
√

3
√

Area(D′′) + O(δ).
Suppose β connects a point of li to a point of γi. Since α1 and α2 are length

minimizing, we must have |α1| + |α2| ≤ |li| + 2|β|, so |∂Di| ≤ 2|li| + 2|β| + |γi| ≤
2|li| + 3

√
3
√

Area(D′).
Suppose β connects a point x of γi and a point y of αk. Since αi is a geodesic

minimizing distance to the curve γ, we conclude that the subarc of αi between y and
γihas length ≤ |β|. Hence, 1

4
|∂Di| ≤ |γi| + |β|, so |∂Di| ≤ 10

√
3
√

Area(D′) + O(δ).
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Now, suppose β connects a point of li and a point of αk. Then 1
4
|∂Di| ≤ |li| + |β|

yielding |∂Di| ≤ 4|li| + 2
√

3
√

Area(D′).

If |li| ≤ 2
√

3
√

Area(D′), then in all of the above cases we have |∂Di| ≤ 10
√

3
√

Area(D′)+

O(δ). If |li| > 2
√

3
√

Area(D′), then |∂Di| ≤ 4|li| + 2
√

3
√

Area(D′).
The only remaining case is when β connects α1 to α2. �

Proof of Proposition 5.1. Proof of B. Suppose first that |∂Di| ≤ M .
Hence, since Area(Di) ≤ 3

4
Area(D′′)+ δ

2N−n+2 and using the inductive assumption
we can homotope li to α1 ∪ γi ∪ −α2 through curves of length

≤ (2 + ǫ0)|∂Di| + 686
√

Area(Di) + 2dDi
+ O(δ).

Note that since |li| ≤ 6
√

Area(D′)+O(δ), we have M ≤ (24+2
√

3)
√

Area(D′)+

O(δ) and M − |li| ≤ max{10
√

3
√

Area(D′), 3|li|+ 2
√

3
√

Area(D′)}+ O(δ) ≤ (18 +

2
√

3)
√

Area(D′) + O(δ).
Therefore, using Lemma 4.2 the lengths of curves in the homotopy are bounded

by

≤ |∂D′′|+ (18+ 2
√

3 + 24+ 2
√

3 +

√
3

2
686+ 2(18 + 2

√
3))

√

Area(D′) + 2dD′′ + O(δ)

< |∂D′′| + 686
√

Area(D′) + 2dD′′

Note that our choice of the constant 686 > (78 + 8
√

3)/(1 −
√

3
2

) is motivated by
the last of these inequalities.

Now consider the case, when |∂Di| > M . Lemma 5.2 implies that we can subdivide

Di into two subdiscs D1
i and D2

i of boundary length ≤ 3
4
|∂Di|+

√
3

2

√

Area(D′)+O(δ)

by a curve β1 connecting α1 and α2. For each of subdiscs Dj
i we have an argument

completely analogous to that of Lemma 5.2. We apply it repeatedly until we obtain
a sequence of discs Dk stacked on top of each other with |∂D1| ≤ M and |∂Dk| ≤
(10

√
3)

√

Area(D′)+O(δ) for k ≥ 2. The discs are separated by Besicovitch geodesics
{βk}. Let αk

1 (αk
2) denote the subarcs of α1 (α2) between p (resp. q) and the endpoint

of βk.
We homotope li to α1

1∪β1∪−α1
2 as described above. Then we homotope αk

1 ∪βk ∪
−αk

2 to αk+1
1 ∪ βk+1 ∪ −αk+1

2 using the inductive assumption in disc Dk+1 through
curves of length

≤ (2 + ǫ0)|∂Dk+1| + 686
√

Area(Dk+1) + 2dDk+1 + |α1| + |α2|

≤ ((40+10ǫ0)
√

3+

√
3

2
686)

√

Area(D′)+2dD′′+O(δ) < 686
√

Area(D′)+2dD′′+O(δ),

where we have used Lemma 4.1 to bound 2dDk+1 + |α1| + |α2|.
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The proof of A is analogous with the only difference that both M and M −|li| are

majorized by ≤ 10
√

3
√

Area(D′). The only purpose of A is to obtain a somewhat

better value of the constant at
√

Area(D) in Theorems 1.3 A and Theorem 1.6 A.
Therefore we omit the details.

