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In this paper we prove that the limit set of any Weil–Petersson geodesic ray with

uniquely ergodic ending lamination is a single point in the Thurston compactification

of Teichmüller space. On the other hand, we construct examples of Weil–Petersson

geodesics with minimal non-uniquely ergodic ending laminations and limit set a circle

in the Thurston compactification.

1 Introduction

Given a surface S, let Teich(S) denote the Teichmüller space of hyperbolic metrics

on S, and Mod(S) the mapping class group of S. Thurston compactified Teich(S) by

adjoining the space of projective measured laminations PML(S), and used this in

his classification of elements of Mod(S) [16, 33]. On the other hand, Teich(S) has two

important, Mod(S)-invariant, unique-geodesic metrics and hence has natural visual

compactifications. These metrics have their own drawbacks—the Teichmüller metric
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2 J. Brock et al.

is not negatively curved [25] and Weil–Petersson metric is incomplete [34]—and hence

the standard results about visual compactification do not readily apply to any of

these metrics. For example, the action of Mod(S) extends continuously to neither the

Teichmüller visual boundary [18] nor the Weil–Petersson visual boundary [9].

In [26], Masur showed that the Thurston boundary and the Teichmüller visual

boundary are not so different, proving that almost every Teichmüller ray converges to a

point on the Thurston boundary (though positive dimensional families of rays based at a

single point can converge to the same point). Lenzhen [20] constructed the first examples

of Teichmüller geodesic rays that do not converge to a unique point in the Thurston

boundary, and recent constructions have illustrated increasingly exotic behavior

[2, 12, 21, 23].

In this paper we begin an investigation into the behavior of how the Weil–

Petersson visual compactification relates to Thurston’s compactification. Specifically,

we study the behavior of Weil–Petersson geodesic rays in the Thurston compactification.

Our results are stated in terms of the ending laminations of Weil–Petersson geodesic

rays introduced by Brock, Masur, and Minsky in [5], see 2.7. The first theorem is a version

of Masur’s convergence for Teichmüller geodesics. We say that a lamination is uniquely

ergodic if it admits a unique transverse measure, up to scaling. Moreover, we say that

the lamination is minimal if every leaf of the lamination is dense in the lamination,

and filling if the lamination intersects every simple closed geodesic on the surface

non-trivially.

Theorem 1.1. Suppose that the ending lamination of a Weil–Petersson geodesic ray

is minimal, filling, and uniquely ergodic. Then the ray converges in the Thurston

compactification to the unique projective class of transverse measures on the ending

lamination.

On the other hand, we prove that there are geodesic rays for which the ending

lamination is minimal but non-uniquely ergodic, and whose limit sets are positive

dimensional and in fact are non-simply connected.

Theorem 1.2. There exist Weil–Petersson geodesic rays with minimal, filling, non-

uniquely ergodic ending laminations whose limit sets in the Thurston compactification

are topological circles.

See Theorem 5.7 for a more precise statement. Without the minimality assump-

tion, the construction of Weil–Petersson geodesic rays that do not limit to a single point

requires some different ideas. This construction is given in [3].
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1.1 Outline of the paper

Section 2 is devoted to background about Teichmüller theory, curve complexes, and

laminations. In Section 2.5 we state our technical results about sequences of curves

on surfaces that limit to non-uniquely ergodic laminations. These results are minor

variations of those in [2], and their proofs are sketched in the appendix of the paper.

In Section 3 we construct explicit examples of non-uniquely ergodic laminations on

punctured spheres, appealing to the results from Section 2.5. In Section 4 we study

the limiting picture of axes for pseudo-Anosov mapping classes of a punctured

sphere arising in the construction of non-uniquely ergodic laminations in Section 3. In

Section 5, we use this analysis to determine limit sets of our WP geodesic rays with non-

uniquely ergodic ending laminations, and thus prove Theorem 1.2. In Section 6 we prove

Theorem 1.1 about limit sets of geodesic rays with uniquely ergodic ending laminations.

2 Background

Notation 2.1. Our notation for comparing quantities in this paper is as follows: Let

K ≥ 1 and C ≥ 0. Given two functions f , g : X → R
≥0, we write f �K,Cg if 1

K g(x) − C ≤
f (x) ≤ Kg(x) + C for all x ∈ X, f

+�C g if g(x) − C ≤ f (x) ≤ g(x) + C and f
∗�K g if

1
K g(x) ≤ f (x) ≤ Kg(x). The notation f

+≺C g means that f (x) ≤ g(x) + C for all x ∈ X and

f
∗≺K g means that f (x) ≤ Kg(x) for all x ∈ X.

When the numbers K, C are understood from the context we drop them from the

notation.

