1. What are all the prime numbers up to 100 ?
2. Is $n^{2}+n+41$ a prime number for every n ?
3. Is $2^{n}-1$ always a prime number?
4. Is $(2 \times 5 \times 7 \times 11 \times 13)+1$ a prime?
5. How many prime numbers are there?
6. Suppose A and B are natural number. Let a be remainder of A divided by n and let b be the remainder of B divided by n. Show that the remainder of $A \times B$ divided by n is equal to the remainder of $a \times b$ divided by n.
7. Is $26+31^{5}$ divisible by 29 ?
8. Find the remainder of 9^{2000} divided by 80 .
9. Show that if n is divisible by 3 , then the sum of digits of n is also divisible by 3 .
10. Come up divisibility rules for 5,9 and 11 .
