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Abstract Considering the Teichmüller space of a surface equipped with Thurston’s Lips-
chitz metric, we study geodesic segments whose endpoints have bounded combinatorics.
We show that these geodesics are cobounded, and that the closest-point projection to these
geodesics is strongly contracting. Consequently, these geodesics are stable. Our main tool is
to show that one can get a good estimate for the Lipschitz distance by considering the length
ratio of finitely many curves.
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1 Introduction

Let T (S) be the Teichmüller space of a surface S of finite type, that is, the space of marked
hyperbolic (or conformal) structures on S. In [18], Thurston introduced an asymmetric metric
dL for T (S) which we refer to as the Lipschitz metric. For two marked hyperbolic structures
x and y, dL(x, y) is defined to be the logarithm of the infimum of Lipschitz constants of any
homeomorphism from x to y that is homotopic to the identity. The geometry of the Lipschitz
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metric is very rich, as Thurston shows in his paper. However, many aspects of it remain
unexamined.

It is known that Teichmüller space equipped with the Teichmüller metric or the Lipschitz
metric is not Gromov hyperbolic because the thin parts of T (S) have a product like structure
(see [4,11]). However, certain Teichmüller geodesics exhibit behaviors that resemble that of
geodesics in a hyperbolic space. Namely, the closest-point projection to these geodesics is
strongly contracting [12]. In this paper, we investigate whether a similar phenomenon is also
present in the Lipschitz metric.

We use tools that have been developed and successfully applied in the study of Teichmüller
geodesics, namely the curve graphs of different subsurfaces of S. When x is in the thick part,
the geometry of x can be coarsely encoded by its associated short marking μx , which is a
finite collection of simple closed curves. Given x, y ∈ T (S), there are many results relat-
ing the combinatorics of markings μx and μy to the behavior of the Teichmüller geodesic
connecting x and y. (See [4,15,16], or [17] for a review of some of these results in one paper.)

Contrasting with the Teichmüller metric, there is no unique geodesic in the Lipschitz met-
ric from x to y. But one hopes that qualitative information about a Lipschitz geodesic can
still be extracted from the end markings μx and μy . The first natural situation to consider
is when μx and μy have bounded combinatorics. That is when, for every proper subsurface
Y of S, the distance dY (μx , μy) in the curve graph of Y between the projections of μx and
μy to Y is uniformly bounded (see Definition 2.2). For the Teichmüller metric, this is in fact
equivalent to the Teichmüller geodesic between x and y being cobounded (see [15,17]).

Our first result is that if μx and μy have bounded combinatorics, then every Lipschitz
geodesic from x to y is cobounded. In fact, they are all well approximated by the unique
Teichmüller geodesic connecting x and y.

Theorem A (Bounded combinatorics implies cobounded) Assume, for x, y ∈ T (S) in the
thick part of Teichmüller space, that dY (μx , μy) is uniformly bounded for every proper sub-
surface Y ⊂ S. Then any geodesic GL in the Lipschitz metric connecting x to y fellow travels
the Teichmüller geodesic GT with endpoints x and y. Consequently, GL is cobounded.

To restate Theorem A more succinctly is to say that GT , viewed as a set in the Lipschitz
metric, is quasi-convex. A standard argument for showing a set is quasi-convex is to show
that the closest-point projection to the set is strongly contracting. Indeed, this is how we
prove Theorem A.

Theorem B (Lipschitz projection to Teichmüller geodesics) Let GT be a cobounded Teich-
müller geodesic. Then the image of a Lipschitz ball disjoint from GT under the closest-point
projection to GT (with respect to the Lipschitz metric) has uniformly bounded diameter. That
is, the closest-point projection to GT is strongly contracting.

This is analogous to Minsky’s theorem [12] that the closest-point projection in the Teich-
müller metric to a cobounded Teichmüller geodesic is strongly contracting. Combining The-
orem A and Theorem B, we obtain:

Theorem C (Strongly contracting for projections to Lipschitz geodesics) Suppose GL is
a Lipschitz geodesic whose endpoints have bounded combinatorics. Then the closest-point
projection to GL is strongly contracting.

Theorem C is a negative-curvature phenomenon. A natural consequence is stability of GL .
In other words,
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Corollary D (Stability of Lipschitz geodesics) If GL is a Lipschitz geodesic whose endpoints
have bounded combinatorics, then any quasi-geodesic with the same endpoints as GL fellow
travels GL .

It would be interesting to know whether the converse of Theorem A holds. In the Teich-
müller metric, a geodesic stays in the thick part if and only if the endpoints have bounded
combinatorics. However, this seems not to be the case for the Lipschitz metric. We investigate
the behavior of a Lipschitz geodesic where the endpoints do not necessarily have bounded
combinatorics in a subsequent paper.

Summary of the proofs. We use the detour through a Teichmüller geodesic for two rea-
sons. First, because it is already established that GT is cobounded if and only if the endpoints
have bounded combinatorics. But also because the lengths of curves (both hyperbolic length
and extremal length) along a cobounded Teichmüller geodesic are known to behave like a
cosh function; the length of a curve α is minimal at the balanced point GT (tα) and grows
exponentially fast in both directions.

Our proof of Theorem B is to a large extent inspired by Minsky’s proof in the Teichmüller
setting. However, the following crucial length estimate used by Minsky has no analogue in
our setting. Given a curve α and x ∈ T (S), let Extx (α) and �x (α) denote respectively the
extremal length and the hyperbolic length of α in x . For every two curves α and β, Minsky
showed that

Extx (α) Extx (β) ≥ i(α, β)2, (1)

where i(α, β) is the geometric intersection number between α and β. While the Teichmüller
distance is computed using extremal length ratios of curves (Eq. 2), the Lipschitz distance
is computed using hyperbolic length ratios (Eq. 3). However, there is no analogue of Eq. (1)
for hyperbolic length. For x in the thin part of Teichmüller space, the product �x (α)�x (β)

can be arbitrarily close to zero, while i(α, β) can be arbitrarily large.
Our approach to the proof of Theorem B is to give an effective description of the closest-

point projection πGT (x) of a point x ∈ T (S) to a Teichmüller geodesic GT (the closest-point
projection is with respect to the Lipschitz metric). Let μx be a short marking on x . Then
πGT (x) is near GT (tα), where tα is the balanced time of a curve α ∈ μx (see Lemma 4.4).
This follows from the cosh-like behavior of lengths along a Teichmüller geodesic and the
following:

Theorem E (Candidate curves) For x, y ∈ T (S), we have

dL(x, y)
+� max

α∈μx
log

�y(α)

�x (α)
,

where dL(x, y) is the Lipschitz distance from x to y and
+� means equal up to an additive

error depending only on the topology of S.