2.1 Surfaces and subsurfaces:

In this paper surfaces are connected, orientable, and of finite type with boundaries or

punctures. We denote a surface with genus g and b boundary curves or punctures by

Sg,b and define the complexity of the surface by ξ (Sg,b) = 3g + b − 3. The main surfaces

we consider always have only punctures; however, we consider subsurfaces of the main

surfaces with both punctures and boundary curves.

2.2 Curves and laminations

Notation 2.2. Throughout this paper, by a curve we mean the isotopy class of an

essential, simple, closed curve. When convenient, we do not distinguish between a curve

and a representative of the isotopy class. A multicurve is a collection of pairwise disjoint

curves (i.e., curves with pairwise disjoint representatives).
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4 J. Brock et al.

By a subsurface of S, we mean the isotopy class of an embedded essential

subsurface: one whose boundary consists of essential curves and whose punctures

agree with those of S.

We say that two curves α and β overlap and denote it by α � β if the curves

α and β cannot be represented disjointly on the surface S. Two multicurves σ and τ

overlap if there are curves α ∈ σ and β ∈ τ which overlap. A curve α and a subsurface

Y ⊆ S overlap, denoted by α � Y, if α cannot be realized disjointly from Y (up to

homotopy). A multicurve and a subsurface overlap if a component of the multicurve

overlaps with the subsurface. We say that two subsurfaces Y and Z overlap, and denote

it by Y � Z, if ∂Y � Z and ∂Z � Y.

We refer the reader to [27, 28] for background about the curve complex and

subsurface projection maps. Denote the curve complex of a surface S by C(S) and the

set of vertices of the complex by C0(S). The set C0(S) is in fact the set of essential simple

closed curves on S.

A pants decomposition on the surface S is a multicurve with a maximal number

of components. A (partial) marking μ on the surface consists of a pants decomposition,

called the base of μ, and a choice of transversal curves for (some) all curves in the

base. For background about pants and marking graphs and hierarchical structures and

(hierarchy) resolution paths in pants and marking graphs we refer the reader to [28]. We

denote the pants graph of the surface S by P(S). Here we only recall that hierarchy paths

are certain quasi-geodesics in P(S) with quantifiers that only depend on the topological

type of S.

Let Y ⊆ S be an essential subsurface. The Y–subsurface projection coefficient of

two multicurves, markings or laminations μ, μ′ is defined by

dY(μ, μ′) := diamC(Y),
(
πY(μ) ∪ πY(μ′)

)
. (2.1)

Here πY is the subsurface projection (coarse) map and diamC(Y)(·) denotes the diameter

of the given subset of C(Y). When Y is an annular subsurface with core curve γ we also

denote dY(μ, μ′) by dγ (μ, μ′).
Our results in this paper are formulated in terms of subsurface coefficients

which can be thought of as an analog of continued fraction expansions which provide a

kind of symbolic coding for us.

We assume that the reader is familiar with basic facts about laminations and

measured laminations on hyperbolic surfaces (see, e.g., [31] for an introduction). We
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denote the space of measured laminations equipped with the weak∗ topology by ML(S)

and the space of projective classes of measured laminations equipped with the quotient

topology by PML(S).

Recall that a measurable lamination is uniquely ergodic if it supports exactly

one transverse measure up to scale. Otherwise, the lamination is non-uniquely ergodic.

An important property of curve complexes is that they are Gromov hyperbolic

[27]. By the result of Klarreich [19] the Gromov boundary of the curve complex is

homeomorphic to the quotient space of the space of (projective) measured laminations

with minimal filling supports by the measure forgetting map equipped with the quotient

topology, denoted by EL(S).

The Masur–Minsky distance formula [28] provides a coarse estimate for the

distance between two pants decompositions in the pants graph P(S). More precisely,

there exists a constant M > 0 depending on the topological type of S with the property

that for any threshold A ≥ M there are constants K ≥ 1 and C ≥ 0 so that for any P,

Q ∈ P(S) we have

d(P, Q) �K,C

∑
Y⊆S

non-annular

{dY(P, Q)}A (2.2)

where the cut-off function is defined by {x}A =
⎧⎨
⎩

x if x ≥ A

0 if x ≤ A
.

The following theorem is a straightforward consequence of [28, Theorem 3.1].

Theorem 2.3. (Bounded geodesic image) Given K ≥ 1 and C ≥ 0. Suppose that {γ i}i

is a sequence of curves which forms a 1 −Lipschitz (K, C)–quasi-geodesic in C(S).

Furthermore, suppose that for a subsurface Y � S, γi � Y for all i. Then there is a

constant G > 0 depending on K, C so that

diamC(Y)

(
{πY(γi)}i

)
≤ G.

For the following inequality, see [1, 24].

