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TEICHMÜLLER GEODESICS WITH d -DIMENSIONAL LIMIT SETS

ANNA LENZHEN, BABAK MODAMI AND KASRA RAFI
(Communicated by Giovanni Forni)

ABSTRACT. We construct an example of a Teichmüller geodesic ray whose
limit set in the Thurston boundary of Teichmüller space is a d-dimensional
simplex.

1. INTRODUCTION

Thurston introduced a compactification of Teichmüller space of a surface S
using a boundary space PMF (S) consisting of projective classes of measured
foliations [8]. The boundary is homeomorphic to a sphere and the action of the
mapping class group of the surface extends continuously to this boundary. In
spite of the fact that Teichmüller metric is not negatively curved in any of the
standard senses, using this compactification Thurston gave a classification of
elements of mapping class groups in analogy with negatively curved spaces [8].
In a hyperbolic space, every geodesic has a unique limit point. As a Teichmül-
ler counterpart, Masur [16] showed that the limit set of a Teichmüller geodesic
ray with a uniquely ergodic vertical foliation is a single point. However, Kerck-
hoff [11] showed that the Thurston boundary is not the visual boundary of the
Teichmüller metric.

In [13], Lenzhen gave the first example where the limit set of a Teichmüller
geodesic ray is more than one point. The example is for a surface of genus
two, and the limit set of the ray is an interval in one-dimensional simplex of
measures for a non-minimal foliation in PMF (S). Since then, several other
examples have been constructed. In [14], it is shown that the same phenome-
non can take place for a minimal foliation, with limit set being the entire one-
dimensional simplex. In [6] an example of minimal foliation is constructed
where the limit set of the corresponding ray is a proper subset of a one-dimen-
sional simplex of measures and in [1] an example is constructed where the limit
set is not simply connected and is homeomorphic to a circle. Similar phenom-
ena is also possible for the geodesic in Teichmüller space equipped with the
Weil-Petersson metric [2, 3]. However, so far in all the examples the limit set has
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been at most one-dimensional. Masur has asked if the limit set can ever have
higher dimension. In this paper, we give a positive answer to the question of
Masur.

THEOREM 1.1. For any d ≥ 2, there exists a Teichmüller geodesic ray whose limit
set in PMF (S) is d-dimensional.

The example is constructed as follows. Let T i , i ∈ Zd+1 = {0,1,2, . . . ,d}, be a
square torus rotated so that the vertical direction has a slope θi ∈ (0,1)rQ in T i .
Cut a vertical slit of size s0 > 0 in Ti and glue the left side of the slit of T i to the
right side of T i+1. We obtain a translation surface, that is, a Riemann surface X0

of genus d +1 (see Figure 1), with a holomorphic quadratic differential (X0,φ0)
with two zeros of order 2d where the restriction of the vertical foliation to T i

has slope θi .

βi

Ti

FIGURE 1. Case d = 2. The surface X0 is glued out of three tori.

Let r be the Teichmüller geodesic ray based at X0, and in the direction of
φ0. For each i = 0,1, . . . ,d , let νi be the ergodic measured foliation in PMF (S)
supported on T i , and defined by θi .

Theorem 1.1 is a consequence of the following statement.

THEOREM 1.2. There exist irrational numbers θ0,θ1, . . . ,θd such that the limit set
of the corresponding ray r is the simplex of measures spanned by ν0,ν1, . . . ,νd .

The irrational numbers θi , i = 0, . . . ,d , are defined via continued fraction
expansions, where the coefficients of each continued fraction satisfies certain
growth conditions (see §3.1). The limit then is determined by estimating lengths
of the curves corresponding to convergents of the continued fractions at differ-
ent times along the ray r.

We will give a proof for the case d = 2 only. For d > 2 the argument is basically
the same, but with much heavier notation.
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2. BACKGROUND

Notation. For a pair of sequences {xn}n∈N and {yn}n∈N, we write xn ∼ yn if
xn

yn
→ 1 as n →∞.

Note that ∼ is an equivalence relation on sequences of numbers, in particular it
is symmetric and transitive.

Let
PR3

+ =
{

[r, s,u]
∣∣∣ r, s,u > 0, (r, s,u) ≡ (λr,λs,λu) ∀λ> 0

}
.

Similarly, for a pair of sequences {[a0
n , a1

n , a2
n]}n and {[b0

n ,b1
n ,b2

n]}n in PR3 we
write

[a0
n , a1

n , a2
n] ∼ [b0

n ,b1
n ,b2

n] if
ai

n

ai+1
n

∼ bi
n

bi+1
n

for all i ∈Z3.

The notation
∗³ means equal up to a multiplicative,

+³ means equal up to an
additive error, and ³ means equal up to and additive and a multiplicative error
with uniform constants. For example,

a
∗³ b ⇐⇒ b

K
≤ a≤ K b for a uniform constant K .

The notations
∗Â,

+Â, and Â are similarly defined.

2.1. Continued fractions. Let θ = [a0; a1, a2, . . .] be any positive number, and
denote the nth convergent of θ by pn

qn
. That is,

pn

qn
= a0 +

1

a1 +
1

· · ·+ 1

an

.

We will need he following standard facts about continued fractions (see, for
example, [12]):

qn = an qn−1 +qn−2,(2.1)

1

qn +qn+1
≤ |pn −qnθ| ≤ 1

qn+1
.(2.2)

2.2. Teichmüller theory. In this section we recall some background material,
mainly about Teichmüller space and Teichmüller geodesics, and throughout
set our notations. We assume that the reader is familiar with basic facts about
Teichmüller space and the space of measured foliations. See, for example, [9]
and [8] for a thorough treatment of this material.

The Teichmüller space of a closed orientable surface S, denoted by T (S), is
the space of equivalence classes of all marked Riemann surfaces homeomor-
phic to S, i.e., orientation preserving homeomorphisms f : S → X , where X is a
Riemann surface; two marked surfaces f1 : S → X1 and f2 : S → X2 are equivalent
if f2 ◦ f −1

1 : X1 → X2 is isotopic to a biholomorphic map. A measured foliation
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ν on S is a foliation with pronged singularities and a transverse measure. The
space of measured foliations of S is equipped with the weak∗ topology. The
projective class of a measured foliation ν is the class of all measures which are
positive multiples of ν. We denote the space of projective measured foliations by
PMF (S) which is equipped with the natural topology induced from the weak∗
topology of the space of measured foliations.