A special case of Theorem E where x and y are assumed to be in the thick part of T (S)

was done in [3]. Thurston’s formula (Eq. 3) for the Lipschitz distance implies that there is

some curve α such that log �y(α)

�x (α)
is a good estimate for dL(x, y). Theorem E implies that, to

find such an α, one only needs to examine the finitely many curves that appear in μx . We
will call such a curve α in μx a candidate curve from x to y.

The proof of Theorem E requires some way of estimating the hyperbolic length of a curve
in terms of a marking on S. We derive two formulas for this purpose and their proofs take
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up a large part of the paper. The first formula allows us to estimate, up to a multiplicative
error, the length of any curve γ by a linear sum of the lengths of the curves in a short
marking, with coefficients coming from the intersection of γ with the curves in the marking
(Proposition 3.1). The proof relies on the geometry of the thick-thin decomposition of a
hyperbolic surface. The second formula uses a topological argument to show that, if the short
marking is replaced by an arbitrary marking, then the same formula still provides an upper
bound for the length of the curve (Proposition 3.2). Using these two propositions, we prove
Theorem E and Theorem B in Sect. 4. These propositions also have analogues in extremal
length, which we use to sketch an alternate proof of Minsky’s theorem at the end of Sect. 4.
We end the paper with a proof of Theorem A and Theorem C in Sect. 5.

Analogues with Weil-Petersson geodesics. As we have mentioned before, a Teichmüller
geodesic is cobounded if and only if its endpoints have bounded combinatorics. In [2], Brock,
Masur and Minsky showed a similar result for bi-infinite geodesics in the Weil-Petersson met-
ric on Teichmüller space. As in our paper, the main tool is to show that some projection map
is contracting. In their case, what they need (and what they show) is that the projection in
the pants decomposition complex to any hierarchy path satisfying the non-annular bounded
combinatorics property is coarsely contracting [2, Theorem 4.1].

Analogues with Outer space. Let Xn be the Outer Space, the space of marked metric
graphs of rank n modulo homothety. The space Xn is naturally equipped with the Lipschitz
metric, on which Out(Fn) = Aut(Fn)/ Inn(Fn) acts as isometries.

In [1], Algom-Kfir established a version of Theorem C for a family of geodesics in Xn . It
was shown that the closest-point projection to axes of fully irreducible elements of Out(Fn)

is strongly contracting. This result gives another parallel between fully irreducible elements
of Out(Fn) and pseudo-Anosov elements of the mapping class group of S. A generalization
of this result for a larger class of paths (lines of minima) appears in [6].

An analogue of Theorem E exists for Xn . By a result of White, to compute the Lipschitz
distance from one graph to another, it suffices to consider the length ratios of a finite collection
of loops. (See [1, Proposition 2.3] for a proof of this fact.)

2 Preliminaries

Teichmüller and Lipschitz metrics. Let S be a connected, oriented surface of finite type
with χ(S) < 0. The Teichmüller space T (S) of S is the space of marked conformal struc-
tures on S up to isotopy. Via uniformization, T (S) is also the space of marked (finite-area)
hyperbolic metrics on S up to isotopy.

In this paper, we consider two metrics on T (S), the Teichmüller metric and Lipschitz
metric. Given x, y ∈ T (S), the Teichmüller distance between them is defined to be

dT (x, y) = 1

2
inf

f
log K ( f ),

where f : x → y is a K ( f )-quasi-conformal map preserving the marking. (See [5,7] for
background information.) Introduced by Thurston in [18], the Lipschitz distance from x to y
is defined to be

dL(x, y) = inf
f

log L( f ),

where f : x → y is a L( f )-Lipschitz map preserving the marking. Unlike the Teichmüller
metric, the Lipschitz metric is not symmetric, so the order of the two points matters when
computing distance.
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Both metrics can be described in terms of certain length ratios of curves. By a curve on
S, we will always mean a free isotopy class of an essential simple closed curve. Essential
means the curve is not homotopic to a point or a puncture of S. Given a curve α on S, the
extremal length of α in x ∈ T (S) is

Extx (α) = sup
ρ

�ρ(α)2

Area(ρ)
,

where ρ is any metric in the conformal class of x, �ρ(α) is the ρ-length of the shortest curve
in the homotopy class of α, and Area(ρ) is the area of x equipped with the metric ρ. For the
Teichmüller metric, Kerckhoff showed:

dT (x, y) = 1

2
log sup

α

Exty(α)

Extx (α)
, (2)

where the sup is taken over all curves on S [8]. For the Lipschitz metric, Thurston showed:

dL(x, y) = log sup
α

�y(α)

�x (α)
, (3)

where �x (α) is the hyperbolic length of α in the unique hyperbolic metric in the conformal
class of x [18].

A point x ∈ T (S) is called ε-thick (or ε-thin) if the length of the shortest curve on x is
greater or equal to ε (or less than ε). In the thick part of T (S), it is known that the two metrics
are the same up to an additive error.

Theorem 2.1 [3] For every ε there exists a constant c such that whenever x, y ∈ T (S) are
ε-thick,

∣
∣dT (x, y) − dL(x, y)

∣
∣ ≤ c.

Curve graphs and subsurface projection. Given two curves α and β on S, we define
their intersection number i(α, β) to be the minimal number of intersections between any
representatives of homotopy classes of α and β.

The curve graph C(S) of S is defined as follows: the vertices are curves on S and the edges
are pairs of distinct curves that have minimal possible intersections. This minimum is 1 for
the once-punctured torus, 2 for the four-holed sphere, and 0 for all other surfaces. Note that
a pair of pants (three-holed sphere) does not have any essential curves. We equip C(S) with
a metric by assigning length one to every edge.