Theorem 2.4. (Behrstock inequality) There exists a constant B0 > 0 such that for any

two subsurfaces Y, Z � S with Y � Z and a fixed marking or lamination μ we have that

min
{
dY(∂Z, μ), dZ(∂Y, μ)

}
≤ B0.
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6 J. Brock et al.

We also need the following no back-tracking property of hierarchy paths, which

follows from inequality (6.3) in [28, §6.3].

Theorem 2.5. There is a constant C > 0 depending only on the topological type of S so

that given a hierarchy path 
 : [m, n] → P(S) ([m, n] ⊂ Z∪ {±∞}), for parameters i1 ≤ i2 ≤
i3 ≤ i4 in [m, n], and a non-annular subsurface Y ⊆ S we have

dY (
(i1), 
(i4)) ≥ dY (
(i2), 
(i3)) − C.

2.3 Twist parameter

We define the twist parameter of a curve δ about γ at a point X in Teichmüller space by

twγ (δ, X) := dγ (μ, δ) (2.3)

where μ is a Bers marking at X (for definition of Bers marking see §2.6).

Note that for a filling set of bounded length curves � at X we have twγ (δ, X)
+�

diamC(γ )(� ∪ δ).

2.4 The Thurston compactification

Recall that a point in the Teichmüller space Teich(S) is a marked complete hyperbolic

surface [f : S → X]. The mapping class group of S, denoted by Mod(S), acts by remarking

on Teich(S) and the quotient is the moduli space of hyperbolic surfaces M(S).

Given a curve α ∈ C0(S), the hyperbolic length of α at [f : S → X] is defined to

be the hyperbolic length of the geodesic homotopic to f (α) in X. Abusing notation and

denoting the point in Teich(S) by X, we write the hyperbolic length simply as α(X). For

an ε > 0, the ε–thick part of Teichmüller space consists of points X ∈ Teich(S) with

α(X) ≥ 2ε for all curves α. The projection of this set to the moduli space is the ε–thick

part of moduli space.

The hyperbolic length function extends to a continuous function

·(·) : Teich(S) × ML(S) → R.

Let ν be a measurable lamination and ν̄ a measured lamination with support ν.

Moreover, denote the projective class of ν̄ by [ν̄]. The Thurston compactification,
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Limit Sets of Weil-Petersson Geodesics 7

̂Teich(S) = Teich(S) ∪ PML(S) is constructed so that a sequence {Xn}n ⊆ Teich(S)

converges to [ν̄] ∈ PML(S) if and only if

lim
n→∞

α(Xn)

β(Xn)
= i(α, ν̄)

i(β, ν̄)

for all simple closed curves α, β with i(ν̄, β) �= 0. Here and throughout this paper the bi-

homogenous function i(·, ·) denotes the geometric intersection number of two curves and

its extension to the space of measured laminations ML(S). See [7, 16] for more details

on the intersection function and Thurston compactification.

2.5 Sequences of curves

In [21] and [2] the authors studied infinite sequences of curves on a surface that limit

to non-uniquely ergodic laminations. The novelty in this work is that local estimates on

subsurface projections and intersection numbers are promoted to global estimates on

these quantities. We require minor modifications of some of the key results from [2] so

as to be applicable to the sequences of curves on punctured spheres described in §3. We

state the results here and sketch their proofs in the appendix for completeness.

Given a curve γ let Dγ be the positive (left) Dehn twist about γ .

Definition 2.6. Fix positive integers m ≤ ξ (S) and b′≥ b > 0, and a sequence E =
{ek}∞k=0 ⊆ N. We say that a sequence of curves {γk}∞k=0 satisfies P = P(E) if the following

hold:

(i) any m consecutive curves are pairwise disjoint,

(ii) any consecutive 2m curves fill S, and

(iii) for all k ≥ m, γk+m = Dek
γk(γ

′
k+m), where γ ′

k+m is a curve such that

i
(
γ ′

k+m, γj
)
⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

≤ b′ for j = k − m, . . . , k + m − 1

= b for j = k, k − 1

= 0 for j = k + 1, . . . , k + m − 1.

Remark 2.7. The only real difference between this definition and the one given in our

previous paper [2, §3] is that this one requires fewer of the intersection numbers to be

non-zero.
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8 J. Brock et al.

For the remainder of this subsection, we will assume that � = {γ k}k satisfies P
for some m, b, b′ and E = {ek}k (see §3 for explicit examples). Furthermore, we assume

there exists an a ≥ 1 such that ek+1 ≥ aek for all k ≥ 0.

The first result describes the behavior of {γ k}k in the curve complex of S and its

subsurfaces. Let M be the monoid generated by m and m + 1, that is

M =
{
im + j(m + 1) | i, j ∈ Z

≥0
}

.

