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Abstract

LetM be a Riemannian 2-disc and q a point on its boundary. In this paper
we will show that, for any ε > 0, any homotopy of its boundary to a point
over closed curves of length at most L can be modified so that the resulting
homotopy is a fixed point homotopy over the loops based at q of length at
most L+ 2d+ ε, where d is the diameter of M .

We also have a similar result for general Riemannian 2-surfaces. Let γ
be any simple closed curve on such a surface that can be contracted to a point
over closed curves of length at most L. Then, for any ε > 0 and any q ∈ γ,
there exists a homotopy that contracts γ to q over loops that are based at q
and have length bounded by 3L + 2d + ε. Here, d is the diameter of the
surface.

Introduction.

The central question that we study in this paper is the following. Assume that M
is a smooth surface, possibly with a boundary, and that γ is a simple (non-self-
intersecting) closed curve on M . Assume that γ can be contracted to a point via
free loops (closed curves) of length at most L. We would like to contract γ over
closed curves based at a point q ∈ γ so that the maximal length of these curves is
as small as possible. Can we estimate the required maximal length in terms of L
and the diameter d of M? Such a result woul have a large number of applications,
some of which will be discussed at the end of introduction. This problem is already
interesting when M is a 2-disc endowed with a Riemannian metric and γ is its
boundary. The simple example of a Riemannian metric onM that looks like a long
thin finger shown in Figure 1 demonstrates that we cannot estimate the required
length in terms of L alone, and this example suggests that at the very least we need
to add a summand equal to 2d. In this example, we can contract the boundary of
the disc via short closed curves to a point p far from ∂M (see Figure 1(a)). To
replace this homotopy by one composed of loops based at a point q ∈ ∂M , we
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connect p and q by a minimizing geodesic τ . In the course of our new homotopy,
we travel along τ to one of the closed curves in the original homotopy, travel along
this curve, and then return back along τ (Figure 1(b)). At some moment we end
up at a loop that consists of two copies of τ traversed in opposite directions. This
loop can then be contracted to q along itself.

Of course, there are other, more complicated Riemannian metrics on the 2-disc,
such as the metric depicted in Figure 2. There is also the family of Riemannian
metrics considered in [FK]. For these metrics, the connection between the length
of curves in the “best” free loop homotopy and the length of curves in the “best”
fixed point homotopy is not so evident.

Our first theorem asserts that adding the summand 2d and an arbitrarily small ε
to L will always suffice. It is quite possible that one does not need ε, but this does
not seem to follow from a compactness argument, as when ε −→ 0, our homo-
topies can become wigglier and wigglier. (More formally, we have not established
a control over the Lipschitz constants of our homotopies as ε −→ 0.)

Theorem 0.1 Let M be a Riemannian manifold with boundary diffeomorphic to
the standard disc of dimension 2. Denote its diameter by d. Suppose there exists a
homotopy connecting the boundary ∂M of M to some point p ∈ M such that the
length of every closed curve in this homotopy does not exceed a real number L.

Then, for any q ∈ ∂M and for any ε > 0, there exists a fixed point homotopy
that connects ∂M with q, and passes through loops that are based at q and have
length not exceeding L+ 2d+ ε.

Our second theorem deals with the general case of a simple contractible curve
on a surface endowed with a Riemannian metric.

Theorem 0.2 Let M be a closed Riemannian surface of diameter d. Let γ :
[0, 1] −→ M be a simple closed curve in M , and q a point on γ. If there ex-
ists a homotopy between γ and a point that passes through closed curves of length
not exceeding L, then there exists a homotopy that contracts γ to q through loops
that are based at q and have length ≤ 3L+ 2d+ ε.

Our proof of Theorem 0.1 and our proof of Theorem 0.2 each uses the follow-
ing theorem of independent interest proven by Gregory R. Chambers and Yevgeny
Liokumovich in [CL]:

Theorem 0.3 (G. R. Chambers, Y. Liokumovich [CL]) Let M be a Riemannian
surface. Let γ(t) : S1 −→ M be a closed curve in M . Suppose there exists a
homotopy H(t, τ) : S1 × [0, 1] −→ M such that H(t, 0) = γ(t); H(t, 1) =
p ∈ M , and the length of γτ = H(∗, τ) is at most L for all τ ∈ [0, 1]. Then,
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for any ε > 0, there exists a homotopy H̃(t, τ) : S1 × [0, 1] −→ M , such that
H̃(t, 0) = γ(t); H̃(t, 1) = p; the length of γ̃τ = H̃(∗, τ) is at most L + ε, and
γ̃τ (t) is a simple closed curve for every τ ∈ [0, 1].

This result immediately reduces both Theorem 0.1 and Theorem 0.2 to the
particular case of when the original homotopy contracting ∂M or γ is known to
pass through simple closed curves of length ≤ L. (Note that we did not make this
assumption in the text of the theorem.) Let us state the particular case of Theorem
0.1 that we are going to prove below, and which implies the general case:

Proposition 0.4 Let M be a Riemannian manifold with boundary diffeomorphic
to the 2-dimensional disc. LetH(t, τ) : S1× [0, 1] −→M be a homotopy between
γ(t) = ∂M and p ∈ M which passes through simple closed curves of length at
most L. Then, for any ε > 0 and any q ∈ ∂M , there exists a homotopy Hq(t, τ) :
S1 × [0, 1] −→M over closed curves of length at most L+ 2d+ ε, where d is the
diameter of M , such that Hq(t, 0) = γ(t), Hq(t, 1) = q, and Hq(s0, τ) = q for all
τ ∈ [0, 1] and a fixed base point s0 ∈ S1.

To reiterate, the first step in producing a “short” fixed point homotopy out of
a free loop homotopy is to continuously deform all of the curves in the original
homotopy so that the lengths of the resulting curves do not increase by much,
and so that the resulting curves no longer have self-intersections. This is also the
first step in proving Theorem 0.2; the other main steps of its proof will be briefly
discussed towards the end of the introduction.

Figure 1: Long finger
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The questions considered in this paper fall within the realm of questions of
investigating geometric properties of “optimal” homotopies.
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Figure 2: “Cactus” metric on the disc

M

Another example of such a question was a long-standing question of S. Frankel
and M. Katz posed at the end of their paper [FK]. They asked if one contract the
boundary ∂M of a Riemannian 2-disc M so that the length of curves in the ho-
motopy is majorized above in terms of the diameter d, area A, and the length of
the boundary of the manifold? Note that this question is a modification of an ear-
lier question asked by M. Gromov ([Gr], p. 100). The positive answer to this
question was given by Y. Liokumovich, A. Nabutovsky and the second author of
this paper in [LNR]. In particular, it was shown that ∂M can be contracted over
curves of length at most |∂M | + 200dmax{1, ln

√
A
d }, where |∂M | is the length

of ∂M . This estimate is optimal up to a multiplicative factor in the second term.
When

√
A
d << 1, [LNR] provides a better bound of 2|∂M | + 2d + 686

√
A. This

was improved to the asymptotically tight upper bound |∂M |+ 2d+O(
√
A) by P.

Papasoglu in a recent paper [P]. Note that it is impossible to bound the length of
curves in the best homotopy solely in terms of the area of M , as an example of a
three-legged star fish with long tentacles depicted in Figure 3 demonstrates. It is
also impossible to bound the length solely in terms of the diameter of M , as was
proven by Frankel and Katz in [FK], answering the original version of the question
of M. Gromov mentioned above.

A closely related family of questions deals with establishing the existence of
various upper bounds on the maximal length of optimal sweep-outs and slicings
of surfaces either by closed curves or, more generally, by cycles. For example,
it was shown by Y. Liokumovich that there does not exist a universal diameter
bound for the maximal length of curves or cycles in an optimal sweep-out of a
closed Riemannian surface (see [L1] and [L2]). On the other hand, F. Balacheff
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and S. Sabourau have found an upper bound for the maximal length of a cycle in
an optimal sweep-out of a surface in terms of the genus and the area of the surface
(see [BS]). Also, a “short” sweep-out of a Riemannian 2-sphere is possible if one
assumes that there is no “short” geodesics of index 0. This follows from the results
of C. B. Croke in [C]. In this case, the maximal length of a cycle can be bounded
by the area or the diameter of the surface.

Figure 3: Three legged star fish

Another interesting problem concerning optimal homotopies is the following.
Assume that the boundary of a Riemannian 2-disc can be contracted to a point via
simple closed curves of length ≤ L. Let us call such a homotopy monotone if the
2-discs bounded by the closed curves of this homotopy “decrease” in the sense of
the definition below. Is it always possible to find a monotone homotopy contracting
the boundary of the 2-disc via closed curves of length ≤ L? In order to pose this
question more formally we need the following definition.

Definition 0.5 Let M be a Riemannian manifold with boundary diffeomorphic to
that of the 2-disc. Let H(t, τ) : S1 × [0, 1] −→ M be a smooth map such that
H(t, 0) = γ(t) = ∂M , H(t, 1) = p ∈M , and H(t, τ) = γτ (t) is a simple closed
curve parametrized by t for each τ ∈ [0, 1]. We will say that H is a monotone
homotopy if closed 2-discs Dτ ⊂ M bounded by γτ satisfy the inclusion Dτ2 ⊂
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Dτ1 for every τ1 and τ2 with τ1 < τ2. If these discs satisfy a stronger condition
that Dτ2 ⊂ intDτ1 , where intDτ1 is the interior of Dτ1 , then the homotopy will be
called strictly monotone.

Figure 4(a) depicts a strictly monotone homotopy of γ(t) to the point p, while
Figure 4(b) depicts a homotopy that is not monotone. This definition can be triv-
ially extended to homotopies connecting a simple closed contractible curve to a
point on any closed Riemannian surface not diffeomorphic to the 2-disc. There is
one technicality, however; if M is diffeomorphic to S2, then there is an ambigu-
ity due to non-uniqueness of Dτ . We agree to resolve it by allowing any possible
choice of the system of discs Dτ that is continuously dependent on τ , and that has
the monotonicity (or strict monotonicity) property.

Figure 4: Monotone and non-monotone homotopies

γ (t) γ (t)
(a) (b)

p
p

The following theorem provides an answer to the above question about the
existence of monotone homotopies passing through “short curves”.