This finishes the proof of Propostion 5.1.
Using Propostion 5.1 we homotope l1 to α1∪γ1∪−α2. Using inductive assumption

in the disc D and Lemma 4.1 we homotop α1∪γ1∪−α2 to α∪γ2∪−α2. By applying
Proposition 5.1 again we homotope α ∪ γ2 ∪ −α2 to l2. This finishes the proof of
statements A to C of Theorem 1.6. The proof of statement D is presented in the last
section.

6. Subdivision by short curves II.

In this section we are going to prove the following theorem:

Theorem 6.1. A. Let M be a Riemannian 2-sphere, p a point in M . For every
positive ǫ there exists a simple based loop on M of length ≤ 2 maxx∈M dist(x, p) + ǫ
based at p that divides M into two discs with areas in the interval (2

3
Area(M) −

ǫ, 2
3
Area(M) + ǫ).

B. Let D be a Riemannian 2-disc. For every ǫ > 0 there exists a curve β of length
≤ 2δD + ǫ with endpoints on the boundary ∂D, which does not self-intersect and
divides D into subdiscs D1 and D2 satisfying

1

3
Area(D) − ǫ2 ≤ Area(Di) ≤

2

3
Area(D) + ǫ2

Proof. A. Fix a diffeomorphism f : S2 −→ M . Consider a very fine triangulation
of S2. We are assuming that the length of the image of each 1-simplex of this
triangulation under f does not exceed ǫ, and the area of the image of each 2-simplex
does not exceed ǫ2. Extend this triangulation to a triangulation of D3 constructed
as the cone of the chosen triangulation of S2 with one extra vertex v at the center.
We are going to prove the assertion by contradiction. Assume that all simple loops
of length ≤ 2d + ǫ based at p divide M into two subdiscs one of which has area
≤ 1

3
Area(D) − ǫ2. We are going to construct a continuous extension of f to D3

obtaining the desired contradiction. We are going to map the center v of D into p.
We are going to map each 1-simplex [vvi] of the considered triangulation of D3 to a
shortest geodesic connecting p with f(vi). We extend f to all 2-simplices [vvivj ] by
contracting the loop formed by the shortest geodesic connecting p, f(vi) and f(vj)
within one of two discs in M bounded by this loop that has a smaller area. This disc
has area ≤ 1

3
Area(D)−ǫ2. Now it remains to construct the extension of f to interiors

of all 3 simplices [vvivjvk] of the chosen triangulation of D3. Note that the area of
the image of the boundary of this simplex does not exceed 3(1

3
Area(M)− ǫ2) + ǫ2 <
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Area(M). Therefore the restriction of the already constructed extension of f to
this boundary has degree zero, and, therefore, is contractible. This completes our
extension process and yields the desired contradiction.
B. We can deduce B from the proof of A by collapsing ∂D into a point p and repeating
the argument used to prove part A for the resulting (singular) 2-sphere. Yet one can
give another direct proof by contradiction as follows. Assume that the assertion of
the theorem is false. Consider a very fine geodesic triangulation of the disc. Assume
that the areas of all triangles are less than ǫ2. We are going to construct a retraction
f of D onto ∂D, thereby obtaining a contradiction as follows: First we are going to
map all new vertices of the triangulation. Each vertex will be mapped to (one of)
the closed points on ∂D. Each edge vivj will be mapped to one of two arcs in ∂D
connecting f(vi) with f(vj). We have two possible choices. We choose the arc that
together with the geodesic broken line f(vi)vivjf(vj) encloses a subdisc Dij of D of a
smaller area (which is ≤ 1

3
Area(D)−ǫ2). Now we need to extend the constructed map

to all triangles vivjvk of the triangulation. We claim that the chosen arcs between
f(vi), f(vj) and f(vk) do not cover ∂D, and therefore f(∂vivjvk) can be contracted
within ∂D yielding the desired contradiction. Indeed, otherwise the discs Dij, Dik

and Djk would cover all D with a possible exception of a part of the triangle vjvjvk.
But this is impossible as the sum of their areas does not exceed Area(D)−3ǫ2 which
is strictly less than Area(D) − ǫ2.