Theorem 2.8. There exist constants E, K, C > 0 such that if e0 ≥ E, then {γ k}k is a

1–Lipschitz (K, C)–quasi-geodesic. In particular, there exists a ν ∈ EL(S) such that any

accumulation point of {γ k}k in PML(S) is supported on ν.

Furthermore, there exists a constant R > 0, and for a marking μ another constant

R(μ) > 0 depending on μ, so that for i < k < j, with k− i, j−k ∈ M, we have γi � γk, γj � γk,

and

dγk(γi, γj), dγk(γi, ν)
+�Rei and dγk(μ, γj), dγk(μ, ν)

+�R(μ)ei. (2.4)

Also, for any i < j and a subsurface W which is not an annulus with core curve γ k for

some k we have

dW(γi, γj), dW(γi, ν) ≤ R and dW(μ, γj), dW(μ, ν) ≤ R(μ). (2.5)

The next result provides estimates on intersection numbers for curves in our

sequence. To describe the estimates, for all i < k, define the integers

A(i, k) :=
∏

i+m≤j<k,
j≡k mod m

bej (2.6)

where the product is taken to be 1 whenever the index set is empty.

Theorem 2.9. If a > 1 is sufficiently large and ek+1 ≥ aek, then there exists κ0 ≥ 1 such

that i(γ i, γ k) ≤ κ0A(i, k) for all i < k, and

i(γi, γk)
∗�κ0 A(i, k). (2.7)

if k − i ≥ 2m and i ≡ k mod m, or if i ≤ 2m − 1 and k − i ≥ m2 + m − 1.
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For any curve δ, there exists κ(δ) ≥ 1 such that for all k sufficiently large

i(δ, γk)
∗�κ(δ) A(0, k). (2.8)

For reference, we also record the following simple fact (see [2, Lemma 5.6]).

Lemma 2.10. Suppose that E = {ek}k satisfies ek ≥ aek−1 for all k and some a > 1. Then

whenever k < l, we have

A(i, k)

A(i, l)
≤ a1−� l−i

m �.

The final result tells us that {γ k}k splits into m subsequences, each projectively

converging to a distinct ergodic measure on ν.

Theorem 2.11. If {γ k}k is as in Theorems 2.8 and 2.9, then the sequence determines a

ν ∈ EL(S) which is non-uniquely ergodic and supports m ergodic measures, ν̄0, . . . , ν̄m−1,

given by

lim
i→∞

γh+im

A(0, h + im)
= ν̄h,

for each h = 0, . . ., m − 1.

2.6 Weil–Petersson metric

The Weil–Petersson (WP) metric is an incomplete, mapping class group invariant, Rie-

mannian metric with negative curvature on the Teichmüller space. The WP completion

of Teichmüller space Teich(S) is a stratified CAT(0) space. Each stratum is canonically

isometric to the product of Teichmüller spaces of lower complexity, each equipped with

the WP metric. More precisely, for any possibly empty multicurve σ on S the stratum

S(σ ) consists of finite type Riemann surfaces appropriately marked by S\σ , and this is

isometric to the product of Teichmüller spaces of the connected components of S\σ . An

important property of completion strata is the following non-refraction property.

Theorem 2.12. (Non-refraction; [15, 37]) The interior of the geodesic segment connect-

ing a point X ∈ S(σ ) to a point Y ∈ S(σ ′) lies in the stratum S(σ ∩ σ ′).

Let LS > 0 be the Bers constant of S (see [10, §5]). Then each point X ∈ Teich(S) has

a pants decomposition P (Bers pants decomposition) with the property that the length of

every curve in P with respect to X is at most LS. Any curve in a Bers pants decomposition
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10 J. Brock et al.

is called a Bers curve. Moreover, a marking whose base is a Bers pants decomposition

and has transversal curves with shortest possible length is called a Bers marking.

Brock [8] showed that the coarse map

Q : Teich(S) → P(S) (2.9)

which assigns to a point in the Teichmüller space a Bers pants decomposition at that

point is a quasi-isometry.

Using the non-refraction property of completion strata Wolpert [35] gives a

picture for the limits of sequences of bounded length WP geodesic segments in

Teichmüller space after remarkings. The following strengthening of the picture was

proved in [29, §4]. For reference, given a multicurve σ let tw(σ ) < Mod(S) denote the

subgroup generated by positive Dehn twists about the curves in σ .