A quadratic differential (X ,φ) on a Riemann surface X is a (2,0)-tensor with
holomorphic coefficients; in a local coordinate z it has the form φ(z)d z2 with
φ(z) a holomorphic function. Around every point where φ(z) is not zero, there
exist coordinates ζ= ξ+ iη, called natural coordinates, in which the quadratic
differential can be represented as dζ2 (see, e.g., [9, §2]). There are two measured
foliations naturally assigned to φ. The trajectories dη≡ 0 and dξ≡ 0 define the
horizontal and vertical foliations of φ, respectively. Integrating |dη| and |dξ|
along arcs determine horizontal and vertical measured foliations ν+ and ν−,
respectively. Moreover, (X ,φ) is defined uniquely by X and its vertical measured
foliation, by a theorem of Hubbard and Masur [10].

A Teichmüller geodesic can be described as follows. Given a quadratic dif-
ferential (X0,φ0) on X0, let ζ= ξ+ iη be a natural coordinate for (X0,φ0). Then
we can obtain a 1-parameter family (X t ,φt ) of quadratic differentials defined
locally by dζ2

t where ζt = e tξ+ i e−tη. The map g :R→T (S) which sends t to X t

is a Teichmüller geodesic. We will often write (X t ,φt ) to refer to the geodesic.
We will also denote by r the Teichmüller ray which is the image of R+.

Notions of length of a curve. By a curve we mean the free homotopy class of
an essential simple closed curve. There are various notions of length associated
to a curve α on a surface with a quadratic differential (X ,φ).

We can equip X with the hyperbolic metric in the conformal class of X given
by the uniformization. Then the hyperbolic length of α, denoted by HypX (α), is
the length of the geodesic representative of α on X .

The extremal length of α is defined by

ExtX (α) = sup
ρ∈[X ]

`ρ(α)2

areaρ(X )
,(2.3)

where ρ is any metric in the conformal class of X . The reciprocal of the extremal
length is equal to the maximum modulus of any annulus with core curve α [9].

Maskit [17] established the following relation between hyperbolic and ex-
tremal lengths:

1

π
≤ ExtX (α)

HypX (α)
≤ 1

2
eHypX (α)/2.(2.4)

When either HypX (α) or ExtX (α) is small, the above inequality implies that the
two lengths are comparable, menaing

HypX (α)
∗³ ExtX (α),(2.5)

where the multiplicative constant depends only on an upper bound for the ex-
tremal or hyperbolic length of αi .
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The quadratic differential (X ,φ) defines a singular flat metric |φ(z)||d z|2 on X .
The flat length of α, denoted by `φ(α), is the length of a geodesic representative
of α in this metric.

Finally, let α′ ∼ α be any curve in the homotopy class of α. Recall then the
notion of intersection number of a measured foliation ν and α, defined by

i(α,ν) := inf
α′∼α

∫
α′
ν.

This generalizes the usual notion of geometric intersection number of two curves.

Given a quadratic differential φ with corresponding horizontal and vertical
measured foliations ν+ and ν−, the horizontal length of the curve α is hφ(α) =
i(α,ν−) and its vertical length is vφ(α) = i(α,ν+).

Note that along a Teichmüller geodesic (X t ,φt ) we have

hφt (α) = e t hφ(α) and vφt (α) = e−t vφ(α).

When the Teichmüller geodesic is fixed, to simplify our presentation we will of-
ten use the notations Hypt (α), Extt (α), `t (α), ht (α) and vt (α) instead of writing
HypX t

(α), ExtX t (α), `φt (α), hφt (α) and vφt (α) respectively.

Balanced time. The balanced time of a curve α along a Teichmüller geodesic
(X t ,φt ) is the time when the horizontal and vertical lengths of α are equal:

hφt (α) = vφt (α).

If the geodesic representative of α in the flat metric |φ||d z|2 is neither vertical,
i.e., hφ(α) 6= 0 nor horizontal, i.e., vφ(α) 6= 0, then there is a unique balanced
time for the curve α along the geodesic which we denote by tα. The flat, ex-
tremal and hyperbolic lengths of α realize their minima in a uniformly bounded
distance from the time tα. See [19, §2] and [22] for more detail.

Twist parameter. Let X be a point in T (S). For a curve α on X let Yα be the
annular cover of X associated to α, i.e., the annular cover for which the curve α
lifts to its core curve. Equip Yα with the lift of the metric of X and let Y α be the
compactification of Yα adding the ideal boundary. Let τ be an arc orthogonal to
the core curve of Y α which connects the two boundaries of Y α. Now the twist
parameter of a curve γ about the curve α is defined by

twistα(γ, X ) := i(γ̃,τ),(2.6)

where γ̃ is any chosen lift of γ that intersects the core of Y α.
For a Teichmüller geodesic (X t ,φt ) Rafi [20, Theorem 1.3] gives the following

estimate for the twist parameter of a curve γ about α at time t :∣∣twistα(γ, X t )
∣∣≤ cγ

HypX t
(α)

if t ≤ tα,

| twistα(γ, X t )− iα(ν−,ν+)| ≤ cγ
HypX t

(α)
if t > tα.

(2.7)
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Here, the number iα(ν−,ν+) is the maximum number that a leaf of the lift of
ν− and a leaf of the lift of ν+ to Yα intersect. The number, up to an additive
constant, is equal to the maximum of the number of times that a leaf of ν− and
a leaf of ν+ intersect inside of the maximal flat cylinder with core curve α (see
below for more detail about the maximal flat cylinder). Finally, note that the
constant cγ depends on γ.

REMARK 2.1. In fact, Rafi states the estimate for twistα(ν+, X t ), which using the
fact that the intersection number iα(·, ·) is quasi-additive and absorbing iα(γ,ν+)
in the O notation constant gives us the above estimate.

In what follows we recall estimates for the extremal and hyperbolic lengths of
a curve at a point in the Teichmüller space, which we will use later in the paper.

An estimate for the extremal length of a curve. Using the flat structure of
(X ,φ), one can estimate the extremal length of a curve α on X . In general α
does not have a unique geodesic representative with respect to the flat metric
of φ. However, the set of geodesic representatives foliate a (possibly degenerate)
flat cylinder Fα in (X ,φ). Let fα be the distance between the boundaries of Fα.

Then ModX (Fα) = fα
`φ(α) , where Mod(�) is the modulus of the annulus. For either

boundary component of Fα, we consider the largest one-sided regular neighbor-
hood of Fα that is an embedded annulus. We denote these annuli by Eα and
Gα, respectively, and refer to them as expanding annuli associated to α. Denote
the distance between boundaries of Eα and Gα (i.e., the radius of the associated
regular neighborhood) by eα and gα, respectively. When eα > `φ(α), we have

ModX (Eα)
∗³ log

eα
`φ(α)

.