Theorem 0.6 (Monotonicity Theorem) Let M be a Riemannian manifold with
boundary diffeomorphic to the 2-dimensional discD. LetH(t, τ) : S1× [0, 1] −→
M be a homotopy between the boundary of M and some point p ∈ M passing
through simple closed curves γτ (t) of length at most L. Then, for any ε > 0, there
exists a strictly monotone homotopy H̃(t, τ) : S1× [0, 1] −→M between γ(t) and
p̃ ∈M over curves of length at most L+ ε.

From a technical point of view this is the central result of the paper, as it can be
used to give the following short proof of Proposition 0.4 (which implies Theorem
0.1, as we explained above).

Proof of Proposition 0.4. By Theorem 0.6, there exists a strictly monotone homo-
topy H between γ(t) and p̃ ∈M over simple curves of length at most L+ ε. Fix a
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point q on ∂M , and let α(s) : [0, 1] → M be a minimal geodesic connecting q to
p̃. The length of α is at most d. For each τ ∈ [0, 1], there is exactly one τ ′ ∈ [0, 1]
such that the curve H(∗, τ ′) goes through α(τ). Let this curve be denoted by Hτ .
Note that, if α intersects a curve in H multiple times, then we will be able to find
multiple values for τ that result in the same curve.

Our new contraction G : S1 × [0, 1] → M of γ through curves based at q is
now defined as follows. For each τ ∈ [0, 1], define G(∗, τ) to be the curve

α|[0,τ ] ∗Hτ ∗ α|[0,τ ],

where α|[0,τ ] is the segment of α traversed from τ to 0. Each curve in this homotopy
is bounded in length by L+ 2d+ ε. Furthermore, it ends at α|[0,1] ∗ α|[0,1], which
can obviously be contracted to q through curves based at q of length no more than
2d. This completes the proof. �

Note that the Monotonicity Theorem does not necessarily hold when one has
a simple curve on a surface, or even a simple closed curve in a disc that is not
assumed to be the boundary of that disc. This fact makes proving Theorem 0.2
more difficult than Theorem 0.1, and is the reason for the appearance of the extra
2L in our upper bound. We are grateful to Yevgeny Liokumovich for first attracting
our attention to this fact in conjunction with the example shown in Figure 5. This
figure depicts a metric on a Riemannian 2-disc and a curve α0 such that the optimal
homotopy contracting the curve to a point is not monotone. Notice that there are
three bumps depicted in this figure: two of them are long and thin and the one in
the middle is short and asymmetric. It takes less length to go under the middle
bump than over it. The original curve α0 winds around the two thin bumps, and
goes over the short one. In order to contract αo to a point, it has to be stretched over
the thin bumps but, because they are long, the length of the curve will necessarily
increase in the process. Thus, to begin with, it makes sense to first homotope α0 to
α1, which runs below the middle bump. α1 is shorter than α0, so we can “spend”
this “excess” length on dragging the curve over the two thin bumps one at a time.
This corresponds to the curves α2 and α3 in Figure 5. We now have to push the
curve over the middle bump. This homotopy results in α4, which can then be easily
contracted to a point. The resulting homotopy is not monotone. Note that α0 is not
the boundary of the disc, and so this example does not contradict Theorem 0.6.

For surfaces, we will need a weaker form of the Monotonicity Theorem. We
will not prove that γ can be contracted by a strictly monotone homotopy via “short”
curves, but only that there exists a strictly monotone homotopy contracting another
curve γ̃ via curves of length ≤ L+ ε so that γ will be contained in the disc formed
by the image of this monotone homotopy. More formally:
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Figure 5: α0 cannot be contracted to p via a “short” monotone homotopy
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Definition 0.7 Let γ be a simple closed contractible curve on a Riemannian sur-
face M . We will say that a homotopy H(t, τ) : S1 × [0, 1] −→ M covers γ if the
following conditions are satisfied:
(1) H(t, τ) is a strictly monotone homotopy between some simple

closed curve γ̃ = H(∗, 0) and a point p ∈M ;
(2) The discDγ̃ = H(S1×[0, 1]) generated by the image of this homotopy contains
γ. (Note that ∂Dγ̃ = γ̃.)

Theorem 0.8 LetM be a two-dimensional Riemannian manifold or a Riemannian
manifold with boundary. Let H(t, τ) : S1 × [0, 1] −→M be a homotopy between
a simple closed contractible curve γ and a point p ∈M over simple closed curves
of length at most L. Then, for any ε > 0, there exists a homotopy H̃(t, τ) over
curves of length at most L+ ε that covers γ (in the sense of the above definition).

Note that if M is a 2-disc, then this theorem is equivalent to the Monotonicity
Theorem as the homotopy that covers γ = ∂M can only begin with γ, and so
Theorem 0.8 implies Theorem 0.6. The above theorem will be proven in the next
section. In order to deduce Theorem 0.2 from Theorem 0.8 we need the following
theorem which, in our opinion, is of independent interest:
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Theorem 0.9 Let M be a closed Riemannian manifold of diameter d. Let γ be
a simple closed contractible curve in M . Assume that there exists a homotopy
H(t, τ) : S1 × [0, 1] −→ M over curves of length at most L that covers γ. Then,
for any point q ∈ γ and for any ε > 0, there exists a contraction H̃(t, τ) : S1 ×
[0, 1] −→ M of γ over loops of length at most 3L + 2d + ε that are based at q.
Furthermore, there is a specific point q? ∈ γ such that we can find a contraction of
γ through loops based at q? of length bounded by 2L+ 2d+ ε.

This theorem will be proven in the last section. It is obvious that Theorem 0.2
immediately follows from Theorems 0.8 and 0.9.
Applications. Theorem 0.2 and Theorem 0.6 have many immediate and poten-
tial applications to geometry of loop spaces on Riemannian 2-spheres, to questions
about the lengths of geodesics as well as to problems about optimal sweep-outs.

In particular, Theorem 0.2 provides a canonical way of obtaining a “short”
based loop homotopies out of the “short” free loop homotopy on Riemannian sur-
faces. The second author has encountered this problem many times, and each time
it was solved on an ad hoc basis. Specifically, Theorems 0.2 and 0.6 can be
applied in the following situations. The details of each of these applications will
appear elsewhere.
(1) Lengths of geodesics on Riemannian 2-spheres. Let p, q be an arbitrary pair
of points on a Riemannian 2-sphereM of diameter d. A. Nabutovsky together with
the second author have demonstrated that there exist at least k geodesics joining
them of length at most 22kd (see [NR2]). The bound will be 20kd, when p = q
(see [NR1]). We have noticed that an application of Theorem 0.2 can dramatically
decrease the complexity of proofs in [NR1] and [NR2], and improve the bounds in
[NR2] to 16kd, (the bounds of [NR1] will be improved to 14kd). These improve-
ments are due to the fact that the main technical difficulty of [NR1] and especially
[NR2] is a formation of possible intersections between various closed curves in the
homotopies between a closed curve and a point.
(2) Geometry of the loop spaces on Riemannian 2-spheres.
(a) Application of Theorem 0.2 will immediately help to generalize Theorem 1.1
of [NR3] to the free loop space on a Riemannian 2-sphere M . To be more precise,
one can show that any map f : Sm −→ ΛM , where ΛM is a free loop space
on M , is homotopic to a map f̃ : Sm −→ ΛM that passes through curves of
length that does not exceed L = L(m, k, d), where d is the diameter of M , k is
the number of distinct non-trivial periodic geodesics on M of length at most 2d,
and L is a function of m, k, d that can be written down explicitly. Moreover, one
can explicitly majorize the lengths of loops in an “optimal” homotopy connecting
f and f̃ in terms of n, k, d and supx∈Sm length(f(x)).
(b) The first author and Y. Liokumovich have some concrete ideas of how appli-
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cations of Theorems 0.3 and 0.6 can lead to an answer of the following question
posed by N. Hingston and H.-B. Rademacher: Let α be a generator of H1(ΛM),
where ΛM is the free loop space of a manifold M diffeomorphic to S2. Is it pos-
sible for the minimax level of 2α (with respect to the length functional on ΛM ) to
be lower than the minimax level of α?
(3) A lower bound for the diastole on a Riemannian 2-sphere of area A and
diameter d. Y. Liokumovich points out that by using Monotonicity Theorem to-
gether with the examples of Frankel and Katz from [FK] one can construct an
example of Riemannian metrics on S2 with A >> d2 that cannot be sliced into
simple closed curves of length ≤ 2

ln 3d ln
√
A
d . This result complements Theorem

1.3 in [LNR].

1 Proof of Theorem 0.8

1.1. Scheme of the proof. Our proof of Theorem 0.8 goes as follows. First, we
construct a finite set of “short” monotone homotopies that pass through simple
closed curves which are homotopic to γ and are of length bounded by L + ε.
These monotone homotopies will either overlap or “quasi-overlap” in a certain
way. This fact will enable us to “glue” (or, more precisely, “process”) them one by
one to obtain a monotone homotopy that passes through simple curves of length
≤ L + ε, ends at a point, starts at a simple closed curve homotopic to γ, and the
disc generated by this homotopy contains γ. Note that the gluing process is not
straightforward. The image of the resulting homotopy is, in general, not the union
of images of the two overlapping homotopies that we are trying to combine.

The homotopy that we are going to obtain will only be monotone and not
strictly monotone. The loss of monotonicity will however happen only along a
finite set of curves. Therefore, one can then obtain a strictly monotone homotopy
by inserting collars along each of these curves, regarding each collar as a collection
of copies of the original curve, and disengaging curves in the monotone homotopy
using the different copies. We will omit the rather obvious but tedious details of
this step of the proof and construct only a monotone homotopy.

1.2. Filling contractible closed curves by discs. A simple contractible closed
curve α on a surface always bounds a 2-disc. This disc is unique, unless the surface
is diffeomorphic to S2. In this case one has two choices for such a disc. Let γ
be a simple closed curve and H a homotopy that contracts γ to a point through
simple closed curves. In this case, we use the following method to assign discs
Dγτ bounded by γτ to all curves γτ that appear during this homotopy. When γτ
becomes very small for some value of τ , we choose the smaller of two discs. We
then extend the choice of the disc by continuity. Note that making a choice between
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two discs bounded by a curve is equivalent to orienting this curve. Thus, we have
just oriented all curves appearing in the homotopy H between γ and a point. Our
choice of orientation has nothing to do with how the closed curves are parametrized
in the homotopy.