Theorem 2.13. (Geodesic Limit) Given T > 0, let ζn : [0, T] → Teich(S) be a sequence of

geodesic segments parametrized by arc length. After possibly passing to a subsequence,

there exist a partition 0 = t0 < . . . < tk+1 = T of the interval [0, T], multicurves σ l,

l = 0, . . ., k + 1, a multicurve τ̂ with τ̂ = σl ∩ σl+1 for all l = 0, . . ., k and a piecewise

geodesic segment

ζ̂ : [0, T] → Teich(S)

such that

1. ζ̂ (tl) ∈ S(σl) for each l = 0, . . . , k + 1,

2. ζ̂ ((tl, tl+1)) ⊂ S(τ̂ ) for each l = 0, . . . , k,

3. there exist elements ψn ∈ Mod(S) which are either trivial or unbounded as

n → ∞ and elements Tl,n ∈ tw(σl − τ̂ ) such that for any γ ∈ σl − τ̂ the power

of the positive Dehn twist Dγ about γ is unbounded as n → ∞, and we have:

lim
n→∞ ψn(t) = ζ̂ (t)

for any t ∈ [0, t1]. Moreover, for each l = 1, . . ., k let

ϕl,n = Tl,n ◦ . . . ◦ T1,n ◦ ψn, (2.10)

then

lim
n→∞ ϕl,n(ζn(t)) = ζ̂ (t)

for any t ∈ [tl, tl+1].
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Limit Sets of Weil-Petersson Geodesics 11

In [29] controls on length-functions along WP geodesics in terms of subsurface

coefficients are developed. The following are corollaries 4.10 and 4.11 in [29]. Here we

denote a Bers marking at a point X ∈ Teich(S) by μ(X).

Theorem 2.14. Given T, ε0 and ε <ε0 positive, there is an N ∈ N with the following

property. Let ζ : [0, T′] → Teich(S) be a WP geodesic segment parametrized by arc length,

of length T ′≤ T, such that

sup
t∈[0,T ′]

γ (ζ(t)) ≥ ε0.

Then if dγ (μ(ζ (0)), μ(ζ (T′))) > N we have

inf
t∈[0,T ′]

γ (ζ(t)) ≤ ε.

Theorem 2.15. Given T, ε0, s positive with T > 2s and N ∈ N, there is an ε ∈ (0, ε0) with

the following property. Let ζ : [0, T′] → Teich(S) be a WP geodesic segment parametrized

by arc length of length T′∈ [2s, T]. Let J ⊆ [s, T′− s] be a subinterval. Suppose that for

some γ ∈ C0(S) we have

sup
t∈[0,T ′]

γ (ζ(t)) ≥ ε0.

Then, if inft∈J γ (ζ(t)) ≤ ε, we have

dγ

(
μ(ζ(0)), μ(ζ(T ′))

)
> N.

In this paper we will frequently use the following result of Wolpert for

estimating distance of a point and a completion stratum. It is part of [36, Corollary 4.10].

Corollary 2.16. Let X ∈ Teich(S) and let σ be a multicurve, then

dWP(X,S(σ )) ≤
√

2π
∑
α∈σ

α(X) and

dWP(X,S(σ )) =
√

2π
∑
α∈σ

α(X) + O
( ∑

α∈σ

α(X))5/2
)

where the constant of the O notation depends only on an upper bound for the length of

curves in σ at X.
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12 J. Brock et al.

2.7 End invariants

Brock, Masur, and Minsky [5] introduced the notion of ending lamination for Weil–

Petersson geodesic rays as follows: Note that here and throughout the paper all

geodesics would be parametrized by the arc length. Let r: [a, b) → Teich(S) be a complete

WP geodesic ray (a ray whose domain cannot be extended to the left end point b). First,

the weak∗ limit of an infinite sequence of weighted distinct Bers curves at times ti → b

is an ending measure of the ray r, and any curve α with limt→b α(r(ti)) = 0 is a pinching

curve of r. Now the union of supports of ending measures and pinching curves of r is

the ending lamination of r which we denote by ν(r).

Let g: I → Teich(S) be a WP geodesic, where I ⊆ R is an interval. Denote the left

and right end points of I by a, b, respectively, and let c be a point in the interior of I. If

g is extendable to b in Teich(S), including the situation that b ∈ I, then the forward end

invariant of g, denoted by ν+, is a (partial) Bers marking at g(b). If not, the forward end

invariant of g (also called the forward ending lamination) is the ending lamination of the

geodesic ray g(t)|[c,b) defined above. The backward end invariant (ending lamination) ν−

of g is defined similarly considering the ray g(−t)|(a,c]. Finally, the pair (ν−, ν+) is called

the end invariant of g.

For example, the end invariant of a geodesic segment g: [a, b] → Teich(S) is the

pair of markings (μ(g(a)), μ(g(b))).

For more detail about end invariants of WP geodesics and their application to

study the geometry and dynamics of Weil–Petersson metric see [4–6, 17, 29, 30].