We use a different definition for the curve graph C(A) of an annulus A (sphere with two
boundary components). By an arc on A we always mean a homotopy class of a simple arc ω

connecting the two boundary components of A where the homotopy is taken relative to the
endpoints of ω. The intersection i(ω, ω′) of two arcs is the minimal number of intersections
between any representatives of homotopy classes of ω and ω′. The vertices of C(A) are arcs
on A and the edges are pairs of arcs with zero intersection. We also equip C(A) with a metric
as above.

From [14], we recall the definition of subsurface projection

πY : C(S) → P
(

C(Y )
)

.

First suppose Y is not an annulus. Let α ∈ C(S). If α is disjoint from Y , then πY (α) = ∅
and if α is contained in Y , then πY (α) = α. In all other cases, the restriction of α to Y is
a collection of arcs. Let ω be one such arc. The endpoints of ω lie on two (not necessarily
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distinct) boundary components β and β ′ of Y . Let Nω be a regular neighborhood in Y of
ω ∪ β ∪ β ′. Then Nω always has a boundary component that is a non-trivial curve in Y . Let
πY (α) be the union of all essential boundary curves of Nω, where ω ranges over all arcs in the
restriction of α with Y . The set πY (α) is non-empty with diameter at most two in C(S) [14].

Given an annular subsurface A of S with core curve γ , the Gromov compactification of
the annular cover of S corresponding to γ ∈ π1(S) is well-defined and is independent of the
choice of the hyperbolic metric on S. For any α ∈ C(S), the projection πA(α) is defined to
be the set of lifts of α to A that are essential arcs. Note that a lift has well-defined endpoints
in the Gromov boundary of A. The set πA(α) has diameter at most two in C(A).

Short markings and bounded combinatorics. A pants curve system on S is a collection
of mutually disjoint curves which cut S into pairs of pants. A marking μ on S is a pants curve
system P with additionally a set of transverse curves Q satisfying the following properties.
We require each curve α ∈ P to have a unique transverse curve β ∈ Q that intersects α

minimally (once or twice) and is disjoint from all other curves in P . We will often say α and
β are dual to each other, and write α = β or β = α. This notion of a marking was introduced
first by Masur and Minsky [14]; however their terminology is clean marking.

Given x ∈ T (S), a short marking μx on x is a marking where the pants curve system is
constructed using the algorithm that picks the shortest curve on x , then the second shortest
disjoint from the first, and so on. Once the pants curve system is complete, the transverse
curves are then chosen to be as short as possible. Note that a short marking on x may not be
unique, but all short markings on x form a bounded set in C(S). Thus, we will refer to μx as
the associated short marking on x .

Let x, y ∈ T (S) and μx and μy be the associated short markings. For any Y ⊆ S, define

dY (μx , μy) = diamC(Y )

(

πY (μx ), πY (μy)
)

,

where πY (μx ) is the union of the projection of the curves of μx to Y .

Definition 2.2 Two points x, y ∈ T (S) are said to have K -bounded combinatorics if there
exists a constant K > 0 such that for every proper subsurface Y ⊂ S,

dY (μx , μy) ≤ K .

Cobounded geodesics. Given x, y ∈ T (S), we denote by GT (x, y), or GT when endpoints
are not emphasized, the Teichmüller geodesic connecting x and y. We denote by GL(x, y)

(or GL ) a Lipschitz geodesic from x to y. In either the Teichmüller or the Lipschitz metric,
a geodesic is ε-cobounded if every point on the geodesic is ε-thick. Given x and y, there
is a unique Teichmüller geodesic connecting them. On the other hand, Thurston proved the
existence of a Lipschitz geodesic from x to y [18], but in general there may be more than
one.

The following theorem is due to Rafi. The second direction also follows from the work of
Minsky (see [10,13]).

Theorem 2.3 [15] For every ε, K > 0, there exists a constant ε′ > 0 such that the following
holds. If x, y ∈ T (S) are ε-thick and have K -bounded combinatorics, then the Teichmüller
geodesic GT with endpoints x and y is ε′-cobounded.

Conversely, for every ε > 0, there exists K ′ > 0 such that, if GT is ε-cobounded (possibly
an infinite or bi-infinite ray), then any two points on GT have K ′-bounded combinatorics.

For the rest of this paper, we will fix ε > 0 to be less than the Margulis constant. Unless
otherwise specified, by thick or thin, we will always mean ε-thick or ε-thin. We will also
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fix a constant K so that bounded combinatorics will mean K -bounded combinatorics. A
cobounded geodesic will always mean ε′-cobounded with ε′ as in Theorem 2.3. Once ε and
K are fixed, the dependence of other constants on ε and K can be ignored; we can treat
constants which depend on ε and K as if they depended only on the topology of S.

In this paper, we will try to understand a Lipschitz geodesic GL whose endpoints have
bounded combinatorics. Our main tool will be to compare the geometry of GL with the geom-
etry of the unique Teichmüller geodesic GT connecting the same endpoints. We will use the
fact that GT is cobounded to show that the closest-point projection to GT in the Lipschitz
metric is contracting (Theorem 4.5). This will imply that GL and GT fellow travel, and hence
GL is also cobounded (for some ε′′ depending only on S) (Theorem 5.1).

Thick-thin decomposition of a hyperbolic surface. Fix 0 < ε1 < ε0 < ε. For any
x ∈ T (S), we recall the notion of (ε0, ε1) thick-thin decomposition of x (see [11]). Let A
be the (possibly empty) set of curves in x whose hyperbolic lengths are less than ε1. For
each α ∈ A, let Aα be the regular neighborhood of the x-geodesic representative of α with
boundary length ε0. Note that, since ε0 is less than the Margulis constant, the annuli are
disjoint. Let Y be the set of components of x \ (

⋃

α∈A Aα). We denote this decomposition
of x by (A, Y).

Note that if (A, Y) is a thick-thin decomposition for x and μx is a short marking, then A
always forms a subset of the pants curve system in μx .

Notations. Throughout this paper we will adopt the following notations. Below, a and b

represent various quantities such as distances between two points or lengths of a curve, and
C and D are constants that depend only on the topology of S.