The same holds for gα and Gα. We can then estimate the extremal length of α
as follows (see [18, 22]):

1

ExtX (α)
∗³ ModX (Eα)+ModX (Fα)+ModX (Gα).(2.8)

An estimate for the hyperbolic length of a curve. Given L > 0, let P be a pants
decomposition of X , i.e., a maximal collection of pairwise disjoint closed curves,
with the property that the hyperbolic lengths of all curves in P are at most L.

For a curve α on X let the width of α, widthX (α), be the width of the collar
around α from the Collar lemma [5, §4.1]. We have the following estimate for
the width

widthX (α) = 2arcsinh
1

sinh( 1
2 HypX (α))

+³−2log(HypX (α)).(2.9)

Now define the contribution to the length of a curve γ from a curve α ∈ P by

HypX (γ,α) = i(γ,α)
(

widthX (α)+ twistX (γ,α)HypX (α)
)
,(2.10)
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where the additive constant depends only on the topological type of the surfaces.
Then we have the following estimate for the hyperbolic length of a curve γ in
terms of the contributions from the curves in P ,∣∣HypX (γ)− ∑

α∈P
HypX (γ,α)

∣∣=O
( ∑
α∈P

i(γ,α)
)
,(2.11)

where the constant of the O notation depends only on L. See [7, Lemma 3.7].

Growth of hyperbolic length along a Teichmüller geodesic. It follows from
Wolpert’s estimate for the change of length [23, Lemma 3.1] and the descrip-
tion of Teichmüller geodesics that the hyperbolic length of a curve varies at
most exponentially along a Teichmüller geodesic. More precisely, given times
t , s ∈R with t ≥ s we have

e−2|t−s| Hyps(α) ≤ Hypt (α) ≤ e2|t−s| Hyps(α).(2.12)

The above inequality and the equation (2.9) in particular show that the width of
the collar of the curve α grows at most linearly along a Teichmüller geodesic.

Thurston boundary. The main purpose of this paper is the construction of
Teichmüller geodesic rays with two-dimensional limit sets in the Thurston boun-
dary. The Thurston boundary of the Teichmüller space T (S) is the space of
projective measured foliations on S, PMF (S). A sequence of points Xn ∈T (S)
converges to the projective class of a measured foliation [ν] if and only if for any
two curves γ1,γ2 on S we have

lim
n→∞

HypXn
(γ1)

HypXn
(γ2)

= i(γ1,ν)

i(γ2,ν)
.

The topology defined by this notion of convergence turns T (S)∪PMF (S) into
a closed ball where PMF (S) is the boundary sphere. For more detail see [8,
exposé 8].

3. THE TEICHMÜLLER GEODESIC RAY AND ITS LIMIT SET

In this section we prove our main result. First, in §3.1, via continued fraction
expansions, we define a measured foliation on X0 and hence fix a Teichmüller
ray based at X0. Then, in §3.2, we find the shortest pants decomposition at var-
ious times along the geodesic ray, to then be able to estimate hyperbolic length
of curves using (2.11). In §3.3 we use this information to determine the limit
set of the Teichmüller ray and prove Theorem 1.2. To keep the exposition fairly
simple, the proof given here is for d = 2. For d > 2 the notation is significantly
heavier while the arguments are exactly the same.

3.1. Setup of continued fraction expansions. Let {[u0
k ,u1

k ,u2
k ]}k∈N be a dense

sequence in PR3+ where u0
k ,u1

k ,u2
k ∈N. Given this sequence, we will choose the

numbers θi by describing their continued fraction expansion coefficients.
Let {a0

j } j∈N, {a1
j } j∈N and {a2

j } j∈N be three sequences of positive integers de-

fined inductively as follows. Set a0
1 = a1

1 = a2
1 = 1. Now, for k ≥ 1 and i ∈ Z3,
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assume ai
1, . . . , ai

2k−1 are defined and whenever n is such that ai
1, . . . , ai

n are de-
fined, let

p i
n

q i
n

= 1

ai
1 +

1

· · ·+ 1

ai
n

.

Choose ai
2k , ai

2k+1 ∈N so that

(i) ai
2k > k ·max

{
ai

2k−1,u0
k ,u1

k ,u2
k

}
,

(ii) [a0
2k , a1

2k , a2
2k ] = [u0

k ,u1
k ,u2

k ] as elements in PR3+,

(iii) ai
2k+1 > exp(kai

2k ),
(iv) a0

2k+1q0
2k = a1

2k+1q1
2k = a2

2k+1q2
2k .

Define θi = [0; ai
1, ai

2, . . .] ∈ (0,1). That is,

θi = 1

ai
1 +

1

ai
2 +

1

ai
3 +·· ·

.

LEMMA 3.1. Let θi , i ∈Z3 be as above. Then θi are irrational and, for every k, we
have

q0
2k+1 = q1

2k+1 = q2
2k+1,(3.1)

[q0
2k , q1

2k , q2
2k ] ∼ [u0

k ,u1
k ,u2

k ],(3.2)

log ai
2k+1

max{ai
2k ,u0

k ,u1
k ,u2

k }
→∞ as k →∞,(3.3)

log a0
2k+1 ∼ log a1

2k+1 ∼ log a2
2k+1,(3.4)

q i
n

∗³
n∏

j=1
ai

j .(3.5)

Proof. The irrationality of θi follows from the fact that the coefficients ai
n are

non-zero.
We prove (3.1) by induction on k. By setup of the continued fraction expan-

sion, we have a0
1 = a1

1 = a2
1, and therefore q0

1 = q1
1 = q2

1 by (2.1). Now assume
that (3.1) holds for all k ′ less than or equal to some k > 1. For each i ∈ Z3 we
have that q i

2k = ai
2k q i

2k−1+q i
2k−2 by (2.1). Moreover, by (iv), for i , j ∈Z3, we have

ai
2k+1q i

2k = a j
2k+1q j

2k . These two equalities and assumption of the induction
imply that (3.1) holds for k as well.
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To see (3.2), note that a0
2k = q0

2k−q0
2k−2

q0
2k−1

and a1
2k = q1

2k−q1
2k−2

q1
2k−1

by (2.1). Dividing

these two numbers and taking into account that q0
2k−1 = q1

2k−1 by (3.1) we get

a1
2k

a0
2k

= q1
2k −q1

2k−2

q0
2k −q0

2k−2

= q1
2k

q0
2k

1− (q1
2k−2/q1

2k )

1− (q0
2k−2/q0

2k )
.