2.8 Bounded combinatorics

Given R > 0, a pair of (partial) markings or laminations (μ, ν) has R–bounded

combinatorics if for any proper subsurface Y � S the bound

dY(μ, ν) ≤ R (2.11)

holds. If the bound holds only for non-annular subsurfaces of S we say that the pair has

non-annular R–bounded combinatorics.

The following theorem relates the non-annular bounded combinatorics of end

invariants to the behavior of WP geodesics.

Theorem 2.17. For any R > 0 there is an ε > 0 so that any WP geodesic ray r : [0, ∞) →
Teich(S) whose end invariant has non-annular R–bounded combinatorics visits the

ε–thick part of Teich(S) infinitely often.
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Limit Sets of Weil-Petersson Geodesics 13

Proof. The fact that an individual ray r visits an ε–thick part of Teich(S) infinitely

often is [4, Theorem 4.1]. To show that ε can be chosen uniformly for all geodesic

rays r whose end invariants have non-annular R–bounded combinatorics consider a

decreasing sequence εn → 0 and a sequence of WP geodesic rays rn : [0, ∞) → Teich(S)

with non-annular R–bounded combinatorics end invariants (μ(rn(0)), ν+
n ) and assume

that εn is the largest number that rn visits the εn–thick part of Teichmüller space

infinitely often. In particular, for each n ≥ 1 there is a time tn so that rn([tn, ∞)) does

not intersect the 2εn–thick part of Teich(S).

Since the end invariant of rn has non-annular R–bounded combinatorics,

a hierarchy path 
n between the end invariant is stable in the pants graph P(S)

[6, Theorem 4.3] [29, Theorem 5.13], in particular 
n and Q(rn), the image of rn under

Brock’s quasi-isometry (2.9), D–fellow travel in P(S) where the constant D depends only

on R. Theorem 2.5 then guarantees that any two points along 
n also satisfy the non-

annular bounded combinatorics condition (2.11) with a larger constant.

Now for any two times t1, t2 ∈ [0, ∞), let i1, i2 be so that d(
n(i1), Q(rn(t1))) and

d(
n(i2), Q(rn(t2))) are at most D. Then from the distance formula (2.2) we see that all

subsurface coefficients of the pair (
n(i1), Q(rn(t1))) and the pair (
n(i2), Q(rn(t2))) are

bounded by max{A, KD+KC} for a choice of threshold the A in the formula. This together

with the fact that the pair (
n(i1), 
n(i2)) has non-annular bounded combinatorics imply

that the pair (Q(rn(t1)), Q(rn(t2))) also satisfies the non-annular bounded combinatorics

condition for some R′ > R which depends only on R.

For R′ > 0 as above let the constants T0 > 0 and ε0 > 0 be as in Lemma 4.2 of

[4]. Let In ⊂ [tn, ∞) be an interval of length T0 which contains a time sn so that rn(sn)

is in the εn–thick part of Teichmüller space and sn → ∞ as n → ∞. By the previous

paragraph the end points of rn|In have non-annular R′–bounded combinatorics, so by

Lemma 4.2 of [4] after possibly passing to a subsequence the geodesic segments rn|In
intersect the ε0–thick part of Teichmüller space. But for n sufficiently large 2εn <ε0

and by the choice of In the segment rn|In does not intersect the 2εn–thick part, which

contradicts that rn|In intersects the ε0–thick part. The existence of a uniform ε for all r

with non-annular R–bounded combinatorics follows from this contradiction.
�

2.9 Isolated annular subsurfaces

In this section we recall the relevant aspects of the notion of an isolated annular

subsurface along a hierarchy path from [29, §6] and its consequences for our purposes

in this paper.
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14 J. Brock et al.

Let (μ, ν) be a pair of (partial) markings or laminations with non-annular R–

bounded combinatorics. A hierarchy path 
 : [m, n] → P(S), [m, n] ⊆ Z ∪ {±∞}, with end

points (μ, ν) is stable in the pants graph of S [6]. In particular, Q(g) the image of a WP

geodesic g with end invariant (μ, ν) under Brock’s quasi-isometry (2.9) D–fellow travels


 for a D > 0 depending only on R. For a parameter i ∈ [m, n], we say that the time t

corresponds to i, if Q(g(t)) is within distance D of 
(i), and vice versa.

Let i ∈ [m, n], and let Q be a pants decomposition within distance D of the point


(i), moreover let γ be a curve in Q. By [29, Definition 6.3] the annular subsurface with

core curve γ is isolated at i along 
 and hence by [29, Lemma 6.4] we have:

Lemma 2.18. (Annular coefficient comparison) There are positive constants w̄, b, and

B depending on R and a constant L depending only on the topological type of S, so that

for the curve γ , a time t corresponding to i, any s ≥ w̄ and s′ +�b s, we have:

dγ (μ(g(t − s′)), μ(g(t + s′))) +�B dγ (
(i − s), 
(i + s)), (2.12)

where μ(·) is a choice of Bers marking at the point. Moreover,

min{γ (g(t − s′)), γ (g(t + s′))} ≥ L. (2.13)

3 Sequences of curves on punctured spheres

In this section we construct a sequence of curves that satisfies the condition P of

Definition 2.6. This construction is a generalization of the one in [21] to spheres with

more punctures. Fix a sequence of positive integers E = {ek}∞k=0.