7. Proofs of Theorem 1.2, 1.3 and 1.6 D

Definition 7.1. For each disc D define δD by the formula δD = supx∈D dist(x, ∂D).

Note the following properties of δD:

1. dD − |∂D|
2

≤ δD ≤ dD.
2. If D′ ⊂ D then δD′ ≤ δD.

Lemma 7.2. For each n ≥ 1 pdias(D) ≤ 2|∂D|+2dD +8nδD +686
√

(2
3
)nArea(D).

Proof. The proof is by induction on n. If n = 0, then Theorem 1.1 implies that
pdias(D) ≤ 2|∂D| + 2dD + 686

√

Area(D)
Suppose the claim is true for n−1. Choose ǫ > 0 that can later be made arbitrarily

small. We use Theorem 6.1 to subdivide D into two subdiscs of area ≤ 2
3
Area(D)+ǫ2

by a curve β of length ≤ 2δD + ǫ2.
The inductive assumption implies that we can homotope an arc of l1 over each of

Di via curves of length less than or equal to 2|∂D| + 2|β| + 2dDi
+ 8(n − 1)δDi

+

686
√

(2
3
)n−1Area(Di) + O(ǫ).

We have dDi
≤ dD + |β| by Lemma 4.2. Hence the lengths of the curves are

bounded by 2|∂D| + 8nδD + 2dD + 686
√

(2
3
)nArea(D) + O(ǫ). �
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The next proposition allows us to get rid of the extra |∂D| in our estimates.

Proposition 7.3. Suppose that f(x, y, z) is a continuous function such that for every
disc D pdias(D) ≤ f(|∂D|, diam(D), Area(D)). Then

pdias(D) ≤ max
0≤t≤|∂D|

|∂D|−t+f(min{2(|∂D|−t), 2t, 2diam(D)}, diam(D), Area(D))

Proof. Let p, q be endpoints of l1 ∪ −l2 = ∂D and β be a minimizing geodesic from
p to q. We will construct a homotopy from l1 to β. We choose a small ǫ > 0 and
partition [0, 1] by N +1 points {0 = a0, ..., aN = 1} so that |l1([ai, ai+1])| ≤ ǫ. Let αi

denote a minimizing geodesic from p to l1(ai). Inductively we homotop αi∪ l1([ai, 1])
to αi+1 ∪ l1([ai+1, 1]).

Consider the subdisc bounded by ∂Di = αi ∪ l1([ai, ai+1]) ∪ −αi+1. Since αi are
length minimizing we have |∂Di| ≤ min{2(|∂D|− t)+ ǫ, 2t+ ǫ, 2diam(D)}+ ǫ, where
t = |l1([0, ai])|. Using our assumption we obtain a homotopy from αi ∪ l1([ai, 1]) to
αi+1 ∪ l1([ai+1, 1]). The homotopy between β and l2 can be constructed in the same
way. It remains to pass to the limit as ǫ −→ 0. �

In particular, we can now prove statement D of Theorem 1.6. From statements B,
C we know that

pdias(D) ≤ |∂D|+2 max{0, ⌈log 4
3
(
|∂D| − 4

√

Area(D)

2
√

Area(D)
)⌉}

√

Area(D)+686
√

Area(D)+2dD.

Then if we set Lt = min{2(|∂D| − t), 2t, 2diam(D)} we obtain an estimate

pdias(D) < max
t

(|∂D|−t+
Lt

2
)+

Lt

2
+2 max{0, ⌈log 4

3
(
Lt − 4

√

Area(D)

2
√

Area(D)
)⌉}

√

Area(D)

+686
√

Area(D) + 2diam(D)

≤ |∂D|+2 max{0, ⌈log 4
3
(

diam(D)
√

Area(D)
−2⌉)}

√

Area(D)+686
√

Area(D)+3diam(D),

as Lt ≤ 2diam(D) and −t+Lt

2
≤ 0. The formula for excess follows from this estimate.