The growth of the sequence {q i
k }k from (i) and (iii) implies that q1

2k−2/q1
2k and

q0
2k−2/q0

2k go to 0 as k →∞. Therefore, a0
2k /a1

2k ∼ q0
2k /q1

2k . But, by (ii), a0
2k /a1

2k =
u0

k /u1
k . Hence

q0
2k /q1

2k ∼ u0
k /u1

k .

Similarly, we can show that

q1
2k /q2

2k ∼ u1
k /u2

k and q2
2k /q0

2k ∼ u2
k /u0

k .

This finishes the proof of equation (3.2).

To see (3.3), note that by (iii) we have

log ai
2k+1

max{ai
2k ,u0

k ,u1
k ,u2

k }
> kai

2k

max{ai
2k ,u0

k ,u1
k ,u2

k }
.

The term max{ai
2k ,u0

k ,u1
k ,u2

k } is either ai
2k , or max{u0

k ,u1
k ,u2

k }. In the first situ-
ation, the right-hand side of the above inequality is equal to k. In the second

situation, note that by (i),
ai

2k

max{u0
k ,u1

k ,u2
k }

> k. Hence, the right-hand side of the

above inequality is at least k2. Thus in both cases the right-hand side goes to
∞ as k →∞, and therefore (3.3) holds. Let us now prove (3.4). Without loss of

generality suppose that i = 0 and j = 1. By (iv) we have

log a0
2k+1/log a1

2k+1 = 1+ log(q1
2k /q0

2k )

log a1
2k+1

.

Moreover, log(q1
2k /q0

2k ) ≤ q1
2k /q0

2k and by (3.2) q1
2k /q0

2k ∼ u1
k /u0

k . Then the right-

hand side above goes to 1, because by (3.3),
u1

k

u0
k log a1

2k+1
→ 0 as k → ∞. This

finishes the proof of (3.4). We are left to prove equation (3.5). It follows from

equation (2.1) that

q i
n ≥

n∏
j=1

ai
j ,

which is the lower bound in (3.5). For the upper bound, we write

q i
n∏n

j=1 ai
j

= ai
n q i

n−1 +q i
n−2∏n

j=1 ai
j

≤ q i
n−1∏n−1

j=1 ai
j

(
1+ 1

ai
n

)
,

and so by an induction on n we get

q i
n∏n

j=1 ai
j

≤
n∏

j=1

(
1+ 1

ai
j

)
< ∏

n≥1

(
1+ 1

ai
n

)
.
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The infinite product on the right-hand side converges and is uniformly bounded
for any sequence of coefficients {ai

n}n that satisfies conditions (i) and (iii).

For the rest of the paper let (X0,φ0) be the Riemann surface and quadratic
differential obtained by gluing the three rotated square tori T i along vertical slits.
The foliations νi on T i in the directions with slopes θi , i ∈Z3, glue together to
make the vertical foliation ν of φ0.

3.2. Time and length estimates. Denote by αi
n the simple curve on T i with

slope
p i

n

q i
n

. Then we have the following.

LEMMA 3.2. For i = 0,1,2 the curves αi
n converge to νi in PMF (X0). More pre-

cisely, for any simple closed curve γ on X0,

1

q i
n

i(γ,αi
n) → i(γ,νi )

√
1+ (θi )2.(3.6)

Proof. Suppose first that γ is a curve on one of the tori, say T i , and suppose
that it has slope p

q . Then we have i(γ,αi
n) = |pq i

n − qp i
n |. On the other hand,

the intersection number of γ with νi is the absolute value of the dot product of
the vector (p, q) and the vector of unit length perpendicular to the foliation νi ,
namely 1p

1+(θi )2
(θi ,−1). Hence,

i(γ,νi ) = |p −qθi |√
1+ (θi )2

.

Since
p i

n

q i
n
→ θi , we have

1

q i
n

i(γ,αi
n) =

∣∣∣∣∣p −q
p i

n

q i
n

∣∣∣∣∣→|p −qθi | = i(γ,νi )
√

1+ (θi )2,

as n →∞, which is equation (3.6) for γ ⊂ T i . Now, since a measured foliation
on T i is uniquely determined by its intersection number with all simple closed
curves on T i , it follows that

1

q i
n

√
1+ (θi )2

αi
n → νi , as i →∞ in MF (T i ).

Furthermore, since MF (T i ) embeds continuously into MF (X0), the sequence
converges in MF (X0) as well. Thus, equation (3.6) holds for all curves on X0,
which finishes proof of the lemma.

From (3.2) in Lemma 3.1 and Lemma 3.2 we have

COROLLARY 3.3. For any curve γ on X0, we have the following equivalence:∑
i∈Z3

i(γ,αi
2k ) ∼ q0

2k

u0
k

( ∑
i∈Z3

ui
k

√
1+ (θi )2 i(γ,νi )

)
.
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To estimate hyperbolic length of some fixed curve at a certain time along
r using (2.11) we need information about the short curves at that time. The
next lemma shows that the curves αi

n become short along the ray r and gives
estimates for the shortest lengths of the curves and the twist about them, also
the times when the curves are shortest.

LEMMA 3.4. For i ∈Z3 and n ∈N, the curve αi
n is balanced at time

t i
n

+³ 1

2
log q i

n q i
n+1

+³
n∑

j=1
log ai

j +
1

2
log ai

n+1.(3.7)

The flat length of αi
n is minimal at t i

n and is given by

`t i
n

(αi
n)

∗³ 1√
ai

n+1

.(3.8)

Moreover, the extremal and hyperbolic lengths of αi
n at t i

n are comparable and

Extt i
n

(αi
n)

∗³ Hypt i
n

(αi
n)

∗³ 1

ai
n+1

.(3.9)

Finally, we have

iαi
n

(ν−,ν+)
∗³ ai

n+1.(3.10)

Proof. The time when αi
n is balanced can be computed explicitly. We have

`t (αi
n)2 = h2

t (αi
n)+ v2

t (αi
n).(3.11)

Since ht (αi
n) = e t 1p

1+(θi )2
(p i

n − θi q i
n) and vt (αi

n) = e−t 1p
1+(θi )2

(q i
n + θi p i

n), we

have

`t (αi
n)2 = 1

(1+ (θi )2)

(
e−2t (q i

n +θi p i
n)2 +e2t (p i

n −θi q i
n)2

)
.(3.12)

Now a straightforward calculation shows that `t (αi
n)2 reaches its minimum at

the time

t i
n = 1

2
log

p i
nθ

i +q i
n

|q i
nθ

i
n −p i

n |
(3.13)

(for more details see [13, Lemma 1]).