Let p ≥ 5 be an odd integer and S = S0,p be a sphere with p punctures. We

visualize S as the double of a regular p-gon (with vertices removed), admitting an order

p rotational symmetry, as in Figure 1. Let ρ: S → S be the counterclockwise rotation by

angle 4π/p. Set m = p−1
2 .

Next, let γ 0 be a curve obtained by doubling an arc connecting two sides of the

polygon adjacent to a common side. Then {ρj(γ0)}p−1
j=0 is a set of p curves that pairwise

intersection 0 or 2 times; see Figure 1. We let α = ρm(γ 0), and recall that Dα denotes the

positive Dehn twist about the curve α. For k ≥ 1, set

φk = D
ek+m−1
α ρ, and (3.1)

�k = φ1φ2 · · ·φk,

(in particular, �0 = id).
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Limit Sets of Weil-Petersson Geodesics 15

FIG. 1. S0,7 as a double of a 7–gon. The curves γ 0, γ 1, γ 2, γ 3 = α, γ 4, γ 5 and γ ′
6 = ρ(γ 5) are shown.

FIG. 2. For S0,7 and any k ≥ 3, applying �k−3 to any seven consecutive curves in the sequence,

γ k−3, . . ., γ k+3, gives γ0, . . . , γ5, γ (k)
6 = �k−3(γk+3) as shown here.

Define a sequence of curves � = �(E) = {γk}∞k=0, starting with γ 0, by the formula

γk = �k(γ0). (3.2)

Since a twist about α has no effect on a curve disjoint from it, for 0 ≤ j ≤ 2m − 1,

γk = �k−j(γj) = �k−m(α), (3.3)

for all k ≥ m. See Figure 2 for a picture illustrating 2m + 1 consecutive curves.

Proposition 3.1. The sequence �(E) = {γk}∞k=0 satisfies condition P(E) in Definition 2.6

for m = p−1
2 and b′ = b = 2.
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16 J. Brock et al.

Proof. The proof boils down to showing that, after applying an appropriate home-

omorphism, any 2m + 1 = p consecutive curves differ from γ 0, . . ., γ 2m only in the

amount of relative twisting of γ 0 and γ 2m around γ m; see Figure 2 and compare with

the construction from [21]. We now explain this in more detail.

First, observe that for j = 1, . . ., p − 2 = 2m − 1, i(α, ρj(γ 0)) = 0. Thus

γj = ρj(γ0),

for j = 0, . . ., 2m − 1. By construction, any two of these curves intersect 0 or 2 times,

while the first m are pairwise disjoint. Furthermore, the entire set of 2m curves fills S;

see Figure 1.

Next, for any k ≥ m, applying �−1
k−m to the 2m − 1 consecutive curves {γ k−m, . . .,

γ k+m−1}, (3.3) implies

�−1
k−m(γk−m+j) = γj (3.4)

for each j = 0, . . ., 2m − 1. Since k was arbitrary, it follows that any m consecutive curves

are pairwise disjoint and any 2m consecutive curves fill S. Thus, conditions (i) and (ii) of

P are satisfied.

For part (iii), let γ ′
k+m =�k−m(ρ(γ 2m−1)) =�k−m(ρ2m(γ 0)). Then, for j = 0, . . ., 2m

− 1, we may apply �−1
k−m, and we have

i(γ ′
k+m, γk−m+j) = i(ρ2m(γ0), γj) = i(ρ2m(γ0), ρj(γ0)) =

⎧
⎨
⎩

2 for j = m, and m − 1

0 otherwise,

which implies the intersection number requirement for (iii), with b′ = b = 2.

Finally, applying �k−m to γ k+m we get

�−1
k−m(γk+m) = φk−m+1 · · · φk+m(γ0) = φk−m+1

(
ρ2m−1(γ0)

)

= D
e(k−m+1)+m−1
α ρ(ρ2m−1(γ0)) = Dek

γm

(
ρp−1(γ0)

)
,

where we have used the fact that α = ρm(γ 0) = γ m. Therefore,

γk+m = �k−m

(
Dek

γm
(ρp−1(γ0)

)

= �k−mDek
γm

�−1
k−m�k−mρp−1(γ0)

= Dek
�k−m(γm)

(
γ ′

k+m

) = Dek
γk

(
γ ′

k+m

)
.

