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1 Classification of Hyperbolic Isometries

We can realize elements of PSL2(R) as orientation-preserving isometries of the

hyperbolic plane H2. Specifically, a matrix ±
!
a b
c d

"
∈ PSL2(R) acts on H2

by the Möbius transformation az+b
cz+d , which sends the upper-half plane to itself.

Notice that A and −A would give the same Möbius transformation, so this
action is well defined.

This allows us to study the behaviour elements of PSL2(R) by examining
hyperbolic isometries. The following figure summarizes the three types of hy-
perbolic isometries

(a) A hyperbolic isometry
has two fixed points on
the boundary. Points
move from one fixed
points to the other. Hy-
perbolic isometries cor-
respond to A ∈ PSL2(R)
where |tr(A)| > 2

(b) An elliptic isometry
has one fixed point in
the interior. Points move
around the fixed point.
Elliptic isometries corre-
spond to A ∈ PSL2(R)
where |tr(A)| = 2

(c) A parabolic isometry
has one fixed point on the
boundary. Points move
around the fixed point.
Parabolic isometries cor-
respond to A ∈ PSL2(R)
where |tr(A)| < 2

Figure 1: Classification of hyperbolic isometries
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We will now use elements in PSL2(R) and their corresponding isometries
interchangeably. We will now examine the subgroups generated by two hyper-
bolic, two parabolic, and two elliptic elements.
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2 Hyperbolic and Parabolic Case

If we have two hyperbolic or parabolic elements a and b, we can use the Ping-
pong lemma to show that some power of them generate a free group.

Theorem 2.1 (Ping-pong Lemma). Suppose a and b generate a group G that
acts on a set X. If X has disjoint nonempty subsets Xa and Xb such that
ak(Xb) ⊂ Xa and bk(Xa) ⊂ Xb for all nonzero k, then G ∼= F2.

When we have two hyperbolic elements a and b, each of them has two fixed
points. Let Xa be the union of some neighborhoods of fixed points of a, and
let Xb be the union of some neighborhoods of fixed points of b. Choose the
neighborhoods small enough so that they are disjoint.

Figure 2: Applying ping-pong lemma to two hyperbolic elements

Since hyperbolic isometries pushes all points towards one endpoint on the
boundary, ak(Xb) ⊂ Xa for k large enough and bk(Xa) ⊂ Xa for k large enough.
And ā and b̄ push all points towards the other two endpoints, so a−k(Xb) ⊂ Xa

and b−k(Xa) ⊂ Xa for k large enough. Hence we can apply the ping-pong
lemma and conclude that 〈ak, bk〉 = F2 for large enough k.

The argument for parabolic elements is similar. If we have two parabolic
elements a and b, each of them has one fixed point on the boundary. Then both
a and ā push all points on the disk towards the fixed point for a and both b
and b̄ push all points on the disk towards the fixed point for b. Hence we can
take a neighborhood of the fixed point of a to be Xa and the neighborhood of
the fixed point of b to be Xb. Then ak, bk satisfy the criterion for the ping-pong
lemma for large enough k.

3



Figure 3: Applying ping-pong lemma to two parabolic elements

3 The Elliptic Case

The ping-pong lemma argument will not work for elliptic isometries because
elliptic isometries do not push all points into a neighborhood. We will instead
use the following theorem:

Theorem 3.1. Suppose that a group G acts without inversions on a tree T in
such a way that G acts freely and transitively on edges. Choose one edge e of T
and say that the stabilizers of its vertices are H1 and H2. Then

G ∼= H1 ∗H2.

We will focus on the case where a corresponds to a rotation by 2π/m and b
corresponds to a rotation by 2π/n, and the two fixed points are sufficiently far
apart. Let v1 and v2 be the fixed points of a and b respectively, and let e be the
geodesic connecting them.

Clearly in this case 〈a, b〉 is not free, as both a and b have finite order. We can
construct a tree: let T = {g · e | g ∈ 〈a, b〉}, i.e. the orbit of e. Note that a has
order m and b has order n. So an edge in T is of the form ae1bf1ae2bf2 . . . aekbfk ·
e, where 1 ≤ ei ≤ m − 1 and 1 ≤ fi ≤ n − 1, and e1 and fk can be 0. We can
see that T is a tree provided that all images of e are disjoint.

A sufficient condition is that v1 and v2 are far apart, so that the angle
bisector of e and a · e and the angle bisector of e and b · e do not intersect. We
can compute the critical distance between v1 and v2.

We may do the calculation in the upper half plane. Moreover, up to isometry,
we may assume that v2 is i in the upper half plane and v1 lies on the the
imaginary axis. (See figure 5b). Then a Euclidean geometry calculation gives
the Euclidean distance between v1 and v2 (in the upper half plane) is

(1 + cos(π/n))(sin(π/m))

(1− cos(π/n))(sin(π/n))
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Figure 4: Construction of T with two hyperbolic elements

. Since v2 = i, v1 is on the imaginary axis, the hyperbolic distance is simply

log

!
(1 + cos(π/n))(sin(π/m))

(1− cos(π/n))(sin(π/n))

"

.

(a) Construction of T with two hy-
perbolic elements

(b) The two angle bisectors in the
upper half plane model

Figure 5: Angle bisectors in the Poincare disk and the upper half plane

Assuming the minimal distance condition is satisfied, then T is a tree. We
see that G acts without inversion on T because for any g ∈ G, gv1 is odd distance
away from v2, so it is impossible for gv1 = v2. The action is edge transitive on
T since T is the orbit of an edge.

The action is free because if ge = e, then g fixes v1 and v2 since it is acting
without inversion. An orientation preserving isometry that fixes two points
must be trivial.
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