REMARK 3.5. In [13] Lenzhen uses the parametrization ζt = e t/2ξ+ i e−t/2η for
the Teichmüller geodesic, where ζ= ξ+ iη is a natural coordinate at time 0. But
in this paper we use the parametrization ζt = e tξ+ i e−tη of the geodesic, which
introduces the extra 1

2 in the above formula.

By equation (2.2) we have

q i
n+1(q i

nθ
i +p i

n) ≤ p i
nθ

i +q i
n

|q i
nθ

i
n −p i

n |
≤ (q i

n +q i
n+1)(q i

nθ
i +p i

n).(3.14)
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Now note that limn→∞
p i

n

q i
n
= θi and hence q i

n
∗³ p i

n for all sufficiently large n.

Moreover, θi ∈ (0,1), in fact since ai
1 = 1, we have that θi > 1

2 , so the multiplica-

tive constant in the coarse equality q i
n

∗³ p i
n is independent of θi . Then by (3.14)

and since q i
n+1 ≥ q i

n we have

p i
nθ

i +q i
n

|q i
nθ

i
n −p i

n |
∗³ q i

n q i
n+1.(3.15)

The equations (3.15) and (3.13) give us

t i
n

+³ 1

2
log q i

n q i
n+1.

The rest of equation (3.7) now follows from equation (3.5) of Lemma 3.1. More-
over, since the times t i

n →∞, it follows from [13, Lemma 3] and its proof, which
essentially uses the fact that the area of the maximal flat cylinder cylt (αi

n) with
core curve αi

n tends to 1, that

`t i
n

(αi
n)2 ∼ Extt i

n
(αi

n) ∼ 1

Mod(cylt i
n

(αi
n))

.(3.16)

Furthermore, the fact that by definition the sequence ai
n goes to infinity and

(2.2) imply that

`t i
n

(αi
n)2 ∼ 2q i

n

q i
n+1

∼ 2

ai
n+1

(for more detail see the proof of [13, Corollary 1]). This gives us (3.8).
Then equation (3.9) follows from the comparison of extremal and hyperbolic

lengths (2.5). Finally, by [7, Proposition 5.8], we have

iαi
n

(ν−,ν+)
∗³ Mod(cylt i

n
(αi

n))

as long as Extt i
n

(αi
n), up to a bounded multiplicative constant, is 1

Mod(cyl
t i
n

(αi
n ))

,

which is the case by equation (3.16). Equation (3.10) now follows from equa-
tion (3.9). This finishes the proof of the lemma.

There are three other curves, namely βi = ∂T i , that become very short along r.
In fact, the length of βi goes to 0. We have the following estimate for the length
of βi :

LEMMA 3.6. For i ∈Z3 we have

Hypt i
n

(βi )
∗³ 1

log q i
n

.(3.17)

Proof. Note that since the curve βi is homotopic to the union of two critical
trajectories of the quadratic differential φ connecting two critical points of φ
(see Figure 1), the flat length of βi is

`t i
n

(βi ) = 2s0e−t i
n ,
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αi
n

βi

FIGURE 2. Annuli in T i about βi and αi
n . Expanding annulus

with core curve βi , on the left, and flat annulus about αi
n , on

the right, at the time when αi
n is balanced.

where s0 is the size (flat length) of the slit we cut on the tori T i , i ∈ Z3, to
produce the initial genus three flat surface. Moreover, the shortest curve on T i

at t i
n is αi

n , which is balanced and whose flat length satisfies

`t i
n

(αi
n)

∗³ 1√
ai

n+1

by Lemma 3.4. Now by the two estimates above

log
`t i

n
(αi

n)

`t i
n

(βi )
+³ t i

n − 1

2
log ai

n+1
+³

n∑
j=1

log ai
j

+³ log q i
n ,(3.18)

where the second equality holds by (3.7) in Lemma 3.4 and the third equality by
(3.5) in Lemma 3.1. Further, note that there is no flat annulus around βi , and
the distance between boundaries of the largest embedded neighborhood of βi

inside T i is

`t i
n

(αi
n)−`t i

n
(βi )

2

(see the right-hand side of Figure 2). Hence by equation (2.8) we have

1

Extt i
n

(βi )
∗³ log

(
`t i

n
(αi

n)−`t i
n

(βi )

2`t i
n

(βi )

)
= log

(
`t i

n
(αi

n)

`t i
n

(βi )
−1

)
− log2.(3.19)
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Also since q i
n →∞ as n →∞, by (3.18) we have

`
t i
n

(αi
n )

`
t i
n

(βi )
→∞ as n →∞. Thus

from (3.19) we may deduce that

1

Extt i
n

(βi )
∗³ log

`t i
n

(αi
n)

`t i
n

(βi )
.

Then appealing again to (3.18) we have that the extremal length of βi at t i
n

satisfies

Extt i
n

(βi )
∗³ 1

log q i
n

.

The lemma now follows from Maskit’s comparison of hyperbolic and extremal
lengths (2.5).

The following lemma follows from the proof of [20, Theorem 1.2]).

LEMMA 3.7. For any i ∈Z3 and any t > s, the hyperbolic length of βi satisfies

1

Hyps(βi )
Â 1

Hypt (βi )
.(3.20)

This and Lemma 3.6 imply

COROLLARY 3.8. For i ∈Z3 and for t ∈ [t i
n , t i

n+1] we have

Hypt i
n+1

(βi )
∗≺ Hypt (βi )

∗≺ Hypt i
n

(βi ).(3.21)

In particular,

lim
t→∞Hypt (βi ) = 0.(3.22)

Proof. Let t ≥ t i
n . By Lemma 3.7 there is K ≥ 1 independent of t and t i

n such
that

1

Hypt (βi )
≥ 1

K Hypt i
n

(βi )
−K .

From Lemma 3.6 and the fact that q i
n →∞ we see that the expression on the

right is positive for n big enough, and hence

Hypt (βi )
∗≺ Hypt i

n
(βi ).

The other inequality can be shown in a similar way. Now, since along {t i
n}n the

hyperbolic length of βi goes to 0, we are done.