(1) a
∗≺ b if a ≤ Cb,

(2) a
+≺ b if a ≤ b + D,

(3) a
∗� b if a

∗≺ b and b
∗≺ a.

(4) a
+� b if a

+≺ b and b
+≺ a.

We will also often use the notation a = O(1) to mean a
∗≺ 1.

3 Hyperbolic length estimates via markings

In this section we give some estimates of the hyperbolic length of a simple closed curve in
terms of the number of times the curve intersects a marking on a surface and the length of
the marking itself. Up to a multiplicative error, our expression provides an accurate estimate
when the marking is short, but yields only an upper bound for a general marking.

Short Marking.

Proposition 3.1 Let x ∈ T (S) and μx be a short marking on x. Then for every curve γ ,

�x (γ )
∗�

∑

α∈μx

i(γ, α) �x (α),

and

Extx (γ )
∗�

∑

α∈μx

i(γ, α)2 Extx (α).
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Proof We first prove the statement for the hyperbolic length of γ . Consider the (ε0, ε1)-
decomposition (A, Y) for x . For each Y ∈ Y , let μY be the set of curves in μx that are
contained entirely in Y . Note that if α ∈ μY , then so is α. The set μY fills the surface Y , that
is, every curve in Y intersects some curve in μY . For every curve γ in Y define

i(γ, μY ) =
∑

α∈μY

i(γ, α).

It is a consequence of [4, Corollary 3.2] and [10] that �x (γ ) can be estimated using the
following sum:

�x (γ )
∗�

∑

Y∈Y
i(γ, μY ) +

∑

α∈A
i(γ, α)

[

log
1

�x (α)
+ �x (α) twistα(x, γ )

]

. (4)

Here, twistα(x, γ ) = dA(α, γ ) (see [11,17] for more details). We need to show

�x (γ )
∗�

∑

Y∈Y

∑

α∈μY

i(γ, α) �x (α) +
∑

α∈A

[

i(γ, α) �x (α) + i(γ, α) �x (α)
]

(5)

which is just a rephrasing of the statement of the proposition for the hyperbolic length. We
will show that the right hand sides of Eqs. (4) and (5) are comparable.

To start, note that for every α ∈ μY , we have �x (α)
∗� 1. Hence

∑

Y∈Y

∑

α∈μY

i(γ, α) �x (α)
∗�

∑

Y∈Y
i(γ, μY ). (6)

Now consider α ∈ A. By the collar lemma, the hyperbolic length of the dual curve α is
roughly the width of the collar around α. That is,

�x (α)
∗� log

1

�x (α)
.

Summing over α ∈ A we obtain
∑

α∈A
i(γ, α) �x (α)

∗�
∑

α∈A
i(γ, α) log

1

�x (α)
. (7)

We now compare the last terms. Assume γ intersects some curve α ∈ A. From the discussion
in [11, Sect. 3] we have

twistα(x, γ )
+≺ i(γ, α)

i(γ, α)
.

To make the error multiplicative, we add a large term to the right side:

twistα(x, γ )
∗≺ �x (α)

�x (α)
+ i(γ, α)

i(γ, α)
.

Summing over α ∈ A and multiplying by i(γ, α) �x (α) we obtain
∑

α∈A
i(γ, α) �x (α) twistα(x, γ )

∗≺
∑

α∈A
i(γ, α) �x (α) + i(γ, α) �x (α).

Thus the right hand side of (4) is bounded above by the right hand side of (5) up to a
multiplicative error.

It remains to find an upper bound for i(γ, α) �x (α), α ∈ A, using terms in the right hand
side of Eq. (4). Since our inequalities are up to a multiplicative error, finding an upper bound
for each such term provides an upper bound for the sum.
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Consider the regular neighborhood Aα of α. If ε0 is small enough, γ intersects α every
time it enters Aα . The number of intersection points between γ and α inside of Aα is bounded
by i(γ, α) twistα(x, γ ) and the number of intersection points outside of Aα is less than the
number of intersection points between γ and P , the set of pants curves in μx (every time
γ intersects α it either twists around α and intersects α or it will intersect some curve in P
before intersecting α again). That is,

i(γ, α)
∗≺ i(γ, α) twistα(x, γ ) + i(γ, P).

Since, for any β ∈ P, �x (α) ≤ �x (β) we have

i(γ, α) �x (α)
∗≺ i(γ, α)�x (α) twistα(x, γ ) +

∑

β∈P
i(γ, β)�x (β).

Up to a multiplicative error, this is less than the right hand side of (4). Thus the right hand side
of (5) is bounded above by the right hand side of (4) up to a multiplicative error. Therefore,
the two quantities are equal. This completes the proof of the first statement.

To prove the statement for extremal length, we can follow the same path. We have the
following estimate for the extremal length of a curve (this is Theorem 7 in [9] which follows
essentially from [11]) analogous to Eq. (4):

Extx (γ )
∗�

∑

Y∈Y
i(γ, μY )2 +

∑

α∈A
i(γ, α)2

[
1

Extx (α)
+ Extx (α) twistα(x, γ )2

]

Similar to Eq. (6), we have

∑

Y∈Y
i(γ, μY )2 ∗�

∑

α∈μY

i(γ, α)2 Extx (α).

For any α ∈ A, the version of the collar lemma for extremal length says:

Extx (α)
∗� 1

Extx (α)
.

The rest of the proof is essentially identical. ��
Upper bound from any marking. In the following, we use a surgery argument on curves
to derive an upper bound for the hyperbolic length of a curve using an arbitrary marking.
Although we do not need such a precise estimate, our argument produces a multiplicative
error of 2.