Note also that if a (smooth) simple closed curve α has already been oriented,
then we can orient each simple closed curve β in a tubular neighbourhood of α by
choosing Dβ so that Dβ \ Dα is contained in the same tubular neighbourhood of
α.

If α1 and α2 are two contractible simple closed curves that have already been
oriented, and the closure of Dα2 is contained in the closure of Dα1 , then we say
that α2 lies inside α1. Further, we call the closure ofDα1\Dα2 an oriented annulus
bounded by α1 and α2 and refer to α2 as to its inner boundary and α1 as its outer
boundary. Note that α1 and α2 are allowed to touch each other, and if they do, the
oriented annulus is not diffeomorphic to S1 × [0, 1].

Given an oriented annulus, we can orient each simple closed curve β that both
lies in this annulus and is homotopic to its inner boundary α1 by choosing Dβ so
that it contains Dα1 .

When M is diffeomorphic to S2 and we are given a simple closed curve γ
and a homotopy H that contracts it to a point through simple closed curves, we
will automatically adopt the conventions about orienting simple closed curves in-
dicated above to obtain a continuous orientation on a class of simple curves that
will include all closed curves relevant to our proof.

1.3. Simple intersections.

Definition 1.1 Let β1(t) : [0, 1] −→ M and β2(t) : [0, 1] −→ M be two closed
curves in a Riemannian manifold M .

We will say that β1(t) and β2(t) satisfy the simple intersection property if, for
every two points of intersection of β1 and β2, they are consecutive on β1 if and only
if they are consecutive on β2.

1.4. Monotone homotopy covers.
Let γ be a contractible simple closed curve on M , and suppose we are given a

homotopy H from γ to a point that passes through simple closed curves. If M is
diffeomorphic to S2, then this homotopy induces orientations on a family of closed
curves as described in section 1.2. If M is not a 2-sphere, all contractible curves
automatically bound unique discs.

Consider an oriented annulus (in the sense of definition given in section 1.2).
Assume that we can choose a monotone homotopy that starts at its outer bound-
ary and ends at its inner boundary. Such an annulus together with the monotone
homotopy will be called an oriented monotone annulus. Let A1 and A2 be two
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oriented monotone annuli. If the inner boundary of A1 is contained inside of the
outer boundary of A2, we say that the annuli A1 and A2 are related. Note that this
definition is not symmetric with respect to the order of A1 and A2. Also note that
related annuli can, in principle, be disjoint as A1 can be contained inside the disc
bounded by the inner boundary of A2.

Assume that for some n, a collection of n oriented monotone annuli has the
property that for each i = 1, . . . n − 1, Ai and Ai+1 are related. Assume further
that the inner boundary of An is a point. If γ is the outer boundary of A1 and Dγ

is equal to the disc bounded by the outer boundary of A1, we say that A1, . . . , An
form a monotone homotopy cover of γ corresponding toH . If, instead, the discDγ

bounded by γ is contained in the 2-disc bounded by the outer boundary of A1, we
say that A1, . . . , An form a weak monotone homotopy cover of γ corresponding to
H .

For the convenience of the reader, we give the following self-contained defini-
tions of monotone homotopy cover and weak monotone homotopy cover that do
not use the terminology introduced in section 1.2.

Definition 1.2 Let γτ (t), τ ∈ [0, 1] be a continuous 1-parametric family of simple
closed curves starting from a closed curve γ = γ0(t) and ending with a point p.
Assume that all curves γτ were continuously oriented in the sense of section 1.2,
that is, there is a continuous family of discs Dγτ bounded by γτ . (This condition is
relevant only ifM is diffeomorphic to S2.) We will say that n homotopies Fi : S1×
[0, 1] −→ M, i = 1, . . . , n, form a monotone homotopy cover of γ corresponding
to the family γτ (t) if the following conditions are satisfied:

1. F0(t, 0) = γ0(t) and Fn(t, 1) = p̃ for some point p̃ ∈M .

2. For each i there is a continuous 1-parametric family Di(x) of closed 2-discs
in M satisfying the condition that the boundary of Di(x) is the closed curve
F (S1, x). D1(0) coincides with Dγ0 . For each i, Di(x1) is contained in
Di(x2) if x1 > x2. (The last condition means that, for each i, Fi is a
monotone homotopy of closed curves.)

3. These n families of discs satisfy the following condition: For all i ∈
{1, ..., n − 1} Di(1) ⊂ Di+1(0). Figure 6(a) and Figure 6(b) depict this
condition.

If, instead of assuming that γ0 = ∂D1(0) and Dγ0 = D1(0), we assume only
that Dγ0 is contained in D1(0), we say that the n homotopies Fi form a weak
monotone homotopy cover of γ corresponding to the family γτ .
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Figure 6: Monotone homotopy cover
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Definition 1.3 Let {F (t, x)}ni=0 be a (weak) monotone homotopy cover. We will
call M = maxi∈{0,...,n} supx∈[0,1] length(Fi(S

1, x)) its length.

1.5. The existence of monotone homotopy covers.
Here is our first major technical result:

Lemma 1.4 1. LetM be a Riemannian manifold with boundary diffeomorphic
to the 2-disc. Let γτ (t), τ ∈ [0, 1] be a 1-parameter family of simple smooth
curves in M parametrized by their arclength with γ0 = γ = ∂M . If the
length of curves in this family is bounded by L, then for any ε > 0, there
exists a monotone homotopy cover of γτ of length at most L+ ε.

2. Let M be a Riemannian surface. Let γ be a closed simple contractible curve
on M . Let γτ (t), τ ∈ [0, 1] be a 1-parameter family of simple closed curves
of length at most L, such γ0(t) = γ, and γ1(t) = p ∈ M . Then, for any
ε > 0, there exists a weak homotopy cover of γ corresponding to γτ (t) of
length at most L+ ε.

Proof. The proof of the lemma consists of the following steps. First we discretize
the given homotopy. We choose an increasing sequence of n points τi ∈ [0, 1],
i = 1, . . . , n, so that the curves γτi satisfy the following conditions:

1. The first curve in this collection is γ0 (that is, τ1 = 0).

2. The last curve in this collection is very short and is contained in a very small
neighbourhood of p. In particular, it is smaller than the injectivity radius of
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M . We choose the radius of this neighbourhood to be so small that γn could
be contracted to a point inside the small disc that it bounds via curves of
length < length(γn) + ε.

3. For all values of i, the curves γτi and γτi+1 are normal variations of each
other. This means that:

(a) The curve γτi+1 is inside the ri-neighbourhood of γτi , where ri denotes
the injectivity radius of the normal exponential map for γτi . Similarly,
γτi must be in the ri+1-neighbourhood of γτi+1 .

(b) There exists a function α(t) such that γτi+1 is a reparametrization of
the curve γτi(t)+α(t)n(γτi(t)), where n(γτi(t)) denotes the outer unit
normal to γτi at γτi(t). Similarly, there exists a function β(t) such that,
up to a reparametrization, γτi coincides with γτi+1(t)+β(t)n(γτi+1(t)).

To ensure this final property, we simply observe that the infimum r of the in-
jectivity radii of the normal exponential map for γτ , τ ∈ [0, τn] is positive. As
such, we just need to choose τi so that γτi and γτi+1 are r/2-close in C0-metric
and sufficiently close in C1-metric.

Let us redenote curves γτi by γi. Property (3) easily implies that if γi and γi+1

intersect, then they satisfy the simple intersection property (see section 1.3). If they
do not intersect, then one of them is inside the other. In other words, the situation
depicted in Figure 8(c) is impossible. (Here, we are assuming that all the relevant
curves were oriented as described in section 1.2, if M is a 2-sphere.)

Note that the nth (last) piece of a (weak) monotone cover will contract γn to
a point inside the small disc bounded by γn. It remains to construct the remaining
pieces of the (weak) monotone homotopy cover so that γn is outside of the inner
boundary of the annulus generated by the (n− 1)th piece.

This construction has two stages. In the first of these stages, for each pair of
curves γi and γi+1, we construct two new curves γ̃i and γ̃i+1 such that they are still
very close to each other, and γ̃i+1 is inside γ̃i. In the second stage we connect these
pairs of closed curves by monotone homotopies Fi. For every i, Fi(t, 0) = γ̃i(t),
and Fi(t, 1) = γ̃i+1(t).

To describe the first of these two stages, consider the case of when γi and
γi+1 intersect. Property (3) above implies that they have the simple intersection
property. Consider two cyclically ordered sequences of all points {tj}mj=0 and
{sj}mj=0 such that γi(tj) = γi+1(sj).

The curves γ̃i and γ̃i+1 are constructed from arcs of γi and γi+1 in the following
way. Let us consider each arc γi|[tj ,tj+1] and γi+1|[sj ,sj+1]. First, let us ask whether
γi+1|[sj ,sj+1] lies inside the closed disc bounded by γi(t), or outside of it, as in
Figure 7(a). (If M is a 2-sphere, then the choice of the closed disc is determined
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Figure 7: Constructing Fi(t, 0) and Fi(t, 1)
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by the chosen orientation of the curve; see section 1.2.) If this arc lies inside the
disc, then the arc of γi parametrized by the interval [tj , tj+1] and the arc of γi+1

parametrized by the interval [sj , sj+1] will remain unchanged and will constitute
arcs of γ̃i and γ̃i+1, respectively, as in Figure 7(b). If, however, γi+1|[sj ,sj+1] lies
outside the disc, we will then ask which is longer, γi+1|[sj ,sj+1] or γi|[tj ,tj+1] (see
Figure 7(a)). If the former arc is shorter, then both γ̃i and γ̃i+1 will be equal to
γi+1|[sj ,sj+1], if the latter arc is shorter, then both curves will become γi|[tj ,tj+1], as
shown in Figure 7(b).