3.3. The limit set. To find the limit set of the geodesic ray r, we examine the
geometry of Riemann surface X tn for a carefully chosen sequence of times {tn}n .
The curves βi are always short and the curves αi

2n get short roughly at the same
time tn . The hyperbolic length of any given curve γ can be computed as the sum
of the contributions to the length of γ coming from crossing the short curves
in X tn . We will see that the contribution from αi

2n dominates the contribution
from βi . But the curves αi

2n are chosen so that the length contributions coming
from these curves, thought of as a projective triple, form a dense subset of PR3.
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This will let us conclude that the limit set of the ray r contains the whole sim-
plex of projective measures. The fact that the limit is contained in the simplex
follows from a similar argument showing that asymptotically along the ray the
contribution of βi to the length of γ is negligible.

Proof of Theorem 1.2. We first show that the limit set of r contains the simplex
spanned by projective classes of the measures ν0,ν1 and ν2. For this purpose
we show that there exists a sequence of times tn →∞ such that, given any two
curves γ1 and γ2 not equal to βi , i ∈Z3, we have

Hyptn
(γ1)

Hyptn
(γ2)

∼
∑

i∈Z3
w i

n i(γ1,νi )∑
i∈Z3

w i
n i(γ2,νi )

,(3.23)

where w i
n = ui

n

√
1+ (θi )2, i ∈ Z3. But the set {[u0

n ,u1
n ,u2

n]}n∈N is dense in PR3+
and the map

[a,b,c] →
[

a
√

1+ (θ0)2,b
√

1+ (θ1)2,c
√

1+ (θ2)2
]

is a homeomorphism of PR3+, thus {[w0
n , w1

n , w2
n]}n∈N is also dense in PR3+. Now

by the definition given in §2.2 for convergence in the Thurston compactification,
the fact that {[w0

n , w1
n , w2

n]}n∈N is dense in PR3+ and that the limit set is closed
imply that every point in the simplex is in the limit set of r. We proceed by

showing (3.23). As before denote the balanced time of αi
n along r by t i

n . Let tn

be any number in the interval
[

min
i=0,1,2

t i
2n , max

i=0,1,2
t i

2n

]
.

The point of choosing such tn is that (see Figure 3) as we will see below,
all three curves αi

2n , i ∈ Z3 are very short on X tn . Moreover, their collars are
asymptotically of the same width.

For any i , j ∈Z3 by Lemma 3.4 and Lemma 3.1(3.1) we have

|t i
2n − tn | ≤ max

i , j=0,1,2
|t i

2n − t j
2n |

+³ 1

2
max

i , j=0,1,2
| log q i

2n − log q j
2n |

= 1

2
max

i , j=0,1,2
| log(q i

2n/q j
2n)|.

Moreover, by Lemma 3.1(3.2), for any i , j ∈ Z3, we have q i
2n/q j

2n ∼ ui
n/u j

n , and

hence | log q i
2n/q j

2n − logui
n/u j

n |→ 0 as n →∞. Therefore∣∣∣ max
i , j=0,1,2

| log(q i
2n/q j

2n)|− max
i , j=0,1,2

| log(ui
n/u j

n)|
∣∣∣→ 0

as n →∞. Thus for n large enough

2|t i
2n − tn | +≺ max

j=0,1,2
log(u j

n).

Then by Lemma 3.1(3.3) we have that

e2|tn−t i
2n | = o(log ai

2n+1).(3.24)
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Now the estimate (3.9) in Lemma 3.4 and the estimate (3.24) together with the
growth bound (2.12) give us

Hyptn
(αi

2n) ≤ Hypt i
2n

(αi
2n)e2|tn−t i

2n | ∗≺ o(log ai
2n+1)

ai
2n+1

,

also ai
2n+1 →∞ as n →∞, so the last fraction in the above inequality goes to

0. Therefore, for all n sufficiently large, the hyperbolic lengths of the curves
αi

2n , i ∈ Z3, at X tn are uniformly bounded and in fact very small. Also from
(3.22) of Corollary 3.8 we know that the hyperbolic lengths of βi , i ∈Z3, are also
uniformly bounded along r.

t12nt12n�1

t22nt22n�1

t32nt32n�1

Hyp(↵1
2n) = 1

Hyp(↵2
2n) = 1

Hyp(↵3
2n) = 1

Hyp(↵1
2n) = 1

Hyp(↵2
2n) = 1

Hyp(↵3
2n) = 1

FIGURE 3. The interval when αi
k is short. For k = 2n, the curves

αi
k , i ∈ Z3, start getting short at different times, but they grow

back to length 1 roughly at the same time. We choose tn in the
shaded interval to guarantee that all three curves are short and
have collar neighborhoods of approximately the same width.

Thus the collection of curves {αi
2n ,βi }i∈Z3 forms a bounded length pants de-

composition at time tn . Then by (2.11) we have the following estimate for the
hyperbolic length of an arbitrary curve γ on X tn :

Hyptn
(γ) =

2∑
i=0

Hyptn
(γ,αi

2n)+
2∑

i=0
Hyptn

(γ,βi )

+O

(
2∑

i=0
i(γ,αi

2n)+ i(γ,βi )

)
,

(3.25)

where the constant of O notation depends only on an upper bound for the
hyperbolic length of the curves αi

2n ,βi , i ∈Z3, at time t2n . We will now analyze
the ingredients of this equation.

Intersection numbers. Note that, for any fixed curve γ, the intersection num-
ber with βi is clearly a constant, i.e.,

i(βi ,γ)
+³ 0.(3.26)
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By Lemma 3.2 we have
αi

2n

q i
2n

p
1+(θi )2

→ νi , hence, by continuity of intersection

numbers [4], we have

i

(
γ,

αi
2n

q i
2n

√
1+ (θi )2

)
→ i(γ,νi ).

Thus

i(γ,αi
2n)

∗³ q i
2n .(3.27)

Contribution to the length of γ from the curves αi
2n at tn . First, the hyper-

bolic length of αi
2n by inequality (2.12) and the inequality (3.9) from Lemma 3.4

satisfies
1

ai
2n+1

e−2|tn−t i
2n | ∗≺ Hyptn

(αi
2n)

∗≺ 1

ai
2n+1

e2|tn−t i
2n |,

which, using the fact that by equation (2.9) widtht i
2n

(αi
2n)

+³−2log
(
Hypt i

2n
(αi

2n)
)
,

implies the following estimate

widthtn (αi
2n)

+³ 2log ai
2n+1 ±O(2|tn − t i

2n |).