Proposition 3.2 Let x ∈ T (S) and μ be an arbitrary marking on S. Then for every curve γ ,

�x (γ )
∗≺

∑

α∈μ

i(γ, α) �x (α) (8)

The outline of the proof is as follows. Let P be the pants curve system in μ. We first
perturb γ so that the restriction of γ to every pair of pants P ∈ S \P is a union of admissible
arcs. These are arcs for which the inequality (8) holds. Perturbing γ will only increase its
length. Hence, if (8) holds for every arc, it holds for γ as well.
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Fig. 1 There are 12 non-admissible arcs in P . For each pair of distinct boundary components of P , there are
two non-admissible arcs as depicted in the left figure (both arcs are labeled ω). For each boundary component
of P , there are two non-admissible arcs. The figure on the right depicts one such arc ω. The second one is
obtained via a reflection across the x-axis

Admissible arcs. Let P be a pair of (embedded) pants in the pants decomposition asso-
ciated with the marking μ. Equip P with the hyperbolic metric inherited from x . For every
boundary curve α ∈ ∂ P , let α be a simple geodesic arc in P with endpoints on α separating
the other two boundary components of P , and let E be the set of endpoints of arcs α. Let ω

be any simple geodesic arc whose endpoints are in E , and let i(ω, α) represent the number
of intersection points in the interior of P . Assume that one endpoint of ω lies in α− and the
other lies in α+. We say ω is admissible if

�x (ω)
∗≺ �x (α+) + �x (α−) + i(ω, α+) �x (α+) + i(ω, α−) �x (α−).

As we shall see, most arcs are admissible.

Lemma 3.3 Let ω be a simple geodesic arc with endpoints in E. Then ω is admissible unless
it is one of the arcs depicted in Fig. 1. In particular, if i(ω, α) > 0 for some α ∈ ∂ P then ω

is admissible.

Proof First suppose ω starts and ends on two different boundary components of P . Let ω1

and ω2 be the arcs depicted in Fig. 2. Then, up to homotopy, ω is a concatenation of either
ω1 or ω2 with several copies of α+, several copies of α− and at most one copy of the arcs
[p+, q+] or [p−, q−]. The number of copies of α+ needed is at most i(ω, α+) and the number
of copies of α− needed is at most i(ω, α−). The length of ω is less than the sum of these arcs.

Note that the lengths of ω1 and ω2 are both less than �x (α+) + �x (α−). The lengths of
copies of α± needed is less than or equal to i(ω, α±) �x (α±). If either i(ω, α+) or i(ω, α−)

is non-zero then the quantity i(ω, α±) �x (α±) is also an upper bound for the length of the
segment [p±, q±]. Hence, if ω is not admissible, then it is disjoint from α± and it is not ω1

or ω2. The arcs depicted in the left side of Fig. 1 are the only possibilities.

Fig. 2 The arcs ω1 and ω2
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Fig. 3 There are 6 non-admissible arcs in T . On the left is a non-admissible arc ω whose endpoints are
distinct. Another non-admissible arc of the same type can be obtained via a reflection across the x-axis. On
the right is a non-admissible arc ω which starts and ends at the same point. The other 3 non-admissible arcs
of this type can be obtained via reflections across the x-axis and the y-axis

A similar argument works when ω starts and ends on the same curve, that is, when
α+ = α−. In this case, if ω is not admissible, then it must be disjoint from α+ but not equal
to it. There are only two such arcs, one with both endpoints at p+ (see the right side of Fig. 1)
and one with both endpoints at p−. ��

In the case that a pair of pants is not embedded in x (when one curve in x appears twice
as a boundary of a pair of pants), the dual curve does not intersect the pants curves twice
and the above arguments do not apply. In this case, the definition of an admissible arc has
to be modified. Let T be a torus with one boundary component that is an image of a pair of
pants associated to μ. Let α be the boundary curve of T and α be a simple geodesic arc with
endpoints on α. Also, let β be a simple closed curve in T that is disjoint from α, and let β be
the dual curve to β: a simple closed geodesic that intersects each of β and α exactly once.
Let E = {p, q} be the endpoints of α, and let ω be a simple geodesic arc with endpoints in
E . We say ω is admissible if

�x (ω)
∗≺ �x (α) + i(ω, α) �x (α) + i(ω, β) �x (β) + i(ω, β) �x (β).

Lemma 3.4 Let ω be a simple geodesic arc with endpoints in E. Then ω is admissible unless
it is an arc of a type depicted in Fig. 3. In particular, if i(ω, α) > 0 then ω is admissible.

Proof Up to homotopy, the arc ω is a concatenation of several copies of α, one-half of α, a
simple closed curve δ, then again one-half of α (could be the same half or the other half),
and finally several copies of α. One may have to add the arc [p, q] to the beginning or to the
end to ensure the arc described above and ω have the same endpoints. First we claim

�x (δ) ≤ i(ω, β) �x (β) + i(ω, β) �x (β).

Consider the fundamental group of T with a base point at the intersection of β and β. Then a
curve homotopic to δ can be written as a product of copies of β and β. The number of copies
of β and β needed is exactly i(ω, β) and i(ω, β) respectively. This proves the claim.

The number of copies of α needed is bounded above by i(ω, α). If i(ω, α) is non-zero
then the quantity i(ω, α) �x (α) is also an upper bound for the length of the segment [p, q].
Hence, ω is admissible if i(ω, α) > 0 or if the arc [p, q] is not required to construct ω. Arcs
of type depicted in Fig. 3 are the only exceptions. ��
Proof of Proposition 3.2 If γ is a curve in μ then the statement of the proposition is clearly
true. We can further assume that there is a pants curve α0 ∈ μ so that γ intersects both α0

and α0. Otherwise, γ has to pass only through pants in the form discussed in Lemma 3.4.
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Fig. 4 The curve which goes around both holes of the surface is γ . The union of the other curves forms the
marking μ. The curves α1, α2, and α3 are the pants curves of μ. For each i , the transverse curve αi to αi is the
unlabeled curve which intersects only αi . The curve γ does not intersect both αi and αi for any i = 1, 2, 3

That means, S is a union of two one-holed tori. That is, S is a genus two surface and μ and
γ are as depicted in Fig. 4. In this case, it is easy to produce a curve homotopic to γ as a
concatenation of curves in μ and hence the proposition holds.

We claim γ can be homotoped to a curve γ ′ so that γ ′ is a union of admissible arcs and a
sub-arc of α0. The curve γ ′ has the same intersection pattern with the pants curves of μ and
the intersection number of γ with every transverse curve is the same as the sum of the interior
intersection number of γ ′ with these curves. The proposition then follows from Lemmas 3.3
and 3.4.