Note that it is possible that the set of intersection points of γi and γi+1 is empty.
In that case γi+1 either lies inside the disc that γi bounds as in Figure 8(a), or
outside of it as in Figure 8(b). (Note that, as described above, the situation depicted
in Figure 8(c) is impossible.) If γi+1 lies in the disc bounded by γi, we will let
γ̃i = γi and γ̃i+1 = γi+1. That is, everything will remain unchanged. If γi+1 lies
outside of the disc bounded by γi, then we choose the shorter of γi and γi+1, and
set both γ̃i and γ̃i+1 to this shorter curve. This case is pictured in Figure 8(b).

Now, after we have defined the map Fi(t, x) at the endpoints of the interval
[0, 1], we would like to extend the map to its interior. Note that we can ensure that
the curves Fi(t, 0) and Fi(t, 1) are constructed from γi and γi+1 in such a way
so that the C0 and C1 distances between them are only slightly larger than the
C0 and C1 distances between γi and γi+1. In particular, we can ensure that these
distances are no more than twice the original distances between γi and γi+1, which
are uniformly bounded. To extend Fi(t, ∗) to the whole interval, we will proceed
as follows.
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Figure 8: Possible configurations of γi and γi+1 if they do not intersect
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Figure 9: Filling in the monotone homotopy

β
i,j

(1)

β
i,j

(u)

β
i+1,j

(u)

σu (r)

β
i,j

(0)

σu (r)
k

σu
k+1

(r)

δr

k

(a)

(b) (c)

a typical curve in the 
homotopy



17

Let us consider those arcs of Fi(t, 0) and Fi+1(t, 1) that are distinct.
Parametrize each pair of these arcs proportionally to their arclength by the unit
interval [0, 1]. Let us denote them as βi,j(u) and βi+1,j(u), as in Figure 9(a).

For any positive δ, we can choose our original points τi close enough together
so that d(βi,j(t), βi+1,j(t)) ≤ δ. In particular, by making δ sufficiently small, we
can insure that there exists a family of minimal geodesics σu(r) of length at most δ
continuously connecting the points on βi,j(u) to the points on βi+1,j(u), as shown
in Figure 9(a). We then construct the path homotopy between βi,j and βi+1,j as
follows.

Note that the lengths li,j and li+1,j of βi,j and βi+1,j are close to each other,
(since δ is small), and let 0 = u0 < u1 < ... < uN = 1 be a subdivision of [0, 1]
such that βi,j and βi+1,j are subdivided into equal number of small segments of
length at most some small positive number δ̃. We are assuming that the subdivision
is fine enough to satisfy the following condition: for each pair of σuk , σuk+1

, k =
1, . . . , N − 1, there is a continuous family of minimal geodesics δkr of length at
most δ̃ that connects them, as shown in Figure 9(b). Moreover, we are assuming
that the subdivision is sufficiently fine to ensure that if δkr intersects βi or βi+1,
then the intersection is simple in the sense of Definition 1.1.

The homotopy between βi,j and βi+1,j can be described as follows. It pro-
gresses through the sequence of curves βi+1,j |[0,u1] ∗ σ̄u1 ∗βi,j |[u1,1], βi+1,j |[0,u2] ∗
σ̄u2 ∗ βi,j |[u2,1], etc. In general, it goes through curves of the form βi+1,j |[0,ul ] ∗
σ̄ul ∗ βi,j |[ul,1]. Here, σ̄ul refers to σul traversed in the opposite direction. The
basic step is to construct a homotopy between βi+1,j |[0,ul] ∗ σ̄ul ∗ βi,j |[ul,1] and
βi+1,j |[0,ul+1] ∗ σ̄ul+1

∗ βi,j |[ul+1,1] for each l. The idea here is to use the curves
βi+1,j |[0,ul] ∗ ¯σul |[r,1] ∗ δlr ∗ ¯σul+1

|[0,r] ∗ βi,j |[ul+1,1] for all r ∈ [0, 1]. Figure 9(c)
depicts the typical curve in this homotopy. This idea does not quite work, as we
want a monotone homotopy, but δlr can potentially have non-trivial intersections
with the segments of either βi,j or βi,j+1 between ul and ul+1. The idea is that,
if this happens, we replace all arcs of δlr outside of the curvilinear quadrilateral
formed by σul , βi,j |[ul,ul+1], βi+1,i|[ul,ul+1], σul+1

by the arc of βi,j (or βi+1,j) with
the same endpoints. The simple intersection property between δlr with βi,j and
βi+1,j implies that using the replacement does not lead to discontinuities in the re-
sulting family of curves. It is easy to see that the lengths of curves in the resulting
monotone homotopy exceed L by a summand that can be made arbitrarily small by
choosing sufficiently small parameters in the above algorithm.

Note that although this homotopy is monotone but not strictly monotone, it is
not difficult to modify this construction to obtain a strictly monotone homotopy.

This completes the construction of the desired (weak) monotone homotopy
covering.
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Now it remains to check that, for every i, the inner boundary of the annulus
corresponding to the ith homotopy is inside the outer boundary of the annulus
corresponding to the i + 1st homotopy. (Of course, these curves are allowed to
wholly or partially coincide.) To explain this, note that when we were replacing
each pair of curves γi and γi+1 by the pair γ̃i and γ̃i+1 in the second stage of the
proof of the lemma, segments of γi+1 were only moved inwards to obtain ˜γi+1,
and segments of γi were only moved outwards to obtain γ̃i. Now note that both
the inner boundary of the annulus corresponding to Fi and the outer boundary of
the annulus corresponding to Fi+1 were both obtained from the same curve γi+1

on two different steps of the process. First, it was the inner curve and could move
only inwards, then it was the outer curve and could only move only outwards. As
such, the second curve cannot be inside of the first one.

A similar argument demonstrates that γn will be outside of the inner boundary
of Fn−1 that was obtained from γn, where some arcs of γn were allowed to move
inwards.

�

1.6. Combining monotone homotopies. The second major ingredient of our
proof of Theorem 0.8 is the following lemma that enables one to “combine” mono-
tone homotopies:

Lemma 1.5 Let M be a 2-dimensional Riemannian manifold (with or without
boundary). Let γx(t) = G(t, x) : S1 × [0, 1] −→ M and βx(t) = H(t, x) :
S1 × [0, 1] −→ M be two monotone homotopies through simple closed curves
of length at most L, and Dγ,x, x ∈ [0, 1], Dβ,x, x ∈ [0, 1] two families of closed
2-discs that continuously depend on x and satisfy the following conditions: First,
∂Dγ,x = G(∗, x) for all x ∈ [0, 1], and Dγ,x1 ⊃ Dγ,x2 for all x1 < x2. Similarly,
∂Dβ,x = H(∗, x) for all x ∈ [0, 1], and Dβ,x1 ⊃ Dβ,x2 for all x1 < x2. Second,
Dg = Dγ,1 ⊂ Dβ,0 = Dh.

Then, for every positive ε, there exists a monotone homotopy F (t, x) : S1 ×
[0, 1] −→ M and a corresponding 1-parametric family of discs DF (x) continu-
ously depending on x ∈ [0, 1], such that:

1. ∂DF (x) = F (∗, x) for all x ∈ [0, 1].

2. DF (x1) ⊃ DF (x2) for all x1 < x2.

3. For every x, the length of the simple closed curve ∂DF (x) is at most L+ ε.

4. DF (0) ⊃ Dγ,0 and DF (1) ⊂ Dβ,1.
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Proof. Without loss of generality, let us assume that the homotopies G and H are
strictly monotone and pass through smooth curves. Also assume that ∂Dh and ∂Dg

are disjoint. If necessary, both of these properties can be achieved by an arbitrarily
small perturbation of G and H . We will construct the homotopy in two steps:

Let us consider the closure of the annulusDh\Dg. Let α be the shortest closed
curve among all closed curves in this closed annulus that are homotopic to ∂Dh.
Note that the length of α is at most L. It is easy to see that α is a simple closed
curve. Let Dα be a closed domain diffeomorphic to the 2-disc that has α as its
boundary and is contained in Dh.
Step 1. We will modify the homotopy G(t, x) to obtain a new homotopy G̃(t, x)
so that the new homotopy will be monotone, G̃(t, 0) will be outside of the disc
bounded by G(t, 0), and G̃(t, 1) = α(t).

First, we will construct a 1-parameter family of simple closed curves γ̃x(t) that
can possibly have a finite number of discontinuities (as a function of the parameter
x). We will then remove the discontinuities.

The new curves γ̃x(t) will be constructed as follows. The general principle is
to “push” (arcs of) γx outside of the interior of the disc Dα. More specifically, if
Dγ,x ⊂ Dα as in Figure 10(a), then we will let γ̃x(t) = α(t). If Dα ⊂ Dγ,x or
Dα ∩Dγ,x = ∅ as in Figure 10(b), then we will let γ̃x(t) = γx(t).

Figure 10: γx relative to α
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Now suppose that Dγ,x ∩Dα 6= ∅ and that neither one is a subset of the other.
Let us consider 0 = t0 < t1 < ... < tn = 1, a subdivision of [0, 1] such that
γx(ti) = α(sj(i)) and γx 6= α otherwise.

Let us consider those arcs of γx that are inside Dα. Clearly those arcs will be
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inside Dh as well. However, also, by the monotonicity of the homotopy G, these
arcs will be outside of Dg. Thus, they will lie in the closed annulus cl(Dh −Dg),
the closure of Dh −Dg.

Consider one such arc of γx between γx(ti) and γx(ti+1). These two points
coincide with points α(sj(i)) and α(sj(i+1)) which subdivide the curve α into two
arcs. Let us select the arc A of α between these two points which is path homo-
topic to the arc of γx with the same endpoints which lies inside the closed annulus
between Dh and Dg. Now replace this arc of γx by A. The resulting curve will
not be contractible in the closed annulus between Dg and Dh. Also, the length
of A does not exceed the length of the arc of γx that it replaced, as otherwise α
would not be the shortest non-contractible curve in the closed annulus. Therefore,
the resulting curve will have length bounded by the length of the original curve.
Note that G̃(t, 0) is outside of G(t, 0) as (arcs of) curves in the homotopy G can
move only outside. Also, by the hypotheses of lemma, Dγ,1 ⊂ Dα. As a result,
G̃(t, 1) = α.

Additionally, note that the resulting map G̃(t, x) regarded as a 1-parametric
family of closed curves depending on the parameter x is monotone, but its depen-
dence on x is not necessarily continuous.