Then by (3.3) from Lemma 3.1, equation (3.24), and the fact that ai
2n+1 →∞, we

deduce that the widths of the collars of the curves αi
2n , i ∈ Z3, are equivalent

and that

widthtn (αi
2n) ∼ 2log ai

2n+1.(3.28)

By (3.10) in Lemma 3.4 and the formula (2.7) for twist parameters along Teich-
müller geodesics, we have

twistαi
2n

(γ, X tn )
∗≺ ai

2n+1

using equation (3.24) then we have

Hyptn
(αi

2n) twistαi
2n

(γ, X tn )
∗≺ e2|tn−t i

2n | = o(log ai
2n+1).(3.29)

Now by (3.28) and (3.29) the contribution of αi
2n to the length of γ satisfies

Hyptn
(γ,αi

2n) ∼ 2i(γ,αi
2n) log ai

2n+1.(3.30)

Contribution to the length of γ from the curves βi at tn . From (3.24) we have
2|tn − t i

2n | = o(loglog ai
2n+1). Moreover, by equation (3.7) in Lemma 3.4 we have

t i
2n+1 − t i

2n
+Â log ai

2n+1. Therefore, we have tn < t i
2n+1 for all n sufficiently large.

Now applying (3.21) and Lemma 3.6 we get

Hyptn
(βi )

∗Â 1

log q i
2n+1

,(3.31)

which by the fact that widthtn (βi )
+³−2log(Hyptn

(βi )) implies that

widthtn (βi )
+≺ 2loglog q i

2n+1.(3.32)
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Moreover, by (3.5) in Lemma 3.1 we have loglog q i
2n+1

+³ log(
∑2n+1

j=1 log ai
j ). Now

conditions (i) and (iii) from the setup of the continued fractions in §3.1 imply
that for each i ∈ Z3 the sequence {ai

j } j is increasing, in fact it is increasing at
least exponentially fast. Hence

log

(
2n+1∑
j=1

log ai
j

)
≤ log((2n +1)log ai

2n)

= log(2n +1)+ loglog ai
2n+1

∗³ loglog ai
2n+1.

We then have that

widthtn (βi )
∗≺ loglog ai

2n+1.(3.33)

Moreover, since βi is a union of critical trajectories, it does not have a flat cylin-
der neighborhood. Therefore, iβi (ν−,ν+)

+³ 0. Then, by (2.7), we have

Hyptn
(βi ) twistβi (γ, X tn ) ≤ Kγ,(3.34)

where Kγ ≥ 0 depends only on γ.
Hence by equations (3.26), (3.33), (3.34), and Corollary 3.8, the contribution

to the length of γ from the curve βi for i ∈Z3 at time tn satisfies

Hyptn
(γ,βi ) = i(γ,βi )

(
widthtn (βi )+Hyptn

(βi ) twistβi (γ, X tn )
)

∗≺ i(γ,βi )(loglog ai
2n+1 +Kγ) = o(log ai

2n+1).(3.35)

We are now ready to establish equation (3.23). First, we use equation (3.25) and
equations (3.26), (3.30), and (3.35) for the curves γ1 and γ2 to get

Hyptn
(γ1)

Hyptn
(γ2)

∼
∑2

i=0 i(γ1,αi
2n) log ai

2n+1∑2
i=0 i(γ2,αi

2n) log ai
2n+1

∼
∑2

i=0 i(γ1,αi
2n)∑2

i=0 i(γ2,αi
2n)

,(3.36)

where the second comparison holds by equation (3.4) in Lemma 3.1. Then
Corollary 3.3 applied to equation (3.36) gives us the desired equation (3.23).

As we saw above, the limit set of r contains the simplex of projective measures
spanned by [νi ], i ∈Z3. To complete the proof of the theorem it remains to show
that the limit set of r is also contained in the simplex. First, note that any limit
point of r has zero intersection number with the vertical measured foliation ν of
φ0, which is the disjoint union of foliations νi and curves βi , i ∈Z3. Hence all
we need to show is that every point in the limit set has zero weight on βi , i ∈Z3.

For this purpose suppose for a sequence of times {tk }k the sequence {r(tk )}k

converges to the projective class of some measured foliation µ in PMF (S).
Then as is shown in [8, expośe 8] there is a sequence {sk }k with sk → 0 such that
for any simple closed curve γ we have

lim
k→∞

sk Hyptk
(γ) = i(γ,µ).(3.37)

To show that µ has zero weight on βi for all i ∈Z3, we argue as follows. Given
i ∈ Z3 let γ be any simple closed curve that intersects βi twice and does not
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intersect any β j with j 6= i . Let γ′ ⊂ Ti be a simple closed curve obtained from
the concatenation of the arc γ∩Ti and a sub-arc of the boundary of Ti . That µ
has zero weight on βi follows from

lim
k→∞

Hyptk
(γ)

Hyptk
(γ′)

= 1.(3.38)

Indeed, the above limit and (3.37) together imply that i(γ,µ) = i(γ′,µ). Let µ=∑2
j=0 a jν

j +∑2
i=0 b jβ

j . By the choice of γ′ and γ we have that i(µ,γ′) = ai i(νi ,γ′)
and i(µ,γ) = ai i(νi ,γ)+bi i(βi ,γ). Since we also have that i(νi ,γ) = i(νi ,γ′), we
see that bi = 0. To prove (3.38), we first use a surgery argument and (2.11) to
obtain for any t > 0

Hypt (γ′)−Hypt (βi ) ≤ Hypt (γ) ≤ Hypt (γ′)+Hypt (γ,βi )+ Aγ

where Aγ depends on γ only. Since Hypt (γ′) →∞ (Claim 3.9) and Hypt (βi ) → 0

(3.22), if we show that lim
t→+∞

Hypt (γ,β)
Hypt (γ′) → 0, this will imply equation (3.38).

Let t ≥ 0 and let αi = αi (t ) be a shortest curve in T i with respect to the flat
metric at time t . Then we have (see, for example, [15, Proposition 3.1])

Hypt (γ′) ∗³ Hypt (γ′,αi ).

Now again by the choice of the curves γ and γ′, Hypt (γ,αi )
+³ Hypt (γ′,αi ), which

implies that it suffices to prove that

lim
t→∞

Hypt (γ,βi )

Hypt (γ,αi )
= 0,(3.39)

Thus to complete the proof of the theorem it suffices to prove (3.39).
From [13, Lemma 1] we know that αi = αi

n for some n = n(t ) ≥ 1, where
n →+∞ with t →+∞. Let 0 ≤ si

n ≤ si
n be such that `si

n
(αi

n) = `si
n

(αi
n) = 2. Note

that any flat torus of area 1 and with a slit contains a simple closed curve of
length at most 2, provided that the slit is small. Then since αi

n is a shortest
curve contained in Ti at time t , we see that the interval [si

n , si
n] is not empty and

contains t . We also have the balanced time t i
n ∈ [si

n , si
n], which is the midpoint

of this interval. The following claim holds for any simple closed curve γ such
that i(γ,βi ) 6= 0, although we will only use it for the γ defined above.