First perturb γ slightly so that it does not pass through any intersection point between α

and α for a pants curve α ∈ μ. We change γ by replacing the restriction of γ to a pair of
pants P or a torus T to admissible arcs. Start with the pair of pants P0 with the boundary
curve α0 and a sub-arc ω0 of γ that starts from α0 and ends in α1 (α1 may equal α0). Replace
ω0 with an admissible arc ω′

0 that has the same intersection pattern with the dual arcs in P0.
Let r0 and r1 be the endpoints of ω′

0 in α0 and α1 respectively. Now let P2 be the pair of
pants (or once-punctured torus) with α1 as a boundary component that is not P0 and let ω1

be the continuation of ω0 in P1. Again, replace ω1 with an admissible arc ω′
1, but make sure

ω′
1 starts at r1. This is always possible by Lemmas 3.3 and 3.4; we can push the intersection

point of ω1 with α2 either to the right or to the left and one of these two will result in an
admissible arc. Continue in this fashion, replacing the arc ωk which is a continuation of ωk−1

in the pair of pants (or once-punctured torus) Pk with an admissible arc making sure that
the starting point rk of ω′

k matches the endpoint of ω′
k−1. We can do this until we reach the

starting point after K steps. Then αK = α0. We can ensure the arc ω′
K−1 is admissible and

it starts from rK−1. But rK may not equal r0. In this case, we add a sub-arc ω′ of α0 to close
up γ ′ to a curve homotopic to γ .

If we now add up the inequalities defining admissibility, we get that the sum of the lengths
of arcs ω′

i is less than the right-hand side of the inequality (8). Also the term �x (α0) appears
in the right hand side of (8) and provides an upper bound for the length of ω′. That is, the
right-hand side of Eq. (8) is an upper bound for the length of γ ′ and hence for �x (γ ). This
finishes the proof. ��
Remark 3.5 If x is in the thick part of Teichmüller space, then Proposition 3.2 also holds
for extremal length. This follows from the fact that in the thick part, hyperbolic length is
coarsely equal to the square root of the extremal length (see Lemma 4.2).

4 Bounded projection to a Teichmüller geodesic

In this section, our main goal is to prove Theorem B of the introduction. The first step is to
prove Theorem E, which allows us to estimate the Lipschitz distance from x to y by consid-
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ering only how much a short marking on x is stretched. The special case of Theorem E when
both x and y are in the thick part was proved in [3]. We restate Theorem E.

Theorem 4.1 (Candidate curves) Let x, y ∈ T (S) and let μx be a short marking on x. Then

dL(x, y)
+� log max

α∈μx

�y(α)

�x (α)
.

A curve α ∈ μx satisfying dL(x, y)
+� log �y(α)

�x (α)
is called a candidate curve from x to y.

Proof of Theorem 4.1 By Thurston’s theorem (Eq. 3), there exists a curve γ such that

log �y(γ )

�x (γ )
is within a uniform additive error of dL(x, y). We invoke Propositions 3.1 and

3.2 to compute the hyperbolic length of γ on x and y, using the fact that μx is short on x but
may not be short on y:

�x (γ )
∗�

∑

α∈μx

i(γ, α)�x (α), �y(γ )
∗≺

∑

α∈μx

i(γ, α)�y(α).

We have

edL (x,y) ∗� �y(γ )

�x (γ )

∗≺
∑

α∈μx
i(γ, α) �y(α)

∑

α∈μx
i(γ, α) �x (α)

∗≺ max
α∈μx

�y(α)

�x (α)
.

The opposite inequality directly follows from the definition of Lipschitz distance. ��
Given a closed set K ⊂ T (S) and x ∈ T (S), define

dL(x, K) = inf
y∈K

dL(x, y).

The closest-point projection of x ∈ T (S) to K with respect to the Lipschitz metric is

πK(x) = {

y ∈ K | dL(x, y) = dL(x, K)
}

.

The projection is always nonempty, but it could contain more than one point. We can also
project a set B ⊂ T (S) to K: πK(B) = ∪x∈BπK(x).

We will use Theorem 4.1 to analyze the closest-point projection in the Lipschitz metric to
a cobounded Teichmüller geodesic GT . Parametrizing GT by arc length (in the Teichmüller
metric), we denote points along GT by GT (t). Along GT , we have the following relationship
between the hyperbolic length and the extremal length of a curve:

Lemma 4.2 [11] For any x in the thick part of T (S) and any curve α,

�x (α)
∗� √

Extx (α).

Furthermore, the length of α in either sense varies along GT (t) coarsely like cosh(t) [17,
Equation (2)]. Therefore, it makes sense to talk about a point xtα = GT (tα) on which the
length of α is minimal, and away from xtα in either direction the length of α grows exponen-
tially. If there are several minimal points, then we choose tα arbitrarily among them. We call
tα the balanced time of α.

The first statement of the following lemma is a consequence of [12, Lemma 3.3]. The
second statement follows immediately from the first one and Lemma 4.2.
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Lemma 4.3 There exist constants c1, c2, and D, depending only on S, so that for any curves
α and β and any cobounded Teichmüller geodesic GT ,

|tα − tβ | ≥ D �⇒ i(α, β)2 ≥ c1 e2|tα−tβ | Extxtα
(α) Extxtβ

(β)

and

|tα − tβ | ≥ D �⇒ i(α, β) ≥ c2 e|tα−tβ | �xtα
(α) �xtβ

(β).

Lemma 4.4 Let GT be a cobounded Teichmüller geodesic. Suppose x ∈ T (S) is a point not
on GT and xt ∈ πGT (x). Then for any α ∈ μx , we have |t − tα| = O(1).

Proof Let β ∈ μx be a candidate curve from x to xtα . The curves α and β have bounded
intersection number, so by Lemma 4.3, |tα − tβ | = O(1) (note that since GT is cobounded,
the quantities �xtα

(α) and �xtβ
(β) are bounded below). Away from tβ , the length of β grows

exponentially. We have

edL (x,xt ) ≥ �xt (β)

�x (β)

∗� e
(

|t−tα |−|tα−tβ |
)
�xtα

(β)

�x (β)
.