The possible discontinuities may only occur at those curves γx that are tangent
to α at some points. (Here it is convenient for us to think that α is smooth. While,
in general, α will be only piecewise smooth, we can perturb it into an arbitrarily
close smooth curve of arbitrarily close length. This replacement of α by a very
close smooth curve adds a summand to our estimates that can be made arbitrarily
small. Therefore, without loss of generality we can assume that α is smooth.)
Without loss of generality, we can also assume that, for each value of x, there is
at most one point where γx and α are tangent, and that all of these tangencies are
non-degenerate. (If not, we can perturb G so that the resulting homotopy has these
properties, and so that the curves increase in length only by an arbitrarily small
amount.) Let us modify the family G̃(t, x) so that the singularities at tangential
points are resolved.

In order to do this, let us consider x0 such that the curve γx0 is tangent to α at
the point γx0(sx0). Let us consider the following two cases:
Case A. The set of intersections of γx0 with the curve α consists of the one point
γx0(tx0) = α(sx0). First, consider the situation in which intDγ,x0 ∩ intDα = ∅
as in Figure 11(a), where int denotes the interior of the set. This situation is not
possible since the homotopy G is monotone, and since Dg ⊂ Dα. Hence, there are
two possibilities: the curve Dγ,x0 ⊂ Dα, as in Figure 11(b), or Dα ⊂ Dγ,x0 , as
in Figure 11(c). In the former case, we let γ̃x0 = α, and in the latter case, we let
γ̃x0 = γx.

In both of these cases, the problem with continuity of the newly constructed
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Figure 11: One intersection between α and γx0
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1-parametric family of curves at x0 cannot arise. Indeed, let us consider the first
case, whenDγ,x0 ⊂ Dα as in Figures 11(a) and 12(b). The second situation will be
analogous. Let us consider a family of curves γx(t), x ∈ (x0 − δ, x0 + δ). We can
choose δ to be small enough so that there are no points where γx and α are tangent
for any x 6= x0 in the interval (x0−δ, x0+δ). By the monotonicity of the homotopy
G, Dγ,x ⊂ Dα if x ∈ (x0, x0 + δ), so γ̃x = α for each x ∈ (x0 + δ), as depicted in
Figures 12(b) and 12(c). Since γx0 = α, γ̃x is continuous at x0 from the right. For
the other direction, each curve γx(t) with x ∈ (x0−δ, x0) has exactly two points of
intersection with α that we will denote γx(tx1) and γx(tx2), where tx1 < tx2 . Note that
γx(tx1) = α(sx1) and γx(tx2) = α(sx2), where sx1 < sx0 < sx2 by the monotonicity
of the homotopy G, and both α|[sx2 ,sx1 ] and γx|[tx2 ,tx1 ] vary continuously with x as
x approaches x0 from the left, and approach α(sx0) and γx0(tx0), respectively.
Note that the segment γx|[tx2 ,tx1 ] is inside of Dα. Hence, our algorithm continuously
replaces this segment by the segment α|[sx2 ,sx1 ] . Thus, we obtain continuity from
the left, as shown in Figure 12(d).
Case B. Let us now assume that γx0(t) intersects α at 2k + 1 points for some
k ≥ 1. Let 0 ≤ t1 < ... < t2k+1 ≤ 1 be a partition of the unit interval such that
γx0(tj) = α(s(tj)) = α(sj), and where all the intersections are transverse except
for γx0(tj0)), where it touches the curve α at α(sj0).

Let us consider the arcs a = γx0 |[tj0−1,tj0 ]
and b = γx0 |[tj0 ,tj0+1]. There are

two possibilities to consider: either both a and b lie inside Dα, or both of them
lie outside. It is not possible for one of the arcs to be inside, and for the other
to be outside, because that would imply that either the intersection at γx0(tj0) is
transverse, or the tangency at this point is degenerate, and either of these options
contradicts our assumptions.

First, assume that both arcs a and b are outside of Dα. Then, according to our
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Figure 12: γ̃x for x near x0
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algorithm, the arcs of the new curve γ̃x0 on the interval [tj0−1, tj0+1] will remain
unchanged. Let us consider γx(t), x ∈ (x0 − δ, x0 + δ), where δ is selected so
that the curves in the family do not have any additional tangential intersections,
as in Figures 13(a) and 13(b). Then, for any nearby curve, the corresponding arc
γx|[txj0−1,t

x
j0+1]

is either outside Dα, or has two more additional transverse intersec-
tions with α in small neighbourhood of γx0(tj0). Let us denote these intersections
as tx∗ < tj0 and tx∗∗ > tj0 . Thus, γ̃x will locally be formed by continuously replac-
ing γx|[tx∗ ,tx∗∗] by an arc of α between the same endpoints. Hence, in this case, γ̃x
changes continuously when x is near x0. Note that while sj0−1, sj0 , and sj0+1 can
come in any order as is indicated in Figure 13, this fact does not affect the above
analysis.

Thus, the only problematic case is when the arcs a and b are inside Dα as in
Figures 15 and 16. Let m, l, and k be three points of intersection between γx0 and
α, where l is the tangential point, andm and k are its neighbours. By “neighbours”
we will mean points of intersection that are the closest to the tangential point along
γx0 . That is, if l = γx0(tj0), then m = γx0(tj0−1) and k = γx0(tj0+1). It is,
however, quite possible that along α there are intersection points that are closer to
l than m and k as in Figure 14.

Each pair of points subdivides the curve α into two segments connecting them.
Let us denote the two arcs connecting m with l as aml and ãml, the two arcs con-
necting m and k as amk and ãmk, and the two arcs connecting l and k as alk and
ãlk. Also, let us select aml, amk, and alk so that their interiors do not intersect.
Without loss of generality, let a be the arc of γx0 between m and l in Dα, while b
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Figure 13: Outside arcs
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is the arc between l and k in Dα.
Since a and b are inside Dα, our algorithm requires that we change them to

the corresponding arcs of α. The possible discontinuity is a result of the following
situation. Let us define two options for replacing arcs of γx0 with arcs of α. Note
that, as before, the arc of α that we are replacing an arc of γx0 with is the one that
is path homotopic to the arc of γx0 inside the closed annulus cl(Dh \Dg).
Option 1. Separately replace a and b with the appropriate arcs of α.
Option 2. Let c = a ∗ b. Replace c with the appropriate arc of α.

As we will see, the two different options will some time result in the same
curve, and some times not. Our algorithm, at point x0, always uses Option 1. Let
us, however, consider the curves that are formed by both options.

Let us first consider Option 1. Without loss of generality, suppose that arc a is
changed to aml. (The other option is ãml.) Now there are two possibilities for the
arc b. It will either be changed to alk or to ãlk.

Now let us consider Option 2. Note that if b was changed to alk, then c must
be changed to ãmk = aml ∗ alk. Thus, in this case, it does not matter whether we
used Option 1 or Option 2 (see Figure 15).

However, if b was changed to ãlk, then c must be changed to amk. While
amk 6= aml∗ãlk, we have that aml∗ãlk = aml∗āml∗amk. (Recall that āml denotes
aml traversed in the opposite direction, from l to m.) Thus, amk is path homotopic
to aml ∗ ãlk by simply contracting aml ∗ āml to m along itself. Observe that the
length of the curve during this homotopy changes monotonically (see Figure 16).

One can see that while the former situation does not create a discontinuity, the
latter situation does. Let δ > 0 be once again small enough so that γx and α do not
have any additional tangential points on the interval (x0 − δ, x0 + δ).

It is possible that, when x′ ∈ (x0− δ, x0), γ̃x′ will approach the curve obtained
using Option 2 as x′ approaches x0, and for x′′ ∈ (x0, x0 + δ), γ̃x′′ will approach
the curve obtained using Option 1 as x

′′
approaches x0 (or the other way around).

This is shown in Figure 17.
If we include the homotopy between the curves formed by Option 1 and Option

2 as described above, the resulting family of curves γ̃x will become continuous and
we will be done.

Note that some of the curves obtained in the procedure described above could
have self-intersections, however, this happens only when they include arcs of α
traversed twice in opposite directions. It is easy to see that one can make all closed
curves in G̃ simple using an arbitrarily small perturbation.
Step 2. We will modify the homotopy H(t, x) to obtain H̃(t, x), a monotone
homotopy with the following properties: H̃(∗, 0) = α, and H̃(∗, 1) is contained
inside the disc bounded by H(∗, 1). Moreover, the maximal length of curves in
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Figure 15: Inside arcs
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Figure 17: Homotopy between the curves formed by Option 1 and Option 2
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the new homotopy will increase by not more than a summand that can be made
arbitrarily small.

By analogy with Step 1, the new curves in the homotopy will be constructed
by “pushing in” those segments of βx that lie outside the disc Dα. Let Dβ,x be the
closed disc that has βx as its boundary, as in the hypotheses of the lemma. It will
be a procedure that is dual to the one in Step 1.

We will denote the curves in the new homotopy by β̃x(t) = H̃(t, x). In partic-
ular, Dα ⊂ Dβ,0, so β̃0 = α.

Now, let us describe the curve β̃1. IfDβ1 ⊂ Dα, then we will let β̃1(t) = β1(t).
If Dα ⊂ Dβ1 , then we will let β̃1 = α(t). If Dα ∩Dβ = ∅, then we will let β̃1(t)
be some point p̃, where p̃ is obtained as follows. Let x̃0 = sup{x ∈ [0, 1] such that
Dβ,x ∩Dα 6= ∅}. Let p̃ = Dβ,x̃0 ∩Dα.

Finally, suppose that Dα∩Dβ1 6= ∅, but that one is not a subset of the other. In
this case, β̃1 is constructed as follows. Let us consider arcs of β1(t) that are outside
Dα. That is, let 0 = t0 < t1 < ... < tn = 1 be a subdivision of the unit interval,
such that β1(ti) = α(sj(i)) for some sj(i) ∈ [0, 1], and β1 6= α otherwise. Let
us consider each β1|[ti,ti+1] that lies outside Dα. By the monotonicity of H(x, t),
it lies in the annulus bounded by H(0, t) and G(1, t). The points α(sj(i)) and
α(sj(i+1)) subdivide α into two arcs. Exactly one of these arcs has the property
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that, if it is replaced by β1|[ti,ti+1], then the resulting curve will be non-contractible
in the annulus. We replace β1|[ti,ti+1] by this arc of α. When this is done for all
arcs, we obtain β̃1. Clearly, Dβ̃1

⊂ Dβ1 .

