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1 Classification of Hyperbolic Isometries

We can realize elements of PSLy(R) as orientation-preserving isometries of the
b
‘CL ) € PSLy(R) acts on H2

d
by the Mobius transformation Zjis, which sends the upper-half plane to itself.

Notice that A and —A would give the same Mdobius transformation, so this
action is well defined.

This allows us to study the behaviour elements of PSLy(R) by examining
hyperbolic isometries. The following figure summarizes the three types of hy-
perbolic isometries

hyperbolic plane H2. Specifically, a matrix =+ (

(a) A hyperbolic 1s.0metry (b) An elliptic isometry (c) A parabolic isometry
has two_fixed p01nts. " has one fixed point in has one fixed point on the
the Dboundary. Points the interior. Points move boundary. Points move
move from one fixed around the fixed point. 5;0und t.he fixed point
points to the other. Hy- Elliptic isometries corre- paraholic isometries cor;

perbolic isometries cor- S
pond to A € PSL2(R) yespond to A € PSLy(R)
respond to 4 € PSL2(E) where [tr(4)| = 2 where [tr(4)] < 2

where [tr(A4)| > 2

Figure 1: Classification of hyperbolic isometries



We will now use elements in PSLy(R) and their corresponding isometries
interchangeably. We will now examine the subgroups generated by two hyper-
bolic, two parabolic, and two elliptic elements.



2 Hyperbolic and Parabolic Case

If we have two hyperbolic or parabolic elements a and b, we can use the Ping-
pong lemma to show that some power of them generate a free group.

Theorem 2.1 (Ping-pong Lemma). Suppose a and b generate a group G that
acts on a set X. If X has disjoint nonempty subsets X, and X, such that
a(Xy) C X, and b*(X,) C X, for all nonzero k, then G = Fy.

When we have two hyperbolic elements a and b, each of them has two fixed
points. Let X, be the union of some neighborhoods of fixed points of a, and
let X} be the union of some neighborhoods of fixed points of b. Choose the
neighborhoods small enough so that they are disjoint.

Figure 2: Applying ping-pong lemma to two hyperbolic elements

Since hyperbolic isometries pushes all points towards one endpoint on the
boundary, a*(X;) C X, for k large enough and b*(X,) C X, for k large enough.
And @ and b push all points towards the other two endpoints, so a=*(X};) C X,
and b~%(X,) C X, for k large enough. Hence we can apply the ping-pong
lemma and conclude that (a*,b*) = F; for large enough k.

The argument for parabolic elements is similar. If we have two parabolic
elements a and b, each of them has one fixed point on the boundary. Then both
a and @ push all points on the disk towards the fixed point for a and both b
and b push all points on the disk towards the fixed point for b. Hence we can
take a neighborhood of the fixed point of a to be X, and the neighborhood of
the fixed point of b to be X;,. Then a¥, b* satisfy the criterion for the ping-pong
lemma for large enough k.



Figure 3: Applying ping-pong lemma to two parabolic elements

3 The Elliptic Case

The ping-pong lemma argument will not work for elliptic isometries because
elliptic isometries do not push all points into a neighborhood. We will instead
use the following theorem:

Theorem 3.1. Suppose that a group G acts without inversions on a tree T in
such a way that G acts freely and transitively on edges. Choose one edge e of T
and say that the stabilizers of its vertices are Hy and Hy. Then

Gng*HQ.

We will focus on the case where a corresponds to a rotation by 27 /m and b
corresponds to a rotation by 27 /n, and the two fixed points are sufficiently far
apart. Let v; and vo be the fixed points of a and b respectively, and let e be the
geodesic connecting them.

Clearly in this case (a, b) is not free, as both a and b have finite order. We can
construct a tree: let T = {g-e|g € (a,b)}, i.e. the orbit of e. Note that a has
order m and b has order n. So an edge in T is of the form a® b/ a®2b/2 .. a*bf*.
e, where 1 <e; <m—1land 1< f; <n-—1, and e; and f; can be 0. We can
see that T is a tree provided that all images of e are disjoint.

A sufficient condition is that v; and ve are far apart, so that the angle
bisector of e and a - e and the angle bisector of e and b - e do not intersect. We
can compute the critical distance between v; and vs.

We may do the calculation in the upper half plane. Moreover, up to isometry,
we may assume that vg is 4 in the upper half plane and v; lies on the the
imaginary axis. (See figure 5b). Then a Euclidean geometry calculation gives
the Euclidean distance between vy and v (in the upper half plane) is

(1 + cos(m/n))(sin(w/m))
(1 = cos(m/n))(sin(mw/n))




Figure 4: Construction of T with two hyperbolic elements

. Since vy = 4, v1 is on the imaginary axis, the hyperbolic distance is simply

(1 + cos(m/n))(sin(mw/m))
1°g< (1 — cos(r/m))(sin(x/n)) )

w/m

w/n

(b) The two angle bisectors in the

(a) Construction of T' with two hy- UPP€T half plane model

perbolic elements

Figure 5: Angle bisectors in the Poincare disk and the upper half plane

Assuming the minimal distance condition is satisfied, then T is a tree. We
see that G acts without inversion on T because for any g € G, gvy is odd distance
away from v, so it is impossible for gv; = vo. The action is edge transitive on
T since T is the orbit of an edge.

The action is free because if ge = e, then g fixes v; and vy since it is acting
without inversion. An orientation preserving isometry that fixes two points
must be trivial.