Taking log on both sides yields

dL(x, xt )
+� |t − tα| − |tα − tβ | + dL(x, xtα ).

Since xt is the closest-point projection of x to GT , dL(x, xt ) ≤ dL(x, xtα ). Together this
implies |t − tα| = O(1). ��

By a Lipschitz ball of radius R centered at x , we will mean the set

BL(x, R) = {y ∈ T (S) | dL(x, y) ≤ R}.
The following is a precise formulation of Theorem B.

Theorem 4.5 (Lipschitz projection to Teichmüller geodesics) There exists a constant b
depending only on S such that, for any cobounded Teichmüller geodesic GT , any x ∈ T (S),
and any constant R < dL(x, GT ), we have

diamL

(

πGT

(

BL(x, R)
)) ≤ b.

Proof Let y ∈ BL(x, R), and let μx and μy be the associated short markings on x and y
respectively. Let xt ∈ πGT (x). By Lemma 4.4, we can choose α ∈ μx such that

dL(x, GT )
+� log

�xt (α)

�x (α)
,

and Theorem 4.1 implies

log
�xt (α)

�x (α)

+� log
�xtα

(α)

�x (α)
,

where tα is the balance time for α along GT . Hence

dL(x, GT )
+� log

�xtα
(α)

�x (α)
.
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Similarly, choose β ∈ μy so that

dL(y, GT )
+� log

�xtβ
(β)

�y(β)
.

The theorem will hold if |tα − tβ | is uniformly bounded.
Let D be the constant of Lemma 4.3. If |tα − tβ | < D, then we are done. So suppose

|tα − tβ | ≥ D, in which case

i(α, β)
∗� e|tα−tβ | �xtα

(α) �xtβ
(β).

Since β ∈ μy , by Proposition 3.1, �y(α)
∗� i(α, β)�y(β). Therefore,

edL (x,y) ≥ �y(α)

�x (α)

∗� i(α, β) �y(β)

�x (α)

∗�
e|tα−tβ | �xtα

(α) �xtβ
(β) �y(β)

�x (α)
.

Applying log to both sides above yields

dL(x, y)
+� |tα − tβ | + dL(x, GT ) + log

(

�xtβ
(β) �y(β)

)

.

On the other hand, dL(x, y) ≤ R < dL(x, GT ), so the proof will be complete if the product
�xtβ

(β) �y(β) is bounded from below. Since GT is (ε′)-cobounded, the length of every curve

on xtβ is bounded below, so we only need to consider the situation when �y(β) is small (say

�y(β) < ε′). In this case, since β and β intersect, β has to be long (�y(β)
∗� log 1

ε′ ). But
β is the candidate curve from y to a point in πGT (y) which we know is at most a bounded
distance away from xtβ . Thus,

�xtβ
(β)

�y(β)

∗�
�xtβ

(β)

�y(β)
.

We conclude

�xtβ
(β) �y(β)

∗� �xtβ
(β) �y(β)

∗� 1.

��

Projection in the Teichmüller metric. We now sketch a short proof that the closest-point
projection with respect to the Teichmüller metric to a cobounded Teichmüller geodesic is
strongly contracting. This was first established by Minsky in [12]. This part is independent
from the rest of the paper.

Let GT be the closest-point projection to GT with respect to the Teichmüller metric.

Theorem 4.6 [12] For any cobounded Teichmüller geodesic GT and for any Teichmüller
ball B disjoint from GT , diamT

(

GT (B)
)

is uniformly bounded.

Proof As discussed before, Proposition 3.2 holds for extremal length as long as x is in the
thick part (see Remark 3.5). Therefore we have an analogue of Theorem 4.1: For any x ∈ B
and any xt ∈ GT (x), there exists a candidate curve α ∈ μx from x to xt . The same argument
for Lemma 4.4 will also show that xt is a bounded distance from xtα . Replacing hyperbolic
length by extremal length, we can carry out the same analysis as in Theorem 4.5 to finish the
proof. ��
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5 Bounded projection to and stability of Lipschitz geodesics

In this section, we prove Theorem A and Theorem C of the introduction. Before we restate
and prove the theorems, we first define what it means to fellow travel in the Lipschitz metric.

Let GT (t) : [0, d] → T (S) and GL(t) : [0, d] → T (S) be respectively a Teichmüller and
a Lipschitz geodesic parametrized by arc length (in their respective metric). We will say GL

and GT fellow travel in the Lipschitz metric if there exists a constant R depending only on S
such that, for every t ∈ [0, d],

max
{

dL
(

GL(t), GT (t)
)

, dL
(

GT (t), GL(t)
)} ≤ R.

Theorem 5.1 (Lipschitz geodesic fellow travels Teichmüller geodesic)
Suppose x, y ∈ T (S) are thick and have bounded combinatorics. Then any Lipschitz

geodesic GL from x to y is cobounded. In fact, GL fellow travels the Teichmüller geodesic
with endpoints x and y. More precisely, let d = dL(x, y) and let GT : R → T (S) be the
Teichmüller geodesic such that GT (0) = x and passing through y. Then GL : [0, d] → T (S)

fellow travels GT : [0, d] → T (S).

By previous result in Theorem 4.5, the Lipschitz closest-point projection to GT is strongly
contracting. This implies that, if one moves along GL , the rate of progress of the Lipschitz
projection to GT is inversely proportional to the distance between GL and GT . (A segment of
length R passing through a point z that has distance R from GT projects to a subset of GT

with uniformly bounded size.) In order to apply a standard short-cut argument (see proof of
Theorem 5.1), we need an additional fact about the asymmetry of dL which is a corollary of
[3, Proposition 4.1].

Lemma 5.2 Let x ∈ T (S) be thick. Then there exists a constant C depending only on S such
that for any y ∈ T (S)

dL(x, y) ≤ CdL(y, x).

Proof From [3, Proposition 4.1] we have (in [3] dL is the symmetrized Lipschitz metric):

dT (x, y)
∗� max{dL(x, y), dL (y, x)}. (9)

By Eq. (2), there is a curve α such that dT (y, x)
∗� 1

2 log Exty(α)

Extx (α)
. Since x is thick, by

Lemma 4.2, Extx (α)
∗� �x (α)2. Since the extremal length is defined as a supremum over all

metrics in a conformal class, we have Exty(α)
∗� �y(α)2. Hence,

dL(y, x) ≥ log
�x (α)

�y(α)

∗� 1

2
log

Extx (α)

Exty(α)

∗� dT (y, x).