CLAIM 3.9. We have the following estimate for the contribution of αi
n to the

length of γ at any time t large enough:

Hypt (γ,αi
n) ≥ Bγ

{
e si

n (1+ (t − si
n)) if t ∈ [si

n , t i
n],

e si
n (1+ (si

n − t )+e2(t−t i
n )) if t ∈ [t i

n , si
n].

(3.40)

In particular, Hypt (γ,αi
n) ≥ Bγt for all t ∈ [si

n , si
n]. Here the constant Bγ depends

only on γ.

Proof. Recall that

Hypt (γ,αi
n) = i(γ,αi

n)
(

widtht (αi
n)+Hypt i

n
(αi

n) twistαi
n

(γ, X t )
)
.
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We first compute the times si
n and si

n . By equation (3.8) in Lemma 3.4, `t i
n

(αi
n)

∗³
1/

√
ai

n+1, then since `si
n

(αi
n)

∗³ `t i
n

(αi
n)e |t

i
n−si

n | (see, e.g., the discussion before
equation (2) in [22]), we have that

t i
n − si

n
+³ 1

2
log ai

n+1.(3.41)

Similarly, we have that

si
n − t i

n
+³ 1

2
log ai

n+1.(3.42)

Hence from equation (3.7) we obtain

si
n

+³
n∑

j=1
log ai

j and si
n

+³
n+1∑
j=1

log ai
j .(3.43)

Next thing to note is that since at si and si the curve αi
n has length 2 in the flat

metric, it follows from [21, Theorem 6] that

Hypsi
n

(αi
n)

∗³ 1 and Hypsi
n

(αi
n)

∗³ 1.

Also, by Lemma 3.4, Hypt i
n

(αi
n)

∗³ 1
ai

n+1
, so by (2.12) for any t ∈ [si

n , si
n] we have

Hypt (αi
n)

∗³ e2|t−t i
n |

ai
n+1

.(3.44)

Since by (3.41) and (3.42), ai
n+1

∗³ e2(si
n−t i

n ) = e2(t i
n−si

n ) we can rewrite the above
coarse equality as

Hypt (αi
n)

∗³
{

e2(si
n−t ) if t ∈ [si

n , t i
n]

e2(t−si
n ) if t ∈ [t i

n , si
n].

(3.45)

For t ∈ [si
n , t i

n], the size of the collar widtht (αi
n) by equation (2.9) and equa-

tion (3.45) is bounded below by

w(t ) = 2arcsinh
1

sinh A
2 e2(si

n−t )
,

where A > 1 is a multiplicative error in equation (3.45). By a straightforward
computation w ′(t ) is increasing on [si

n , t i
n], so we have

w(t ) ≥ w ′(si
n)(t − si

n)+w(si
n).

Hence for the t ∈ [si
n , t i

n] we have

widtht (αi
n) ≥ 2A

sinh A
2

(t − si
n)+2arcsinh

1

sinh A
2

,

which we write simply as

widtht (αi
n)

∗Â (t − si
n)+1.(3.46)
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By a similar argument for any t ∈ [t i
n , si

n] we have that

widtht (αi
n)

∗Â (si
n − t )+1.(3.47)

Let the slope of γ in T i be a
b and recall that the slope of αi

n is
p i

n

q i
n

. Then i(γ,αi
n) =

|q i
n a −p i

nb| = q i
n |a −b

p i
n

q i
n
| and since

p i
n

q i
n

converges to θi , the slope of νi , we see

that i(γ,αi
n) is q i

n up to a multiplicative error that depends only on γ. Therefore,
from (3.5) in Lemma 3.1 and equation (3.43) we have for some Cγ

1

Cγ
e si

n ≤ i(γ,αi
n) ≤Cγe si

n .(3.48)

Hence for any t ∈ [si
n , t i

n], applying equation (3.46), equation (3.48), we have for
some Dγ > 0 that only depends on γ such that

Hypt (γ,αi
n) ≥ Dγe si

n ((si
n − t )+1+e2(t−t i

n )).

Further, for t ∈ [t i
n , si

n] the collar about αi is shrinking, so we need to add in-
formation about the twisting. From equation (2.7), equation (3.10) and equa-
tion (3.44) we have the inequality

Hypt (αi
n) twistαi

n
(γ, X t ) ≥ Be2(t−t i

n ) −Eγ,(3.49)

where Eγ depends only on γ. This estimate together with equation (3.48) and

equation (3.47) imply that there is Fγ > 0 such that for the t ∈ [t i
n , si

n] the coarse
inequality

Hypt (γ,αi
n) ≥ Fγe si

n ((si
n − t )+1+e2(t−t i

n ))

holds. Here, if we let t be large enough that si
n − t i

n ≥ 2Eγ, then either t − t i
n ≥ Eγ

or si
n − t ≥ Eγ, and hence we may absorb the constant Eγ in the multiplicative

constant. Letting Bγ = min{Dγ,Fγ} completes the proof of the claim.

Now we estimate the contribution from βi to the length of γ at time t . The
curve βi is a vertical curve, that is, a union of critical trajectories, hence `t (βi )

∗≺
e−t . Then, since βi does not have a flat cylinder neighborhood, applying equa-
tion (2.8) and the estimates for the moduli of annular neighborhoods of βi

before the equation we have that Extt (βi )
∗≺ 1

t . Then for t À 0 by (2.5) we obtain

Hypt (βi )
∗≺ 1

t
,

and hence by equation (2.9) we have

widtht (βi )
+≺ log t .(3.50)

Also, iβi (ν−,ν+)
+³ 0 and hence by (2.7) for all t ≥ 0 we have

Hypt (βi ) twistβi (γ, X t ) ≤ aγ(3.51)

for a constant aγ depending only on γ. Therefore, for t large enough we have

Hypt (γ,βi ) = i(γ,βi )
(

widtht (βi )+Hypt (βi ) twistβi (γ, X t )
)≤ bγ log t ,(3.52)
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where bγ depends on γ only.
The coarse inequality (3.52) and the Claim 3.9 give us equation (3.39), which

completes the proof of our theorem.
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