An analogous coarser estimate that uses Theorem 1.1 instead of Theorem 1.6 C
yields

pdias(D) ≤ |∂D| + 5diam(D) + 686
√

Area(D).

Proof of Theorem 1.2
Using Lemma 7.2 we obtain
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pdias(D) ≤ |∂D| + (5 + 8n)diamD + 686
√

(2
3
)nArea(D) + O(ǫ)

Let k be any positive number, such that n = 2 log3/2(

√
Area(D)

diam(D)k
) is a natural number.

Then the previous estimate can be written as

pdias(D) ≤ |∂D| + (686k + 5 + 16 log3/2(
1

k
) + 16 log3/2(

√

Area(D)

diam(D)
))diam(D)

Suppose first that
√

Area(D) > (2
3
)6.5diam(D). Note that for some k ∈ [(2

3
)7, (2

3
)6.5]

we will have 2 log3/2(

√
Area(D)

diam(D)k
) ∈ N. It is easy to check that for each k in this interval

686k+16 log3/2(
1
k
) < 154. Hence, from the previous inequality and using 16

ln(3/2)
< 40

we obtain

pdias(D) ≤ |∂D| + 159diam(D) + 40 ln(

√

Area(D)

diam(D)
)diam(D).

If
√

Area(D) ≤ (2
3
)6.5diam(D), then

pdias(D) ≤ |∂D| + 5diam(D) + 686
√

Area(D) ≤ |∂D| + 50diam(D).

Remark. We can obtain a better asymptotic estimate if instead of a bound
with 2|∂D| we use the one from Theorem 1.6 with the logarithmic term. Then for√

Area(D)

diam(D)
→ ∞ we obtain pdias(D) < |∂D| + ( 12

ln 3
2

+ o(1)) ln(

√
Area(D)

diam(D)
)diam(D).

(Note that 12
ln 3

2

= 29.5956 . . .).

Note that the 25 percent improvement of the constant at diam(D) ln

√
Area(D)

diam(D)

(from 16
ln 3

2

to 12
ln 3

2

) comes from the fact that the term 2|β| in the proof of Lemma 7.2

can be replaced by |β|,and 8nδD in the right hand side in the inequality of Lemma
7.2 becomes 6nδD.

Proof of Theorem 1.3.
Let p be an arbitrary point of M . Take the metric ball Bǫ(p) of a very small

radius ǫ centered at p and choose a point q ∈ ∂Bǫ(p). Applying Theorem 1.6 A
we see that one can contract ∂Bǫ(p) in M \ Bǫ(p) as a loop based at q via loops of
length not exceeding the right hand side in Theorem 1.3 A plus O(ǫ). Now we can
attach two copies of the geodesic segment (pq) connecting p and q at the beginning
and the end of each of those loops based at q. As the result, we will obtain a family
of loops based at p. Finally, add a family of loops based at p that constitutes a
homotopy between the constant loop p and (pq) ∗ ∂Bǫ(p) ∗ (qp) and a family of loops
that contracts (pq) ∗ (qp) over itself to the constant loop p. The lengths of all these
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new loops are O(ǫ). As the result, we obtain a family of loops based at p of lengths

≤ 664
√

Area(M) + 2diam(M) + O(ǫ) that sweeps-out M . Now pass to the limit as
ǫ −→ 0.

To prove the inequality B we can proceed as above with the only difference that
∂Bǫ(p) will be contracted in M \Bǫ(p) using Theorem 1.2 instead of Theorem 1.6 A.

Finally, note that, when

√
Area(M)

diam(M)
−→ ∞, one can improve the constant in inequality

B exactly as it had been described in the remark after the proof of Theorem 1.2 above.
The result will be the last assertion in Theorem 1.2. �
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