β̃x is constructed in a completely analogous manner for an arbitrary x ∈ [0, 1].
Note that while the length of curves in the one-parameter family β̃x with x ∈ [0, 1]
has not increased compared to βx, at this stage there can arise some discontinuities
with respect to x. As in Step 1, those discontinuities can only occur at the points
where α and βx are tangent, and only when βx touches α from the outside of Dα,
since only arcs of βx outside Dα are to be replaced.

Note also that if α and βx0 intersect at only one point, as in Figures 18(a) and
18(b), then continuity at x0 remains intact.

Figure 18: One point of intersection
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Dα
βx

βx

(a) (b)

Thus, let us assume that there are 2k + 1 intersection points at 0 ≤ t1 < t2 <
... < t2k+1 ≤ 1, k ≥ 1. Let β(tj0) = α(sj0) = l be the point of tangency. Once
again, let m and k be its neighbours with respect to βx0 . Let us denote the arc
of βx0 that connects m with l by a and the arc that connects l with k by b, as in
Figures 19(a) and 19(b).

m, l, and k subdivide α into three non-intersecting arcs that will be denoted as
aml, amk, and alk, indexed by the pair of points that each segment connects. Again,
we are assuming that these three arcs have disjoint interiors. Their complements in
α will be denoted as ãml, ãmk, and ãlk, respectively.

As in Case 1, a discontinuity can only arise if replacing a followed by b yields
a different curve than that obtained by replacing a ∗ b as a single arc.

It is easy to see that, when βx0 touches α from the outside of Dα, there are two
situations to consider.

The first situation is depicted in Figure 19(a). In this case, we replace a by aml
and b by alk. The other approach would be to replace the arc c = a ∗ b by the arc
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Figure 19: Outside arcs
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ãmk = aml ∗alk. Thus, in this case, the two different options of replacing arcs lead
to the same result. In this situation, no discontinuities are formed.

The second situation is depicted in Figure 19(b). In this case, we replace a by
aml and b by ãlk, while c is replaced by amk. While amk 6= aml ∗ ãlk, we observe
that aml ∗ ãlk = aml ∗ āml ∗ amk. Thus, amk is path homotopic to aml ∗ ãlk by
simply contracting aml ∗ āml along itself to the pointm. This forms a discontinuity
in our homotopy H̃ , but if we also include this contraction (extended to the whole
curve as a part of our 1-parameter family β̃x), the discontinuity will be resolved.
This is analogous to the method used to resolve discontinuities in Case 1.
Step 3. After we have constructed G̃(t, x) and H̃(t, x), we can concatenate G̃ and
H̃ (G̃ ∗ H̃) to produce the desired homotopy.

�

Proof of Theorem 0.8. We begin with the original homotopy H(t, τ) : S1 ×
[0, 1] −→ M and use Lemma 1.4 to obtain a corresponding weak monotone ho-
motopy cover {Fi(t, x)}ni=1.

Now the idea of the proof is to glue together the homotopies Fi(t, x) to obtain
a monotone homotopy of a contractible simple closed curve γ to some point p̃ that
covers the curve H(∗, 0). The procedure is inductive with respect to the index i
of the homotopies in the cover Fi(t, x). The homotopy F1 = G1 constitutes the
base of the induction. On the kth step we apply Lemma 1.5 to G = Gk−1 and
H = Fk to obtain a monotone homotopy that we redenote as Gk. It is easy to
see that, for each k, Gk covers H(∗, 0). In particular, Gn−1 covers H(∗, 0), and
Gn−1(∗, 1) will be inside Fn(∗, 0). As we already noted in the course of the proof
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of Lemma 1.4, this fact implies that Gn−1(∗, 1) will be contained in a metric ball
in M that can be made arbitrarily small by choosing appropriate parameters in the
algorithm that we used to prove Lemma 1.4. This curve can now be contracted to
a point through monotone curves so that the lengths of these curves can exceed the
length ofGn−1(∗, 1) only by a summand that can be made arbitrarily small. Hence,
Gn−1 can easily be modified so that it covers H(∗, 0) (in the sense of Definition
0.7). This completes the proof.

�

2 Proof of Theorem 0.9

In this section, we prove Theorem 0.9. We are given a simple closed contractible
curve γ in M , and a contraction H(t, τ) : S1 × [0, 1] → M which covers γ, and
which consists of simple closed curves of length no more than L.

Given a point q ∈ γ and an ε > 0, we wish to construct a contraction of γ
through curves based at q with the property that all curves are bounded in length
by

3L+ 2d+ ε

where d is the diameter of the manifold. We will also show that there is a specific
point q? ∈ γ such that there is a contraction of γ through curves based at q? of
length bounded by

2L+ 2d+ ε.

Throughout this proof, we produce curves of length less than or equal to Q+ ε
for some Q > 0, where ε > 0 is chosen to be arbitrarily small. When we combine
two curves of length bounded in this way, we simply write that the result has length
bounded by 2Q + ε. Although not strictly true, since we chose the original ε to
be as small as desired, we can just go back and choose it to be ε

2 , in which case
the new inequality 2Q + ε holds. To improve readability, we do not mention this
argument when it is used.

We will also be using the terms interior and exterior of Hτ and of γ, which we
redefine here for clarification:

Definition 2.1 SinceHτ is a monotone contraction, there is a disc D ⊂M defined
by the set of all points that are in the image of some curve in H . For each point τ ,
Hτ is simple and is contained in D, and as such divides M into two open regions.
Exactly one of these regions is entirely contained in D. This region is the interior of
Hτ , and the other region is the exterior. Similarly, sinceH covers γ, γ is contained
in D. Since it is simple, γ divides M into 2 regions, exactly one of which is entirely
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contained in D. This region is the interior of γ, and the other region is the exterior
of γ.

We will prove two lemmas which, when combined, will allow us to prove this
theorem. For each, we assume that ε > 0 is fixed.

Lemma 2.2 There exists a point x ∈ γ and a point τ? such that there exists a
homotopy H̃ from γ to either a curve formed by slightly perturbing Hτ? or to the
point x through curves of length at most 2L+ε. Additionally, x lies on every curve
in the homotopy H̃ .

Since the point x ∈ γ has the aforementioned properties, H̃ is a based loop
homotopy. Our second lemma takes H̃ and transforms it into a contraction of γ
through curves based at x of length at most 2L+ 2d+ ε.

Lemma 2.3 If Lemma 2.2 does not contract γ to x, then there exists a contraction
of the curve formed by slightly perturbing Hτ? through loops based at x of length
bounded by 2L+ 2d+ ε. We denote this contraction by K.

We will first demonstrate how these two lemmas can be used to prove Theorem
0.9, and will then prove each of them in turn.

Proof of Theorem 0.9. Let H be our original homotopy, H̃ be the homotopy
generated by Lemma 2.2, and let K be the homotopy generated by Lemma 2.3.
By Lemma 2.2, either H̃ contracts γ to the point x, or it homotopes γ to a slight
perturbation of Hτ? . If it contracts γ to the point x, then we are done. If it doesn’t,
then we have to use Lemma 2.3. We do this by concatenating H̃ and K to get
a contraction of γ through curves based at x of length at most 2L + 2d + ε, as
desired. Hence, the point x is the special base point q? ∈ γ mentioned above.
Furthermore, this will complete the proof of the theorem: if we choose any point
q ∈ γ, then we can build the appropriate contraction based at q as follows. Let α
be an arc of γ from q to x of length at most L

2 , and let −α be the same arc, but
with opposite orientation. Lastly, let β be the curve formed by concatenating α
with −α. We can then take our contraction of γ based at q?, and for each curve
γτ in this contraction, we replace γτ with the curve that is formed by traversing α,
then γτ , then −α. In this way, we produce a homotopy from γ to β which is based
at q, and which consists of curves of length at most 3L + 2d + ε. Since β can be
contracted through loops based at q of length at most L, this completes the proof.

�

We are left now with proving each of the two lemmas outlined above.
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2.1 Proof of Lemma 2.2

To prove Lemma 2.2, we will adopt an approach that will be very similar to that
used by Chambers and Liokumovich in [CL]. To begin with, we would like to
perturb the homotopy H so that only finitely many non-transverse intersections
between H and γ occur, and so that they do not occur concurrently.

Lemma 2.4 (Perturbation Lemma) For any ε > 0, we can perturb H , obtaining
a new homotopy H and points

0 = τ0 < · · · < τn = 1

such that, for all τ ∈ [τi, τi+1], all intersections between Hτ and γ are transverse,
except for exactly one intersection at one point τ . The two possible interactions
are shown in Figure 20. H also has the following additional properties:

1. H is a contraction that covers γ.

2. H is monotone.

3. H consists of curves of length at most L+ ε.

To prove this lemma, we use the same technique as in Proposition 2.1 from
[CL]; we apply the parametric version of Thom’s Multijet Transversality Theo-
rem to the submanifold of the 2-fold 1-jet bundle corresponding to curves with
singularities to show that a perturbation is possible which satisfies the above cri-
teria. This approach does not rule out other singular behaviour which involves
self-intersections in γ or in Hτ , however, since both of these are simple, they have
no self-intersections, and so the interactions between the two curves are limited to
the isolated tangential intersections shown in Figure 20. We use the term Reide-
meister move to describe this behaviour, this term being derived from the obvious
relationship between this singularity and the knot moves used in Reidemeister’s
Theorem. We also note that, since H is a contraction that covers γ, n ≥ 2. In
other words, there must be at least 2 Reidemeister moves, once where H transi-
tions from a curve which lies completely in the exterior of γ to one which only
partly lies in the exterior, and a Reidemeister move in which H goes from being a
curve which only partly lies in the interior of γ, to a curve which lies either entirely
in the interior of γ, or entirely in the exterior of γ.

To simplify this exposition, we will assume that H has already been perturbed,
and so it already has all of the properties described in Lemma 2.4.