Also by Eq. (9), dT (x, y)
∗� dL(x, y). The lemma follows from the symmetry of the Teich-

müller metric. ��
Proof of Theorem 5.1 By assumption, x and y have bounded combinatorics, thus GT is co-
bounded by Theorem 2.3. We will first show that there exists R such that, for any x ∈ GL ,
there exists x ′ ∈ GT with dL(x, x ′) ≤ R. In view of Lemma 5.2 and our definition of a
Lipschitz ball, this shows that GL is contained in a C R Lipschitz neighborhood of GT .

For any r > 0, suppose a subinterval [x, y] ⊂ GL is such that dL(x, GT ) = dL(y, GT ) = r ,
but dL(z, GT ) > r for all other points z ∈ [x, y]. By cutting [x, y] into segments of length at
most r and projecting each piece to GT , we have
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dL
(

πGT (x), πGT (y)
) ≤ b

r
dL(x, y) + b,

where b is the constant of Theorem 4.5. Now fix r = 2b. By the triangle inequality,

dL(x, y) ≤ dL
(

x, πGT (x)
) + dL

(

πGT (x), πGT (y)
) + dL

(

πGT (y), y
)

≤ r +
(

b

r
dL(x, y) + b

)

+ CdL
(

y, πGT (y)
)

≤ 2b +
(

1

2
dL(x, y) + b

)

+ C2b.

We obtain dL(x, y) ≤ 6b +4Cb. Therefore, any z ∈ [x, y] is contained in an R = 8b +4Cb
Lipschitz neighborhood of GT . By Lemma 5.2, we conclude that GL is contained in a C R
Lipschitz neighborhood of GT . In particular, GL is cobounded (for some constant depending
only on S).

Now parametrize xt = GL(t) and yt = GT (t) such that x = GL(0) = GT (0). We have
shown that for any t ∈ [0, d], d = dL(x, y), there exists s such that dL

(

xt , ys
) ≤ R. The

proof will be complete if s
+� t . We have:

s = dT (x, ys)
+� dL(x, ys)

+� dL(x, xt ) = t.

Thus for every t ∈ [0, d], we have dL(xt , yt )
+≺ 1. The same thing is true for dL(yt , xt ) since

GL is cobounded. ��

We now show that the closest-point projection to GL is also strongly contracting. As a
corollary, GL is stable. The precise formulations are below.

Theorem 5.3 (Bounded projection to Lipschitz geodesics) Suppose x, y ∈ T (S) are thick
and have bounded combinatorics. There exists a constant R such that whenever GL is a
Lipschitz geodesic from x to y and B is a Lipschitz ball with

dL(B, GL ) = min
z∈B

dL(z, GL ) > R,

then the Lipschitz projection of B to GL is uniformly bounded.

Proof Let GT be the Teichmüller geodesic from x to y. Let R be the minimum constant such
that GL is contained in the R Lipschitz neighborhood of GT (Theorem 5.1). With this R,
any Lipschitz ball B satisfying the criterion of the theorem is disjoint from GT . Therefore,
by Theorem 4.5, the projection of B to GT has uniformly bounded diameter. To see that the
projection of B to GL also has uniformly bounded diameter, it suffices to show that, for any
z ∈ B, the distance between πGT ◦ πGL (z) and πGT (z) is uniformly bounded.

We refer to Fig. 5 for this proof. By Lemma 4.4, πGT (z) is uniformly bounded from
xtα = GT (tα), where α ∈ μz is a candidate curve for the Lipschitz distance from z to GT ,
and tα is the balanced time for α. Now let w ∈ πGL (z) and let xt ∈ πGT (w). We will show
|tα − t | is uniformly bounded. Choose a point w′ ∈ GL so that dL(w′, xtα ) is minimal. In
particular, dL(w′, xtα ) ≤ R, and

dL(z, w) ≤ dL(z, w′) ≤ dL(z, xtα ) + C R, (10)
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Fig. 5 Bounded projection to Lipschitz geodesics

where C is the constant of Lemma 5.2. On the other hand,

dL(z, w) ≥ log
�w(α)

�z(α)
(11)

= log
�w(α)

�xt (α)
+ log

�xt (α)

�xtα
(α)

+ log
�xtα

(α)

�z(α)

+� log
�w(α)

�xt (α)
+ |tα − t | + dL(z, xtα ).

Since xt ∈ πGT (w), dL(w, xt ) ≤ R. Hence,

log
�w(α)

�xt (α)
= − log

�xt (α)

�w(α)
≥ −dL(w, xt ) ≥ −R.

Putting this together with Eqs. (10) and (11) yields |tα − t | +≺ (C + 1)R. ��

Corollary 5.4 (Stability of Lipschitz geodesics) Suppose x, y ∈ T (S) are thick and have
bounded combinatorics. Then any Lipschitz quasi-geodesic from x to y (after reparametri-
zation) fellow travels any Lipschitz geodesic from x to y.

Proof The same argument in the proof of Theorem 5.1 can be applied here. Except now GL

will play the role of GT , and any Lipschitz quasi-geodesic from x to y will play the role
of GL . ��

We remark that, in general, a Lipschitz geodesic from x to y is not a Lipschitz geodesic
from y to x , even after reparametrization. One does not even expect the Hausdorff distance
between a geodesic from x to y and a geodesic from y to x to be bounded. (The Hausdorff
distance is the smallest R such that each is contained in an R Lipschitz neighborhood of the
other). However, the notion of bounded combinatorics is a symmetric notion, as it is defined
using distances in curve graphs. Since Teichmüller geodesics are independent of the order
of the endpoints, we can also deduce the following corollary.

Corollary 5.5 Suppose x, y ∈ T (S) are thick and have bounded combinatorics. Then the
Hausdorff distance between any Lipschitz geodesic from x to y and any Lipschitz geodesic
from y to x is uniformly bounded.
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