We now want to prove Lemma 2.2 for H and γ. We will define the point x and
the point τ?, and then prove that these points satisfy all of the required criteria.
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Figure 20: Interactions between γ and H
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Definition 2.5 Let x be the last point at which H and γ intersect, and let τ? be the
point at which this intersection occurs. Note that τ? ∈ (τn−1, τn), and Hτ? and γ
intersect tangentially at x.

The idea to prove that Lemma 2.2 holds for these values of x and τ? is similar
to that used by Chambers and Liokumovich in [CL]. We construct a certain graph Γ
where the vertices represent curves, and the edges represent homotopies between
curves. We then show that this graph contains a certain path which represents a
homotopy that easily implies the existence of the desired homotopy.
Vertices

We begin to construct this graph Γ by defining its vertices. As above, each
vertex will correspond to a certain curve. For each i ∈ {1, . . . , n− 1}, consider

Ui = γ ∪Hτi .

We will begin by identifying certain closed curves whose images lie in Ui. We will
then eliminate some of these curves based on several criteria. For each curve that
remains, we will add a vertex. We begin by defining our large set of closed curves.
We will call these curves subcurves at τi.

Definition 2.6 (Subcurves at τi) Choose any pair (p1, p2) of distinct intersection
points between Hτi and γ. We can write γ as the disjoint union of p1, p2, and two
open segments %1 and %2. Each of these segments can be used to join p1 to p2.
Similarly, Hτ can be written as the disjoint union of p1, p2, and two open segments
σ1 and σ2. Each of these segments can also be used to join p1 to p2.

For any piecewise smooth closed curve α whose image lies in Ui, if we can find
such a pair (p1, p2) of intersection points such that α can be written as the disjoint
union of p1, p2, σi and %j for i, j ∈ {1, 2}, then we say that α is a subcurve at τi.

We say that such a subcurve has endpoints p1 and p2, and we will denote the
segment of the curve that comes from γ as %, and the segment that comes from Hτi

as σ. Both are open, contiguous segments of their respective curves.

Before we define which subcurves we will use to generate vertices, we will
need a few definitions first. To start, we want to define two open, disjoint, contigu-
ous segments of γ, which we will call ηstart and ηend. Note that the monotonicity of
H guarantees that they are disjoint.

Definition 2.7 (ηstart and ηend) We define the segment ηstart as the segment of γ
that is not contained in the closure of the interior of Hτ1 . Since there are exactly
two intersection points between Hτ1 and γ, this segment is well defined.

We define ηend as the open segment of γ that is contained in the interior of
Hτn−1 . Since Hτn−1 and γ intersect in exactly two points, this segment is well
defined. These are shown in Figure 21.
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Figure 21: ηstart and ηend

We have a simple property of ηstart and ηend which results from the monotonic-
ity of H:

Lemma 2.8 For every point τ ∈ [τ1, τn−1], and for any intersection point p be-
tween Hτ and γ, p lies neither in ηstart, nor does it lie in ηend.

We can now begin to define the set of subcurves that we will use to produce
our vertices; we will define whether or not a subcurve respects γ.

Definition 2.9 (Respects γ) We say that a subcurve α at τi respects γ if the seg-
ment % of α (the segment that came from γ) has the following two properties:

1. ηstart ∩ % = ∅

2. ηend ⊂ %

For every subcurve α at τi that respects γ, we give each endpoint of this curve
a sign, either a +, or a −. Let p be an endpoint of γ. Orienting γ, we can list the
order in which we encounter intersection points. Let q and r be the intersection
points which we encounter immediately before and after p, which may be the same
point. Since γ is oriented, we can also produce two contiguous segments of γ: the
segment traversed from q to p, and the segment traversed from p to r (with respect
to the orientation of γ). Neither segment contains any intersection points. Let them
be β1 and β2.

We also see that exactly one of β1 and β2 must be contained in the interior of
Hτi since p is a transverse intersection point of Hτi and γ. Let this component be
βj . Furthermore, recalling that % is the segment of α that comes from γ, exactly
one of β1 and β2 must be contained in %. Let this component be βk.

If k = j, then we assign a + sign to p. If not, then we assign a − sign to p.
Note that the sign of a point does not depend on how we orient γ.



35

Figure 22 depicts curves Hτ and γ. It also depicts a subcurve α which respects
γ and its endpoints. Here, γ is the same curve that appears in Figure 21, and we
assume that ηstart and ηend are as in this figure. The segment % of α is shown, and the
signs of both endpoints are displayed as well. Lastly, σ is shown with the tangent
vector at each of its endpoints. We see that the directions of these tangents with
respect to the interior of γ do not agree with the signs of both intersection points,
as per Definition 2.10. Hence, α is not a valid subcurve.

Figure 22: From top to bottom, left to right: Hτ and γ, a subcurve α that respects
γ, %, the signs of the endpoints of α, and σ with the tangent vector at each of its
endpoints

We can now define the set of subcurves which we want to use to produce ver-
tices. We call such a subcurve valid.
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Definition 2.10 (Valid subcurve) We say that a subcurve α at τi is valid if it re-
spects γ, and if the following additional properties are true of σ.

To begin, let p1 and p2 be the endpoints of α. We can parametrize σ so that it
goes from p1 to p2. Since Hτi and γ intersect transversely at p1 and at p2, we can
categorize the tangent vector of σ at p1 and at p2 as being into the interior of γ, or
into the exterior of γ.

We then require that, at p1, the tangent of σ points into the interior of γ if the
sign at p1 is +, and that it points into the exterior of γ if it is −. We also require
that, at p2, the tangent of σ points into the exterior of γ if the sign at p2 is +,
and that the tangent points into the interior at p2 if the sign is −. Note that this
definition is independent of the order in which we choose the endpoints of α; a
subcurve is valid with respect to one order of endpoints if and only if it is valid
with respect to the other order.

For each valid subcurve at τi with i ∈ {1, . . . , n − 1}, we add a vertex v to the
graph Γ. We say that this vertex is generated from τi. We also have a length bound
for each valid subcurve, as a result of it being composed of a segment of γ and a
segment of Hτi :

Lemma 2.11 (Length bound for valid subcurves) For each valid subcurve α,
the length of α is at most

2L+ ε.

Edges
We now add edges to this graph. The idea will be that, for each i ∈ {1, . . . , n−

2}, we will add a set of edges, denoted by Ei. We will specify an algorithm which
takes any vertex v generated from τi or from τi+1, and produces a different vertex
w, also generated from τi or from τi+1. This algorithm is symmetric in that, if given
vertex w, it will produce vertex v. We then join each pair of vertices produced by
this algorithm by an edge. Ei will be the collection of these edges.

To define this algorithm, fix a vertex v in Γ generated from τi. We will define
the algorithm in two parts, depending on whether the resulting vertex w is gen-
erated from τi+1 (a “vertical” edge), or if it is generated from τi (a “horizontal”
edge).

Throughout the definition of this algorithm, we say that two intersections p
and q between H and γ at τi are “involved” or “deleted” in the Reidemeister move
between τi and τi+1. By this, we mean the following. Let the point at whichH and
γ become tangent to each other be τ ′, with τi < τ ′ < τi+1. Since all intersections
betweenH and γ are transverse on (τi, τ

′), we can trace the path of p and q forward
to τ ′. When we do this, we see that p gets traced to the tangential intersection at
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τ ′ (which is deleted), and q gets traced to the same intersection point. We use the
same terminology to describe intersection points between H and γ at τi+1 that can
be traced backwards to the tangential intersection at τ ′.
Vertical Edges Recall that, between τi and τi+1, there is exactly one Reidemeister
move. This move involves two intersection points between H and γ; it either cre-
ates two intersection points, or it deletes two of them. Let α be the valid subcurve
at τi that produced the vertex v and let p1 and p2 be the two distinct endpoints of α.
If neither of these points is involved in the Reidemeister move, then the algorithm
to find the vertex w generated from τi+1 is simple. Since neither p1 nor p2 are
deleted from τi to τi+1, they both follow continuous paths from τi to τi+1. Let p̃1
and p̃2 be the points which we reach at τi+1. We also see that we can follow σ and
% from τi to τi+1 in a similar fashion, arriving at σ̃ and %̃. Let α̃ be the subcurve
formed by following σ̃ from p̃1 to p̃2, followed by %̃ from p̃2 back to p̃1. If α̃ is a
valid subcurve, then it corresponds a vertex w. We will show that it is indeed valid;
w is the vertex that is produced by the algorithm.

As a result of Lemma 2.8, %̃ has all of the required inclusion/exclusion proper-
ties with respect to ηstart and ηend, and so α̃ respects γ. To show that it is valid, we
notice that the sign of p1 is the same as that of p̃1, and the sign of p2 is the same as
that of p̃2. Let us orient σ from p1 to p2, and σ̃ from p̃1 to p̃2. We then have that
the direction of the tangent vector of σ at p1 with respect to the interior of γ is the
same as the direction of the tangent vector of σ̃ at p̃1 with respect to the interior
of γ. Similarly, the direction of the tangent vector at p2 is the same as that at p̃2.
Hence, α̃ is a valid subcurve, and so we are done.

If v is instead generated from τi+1, and neither of the endpoints of α are in-
volved in the Reidemeister move between τi and τi+1, then we follow the exact
same procedure as above, but in reverse.
Horizontal Edges Again, let the vertex v be generated from τi, let α be the valid
subcurve which corresponds to v, and let p1 and p2 be the endpoints of α. If neither
p1 nor p2 are involved in the Reidemeister move between τi and τi+1, then we use
the algorithm described above. In this component of the algorithm, we determine
the resulting vertex w if p1 or p2 are involved in the move. Furthermore, let τ ′ be
the point between τi and τi+1 at which Hτ ′ is tangent to γ. This is the point at
which the Reidemeister move “occurs”.

We first rule out the possibility that both p1 and p2 are involved in the Reide-
meister move:

Lemma 2.12 p1 and p2 cannot both be deleted in the Reidemeister move between
τi and τi+1.

Proof. Assume that they are both involved in the Reidemeister move. As in
the definition of subcurves, we can break γ into two contiguous segments, each
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with endpoints p1 and p2. We do this by starting at p1, and then by traversing
γ to p2 in each of the two possible directions. Let these two components be β1
and β2. If both p1 and p2 are involved in the Reidemeister move, then at least
one of these two segments would have to contain no intersection points. This is
because no intersection points are deleted between τi and τ ′, and there is no way
for intersection points to move through each other. As such, until τ ′, the order
of intersection points as we traverse γ remains the same. Hence, if there were
intersection points in both β1 and β2, then there would be no way for p1 and p2 to
be deleted together, as there would have to be an interaction between at least one
other pair of intersection points first. Let this intersection-free segment be κ.

We can also choose this segment κ so that, for every s ∈ κ, s is an intersection
point between Hτs and γ for some τs ∈ [τi, τ

′].
Furthermore, since α is a valid subcurve, it respects γ, and so we see that

exactly one βj must contain ηstart, and the other must contain ηend. Hence, κ must
contain one of these curves. By Lemma 2.8, there are thus points in κ that are not
realized as intersection points between τi and τi+1. This is a contradiction, and so
p1 and p2 cannot both be deleted in the Reidemeister move between τi and τi+1. �

Let us now move to the case where just one of p1 or p2 is deleted at τ ′. Without
loss of generality, let us assume that it is p1, and let q be the other intersection
point at τi which is deleted with p1 in the Reidemeister move. We adopt a similar
approach to when we added vertical edges. We can trace the path of p1 forward
until τ ′, and we also trace the path of q forward until τ ′. We notice that, since both
are deleted at τ ′, they merge at this point. We can thus trace a path from p1 to q
by first going forward to τ ′, tracing the path of p1 forward, and then we can go
backward, tracing the path of q backwards.

This path from p1 to q induces a homotopy from α to a subcurve α̃ at τi with
endpoints q and p2. α̃ is formed from the segment %̃ of γ and the segment σ̃ of
Hτi . The first is found by following % forward to τ ′, then by going backwards to
τi, using q as an endpoint instead of p1 as we go backwards; σ̃ is found by doing
the same, but with σ. This is shown in Figure 23.

The question, as before, is if α̃ is a valid subcurve. We see that, since α is a
valid subcurve, it respects γ, and so % has the proper inclusion/exclusion properties
with respect to ηstart and ηend. Lemma 2.8 then implies that %̃ has similar properties,
and so α̃ respects γ.

To show that α̃ is valid, we must show that σ̃ agrees with the signs of q and
p2. We first observe that the sign of q with respect to α̃ is opposite to the sign of
p1 with respect to α. On the other hand, the sign of p2 remains unchanged. If we
orient σ from p1 to p2, and σ̃ from q to p2, then we see that the tangent vector of α̃
at p2 has the same direction with respect to the interior of γ as the tangent vector
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Figure 23: α and α̃ if an endpoint is deleted
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of σ at p2, and so this endpoint meets the necessary criteria. In terms of q, we see
that the direction of the tangent vector of σ̃ at q with respect to the interior of γ is
opposite to that of the tangent vector of σ at p1. Hence, this endpoint meets the
necessary criteria as well, and so α̃ is valid. The rigorous proof of this is a case-
by-case analysis on the segment of Hτi ∪ γ around q and p1. The cases are formed
by considering all possible interiors of Hτi , and all possible arcs %. This is shown
in Figure 24. Since α̃ is valid, it corresponds to a vertex w, which is the desired
vertex.

If v is generated from τi+1, then we follow the above procedure, but in reverse.
That is, if the Reidemeister move between τi and τi+1 creates two intersection
points of which one is an endpoint of α, then we follow the above steps to produce
a vertex w. Note that for reasons analogous to those presented in the proof of
Lemma 2.12, both endpoints of α cannot be created by the Reidemeister move
between τi and τi+1.

Before we complete the proof of Lemma 2.2, we prove some important prop-
erties of Γ:

Lemma 2.13 (Properties of Γ) The graph Γ has the following properties:

1. For each set of edgesEi, i ∈ {1, . . . , n−2}, and for each vertex v generated
from τi or τi+1, v is the endpoint of exactly one edge in Ei.

2. All vertices generated from τ1 and all vertices generated from τn−1 have
degree 1; all other vertices have degree 2.

3. There is exactly one vertex generated from τ1, and one vertex generated from
τn−1, and they correspond to the curves shown in Figure 25.

4. If two vertices are joined by an edge, then there is a homotopy of closed
curves between the curves corresponding to the vertices through closed
curves of length at most 2L + ε. Furthermore, all of these curves contain
ηend.

Proof. The first statement is a result of the fact that the algorithm used to add
edges takes any vertex v generated from τi or from τi+1 and produces a vertex w,
v 6= w. Since we use this algorithm to add edges, there is an edge between v andw.
Additionally, it is easy to check that this algorithm is symmetric in that the vertex
w will produce the vertex v. Hence, each vertex is the endpoint of exactly one edge
in Ei.

The second statement results from the fact that, for each vertex v that is gen-
erated from τ1 or from τn−1, v is the endpoint of exactly one edge from E1 or
En−1, respectively, and there is no other set Ej which contains an edge that has
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Figure 24: In order of rows, top to bottom: intersections q and p1 with the interior
of γ shaded, % with the interior of Hτi shaded, %̃ with the interior of Hτi shaded,
σ, and σ̃



42

v as an endpoint. Thus, the degree is 1. For any vertex v generated from τi with
i ∈ {1, . . . , n− 1}, v is the endpoint of an edge from Ei, and is also the endpoint
of an edge from Ei+1. Hence, it has degree 2.

The third statement follows from looking at the set of all valid subcurves at τ1
and τn−1. At each of these points, there are exactly two intersections between H
and γ, and so it is a simple exercise to look at each of the four subcurves and to
show that the only ones that are valid are the ones depicted in Figure 25.

The last statement comes from examining how we add edges. In all of the
cases, we are tracing two intersection points back or forth, and keeping track of
one segment of Hτ that connects these 2 points and one segment of γ that also
connects these two points, which generates a continuous homotopy. Since both γ
andHτ are bounded in length by L+ε, taking a segment of one and joining it with
a segment from the other has length at most

2L+ ε.

The fact that they all contain ηend is a result of two observations. First, all subcurves
at any τi respect γ, and so contain ηend. Second, as a result of Lemma 2.8, no
intersections between H and γ lie in ηend for any τ ∈ [τ1, τn−1]. �

Figure 25: The curve that corresponds to the only vertex generated from τ1, and
the curve that corresponds to the only vertex generated from τn−1

We can now prove Lemma 2.2.

Proof of Lemma 2.2. From Lemma 2.13, we have that there is only 1 vertex v
generated from τ1, and one vertex w generated from τn−1. Additionally, they have
degree 1, and all other vertices in Γ have degree 2. As a result, we have that there
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is a path in Γ from v to w. Let α1 and α2 be the subcurves that correspond to v
and w, respectively. Due to the property of Γ that edges represent homotopies over
closed curves of length at most 2L + ε, there is thus a homotopy from α1 to α2

over such curves. Furthermore, every curve in this homotopy contains ηend.
We now observe that γ is homotopic to α1 over curves of length at most 2L+ε,

and so we can homotope γ to α2 over closed curves with the same length bound.
All of these curves also contain ηend.

The rest of the proof depends on whether H contracts γ to a point inside γ
or outside γ. If it contracts γ to a point outside γ, then we see that α2 can be
contracted to the point x ∈ ηend on γ through curves that contain x. Since ηend is
contained in all curves in this homotopy up to α2, we conclude that x is contained
in every curve in this entire contraction.

If H contracts γ to a point inside γ, then recalling that τ? is the last point at
which H intersects γ, and x is the point of tangential intersection at τ?, we can
homotope α2 to Hτ? through curves containing x and which are bounded in length
by 2L+ ε. Since γ can also be homotoped to α2 through such curves, this gives us
a desirable homotopy from γ to Hτ? . This completes the proof. �

Finally, we illustrate this process using an explicit homotopy. This is shown in
Figure 26.

2.2 Proof of Lemma 2.3

We now prove Lemma 2.3. Given a curve Hτ? and a point x ∈ γ ∩Hτ? , we want
to show that we can contract Hτ? through curves based at x, and of length at most
2L+2d+ε. The idea here is to employ a method similar to that used in this article
to produce a contraction of the boundary of a Riemannian disc from a monotone
contraction of that boundary. To do this, let c be the point that H contracts Hτ?

to. Join x to c via a minimal geodesic, and let y be the last point of intersection
between this geodesic and Hτ? . This is depicted in Figure 27.

Our homotopy now works as follows. One should refer to Figure 28 for a
visual reference. Let β be the segment of the minimal geodesic that connects y to
c entirely in the interior of Hτ? . Let the length of β be B; we of course have that
B ≤ d, where d is the diameter of the manifold. Let α be a segment of Hτ? that
connects x to y which is of length at most L+ε2 . We now produce our contraction
of Hτ? in three parts. The first part is a homotopy from Hτ? to the curve formed
by traversing α from x to y, following by traversing the entirety of Hτ? from y to
y, and then by traversing −α from y back to x. This homotopy consists of curves
bounded in length by 2L+ ε. Let us call this curve η.
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Figure 26: A homotopy that covers γ and the resulting contraction of γ
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Figure 27: H and γ as per the hypotheses of Lemma 2.3

Figure 28: Building the contraction
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The second step is a homotopy from η to the curve formed by traversing α from
x to y, then β from y to c, then −β from c back to y, then −α from y back to x.
Let us call this curve ν. This homotopy, P , is defined on the interval [0, B], where
(as above) B is the length of β. For each s ∈ [0, B], let %s be the segment of β
from y which has a length of s. Since H is monotone, there is exactly one curve
δ corresponding to a curve in the homotopy H which has the property that it goes
through y if s = 0, and that it goes through the endpoint of %s which is not y if
s > 0. Now, we define P (s) to be the curve formed by traversing α, then %s, then
δ, then−%s, then−α. Since H is monotone, this produces a continuous homotopy
of piecewise smooth simple curves of length at most 2L+ 2d+ ε.

The third step is that we homotope ν to the point x by contracting it in the ob-
vious way; since it is a curve traversed forward from x to y to c and then backward
from c to y to x, it is obvious how to do this without exceeding a length bound of
L+ 2d+ ε.

By concatenating the above homotopies, we get a homotopy of closed curves
with the desired properties, completing the proof.
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