Therefore, part (iii) from P is also satisfied. �
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Limit Sets of Weil-Petersson Geodesics 17

Corollary 3.2. If E = {ek}∞k=0 satisfies ek+1 ≥ aek for all k and for an a > 1 sufficiently

large, then the conclusions of Theorem 2.8, Theorem 2.9, and Theorem 2.11 hold for the

sequence �(E) = {γk}∞k=0. In particular, the sequence determines a minimal, filling non-

uniquely ergodic lamination ν.

4 Limits of closed geodesics

Let S = S0,p be the p–punctured sphere where p ≥ 5 is an odd integer. Let α, ρ then be as

in §3, e be a positive integer, and fe = De
αρ. To relate this to the previous section, note

that for any fixed e, the sequence of mapping classes {φk}∞k=0 obtained from the constant

sequence E = {e}∞k=0 is constant; φk = f e for all k. Consequently, the sequence of curves

�(E) is obtained by iteration: �(E) = {f k
e (α)}k (after a shift of indices).

We assume in the following that e > E from Theorem 2.8. Then by Proposition 3.1

and Theorem 2.8, k �→ f k
e (α) is a f e–invariant quasi-geodesic in the curve complex,

and hence f e is pseudo-Anosov. By [19, Theorem 4.1] the sequence of curves {f k
e (α)}∞k=0

determines a projective measured lamination [ν̄+
e ] and {f k

e (α)}−∞
k=0 determines a projective

measured lamination [ν̄−
e ].

A key ingredient in our construction of a Weil–Petersson geodesic ray in §5 will

be a very precise understanding of the limiting picture of the axes ge of the pseudo-

Anosov mapping classes f e, as e tends to infinity. The main results of this section are

Proposition 4.5 in which we describe a biinfinite piecewise geodesic in Teich(S) which

approximate the geodesics ge in the Hausdorff topology and gives us the necessary

limiting picture for ge as e → ∞.

Our analysis of the axes ge of f e begins with an analysis of the action of ρ on

Teich(S) and certain strata in the Weil–Petersson completion. Observe that the quotient

of S by 〈ρ〉 is a sphere with one puncture and two cone points. A fixed point of ρ in

Teich(S) is a ρ–invariant conformal structure on S or, equivalently, a conformal structure

obtained by pulling back a conformal structure on the quotient S/〈ρ〉. Since the sphere

with three marked points is rigid, there is a unique such conformal structure, and hence

exactly one fixed point Z ∈ Teich(S) for the action of ρ.

Proposition 4.1. For the stratum S(v) defined by a multicurve v, there exists a point

X0 ∈ S(v) so that

dWP (X0, ρ(X0)) = inf
Y∈S(v)

dWP(Y, ρ(Y)).
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18 J. Brock et al.

Remark 4.2. Note that unless S(v) is a point (i.e., v is a pants decomposition), S(v) is

not compact.

Now we define the function

F : Teich(S) → R
≥0,

by F(X) = dWP(X, ρ(X)). The proposition is then equivalent to showing that the restriction

of F to the closure S(v) attains a minimum value. We begin with a lemma.

Lemma 4.3. The function F : Teich(S) → R
≥0 is convex, 2–Lipschitz, and for any R > 0,

F−1([0, R]) is a bounded set.

Proof. Since the completion of the Weil–Petersson metric is CAT(0), the distance

function on Teich(S) is convex, and hence so is F. The triangle inequality proves that

F is 2–Lipschitz, since

|F(Y) − F(X)| = ∣∣dWP(Y, ρ(Y)) − dWP(X, ρ(X))
∣∣

≤ ∣∣dWP(X, Y) + dWP(X, ρ(Y)) − dWP(X, ρ(X))
∣∣

≤ dWP(X, Y) + dWP(ρ(X), ρ(Y))

= 2dWP(X, Y).

Let Z ∈ Teich(S) be the fixed point of the action of ρ on Teich(S) and suppose that

R0 > 0 is sufficiently small so that BR0(Z), the closed ball of radius R0 in Teich(S) about

Z, is contained in Teich(S), and thus is compact. Let R1 > 0 be the minimum value of F

on ∂BR0(Z).

For any Y ∈ Teich(S) \ BR0(Z), let Y0 be the unique point of intersection of the

geodesic from Z to Y with the sphere ∂BR0(Z). Then it follows that dWP(Y, Z) = R0 +

dWP(Y, Y0), and so convexity of F implies

F(Y0) ≤ R0

dWP(Y, Z)
F(Y) + dWP(Y, Y0)

dWP(Y, Z)
F(Z)

But then since F(Z) = 0 and F(Y0) ≥ R1 we have

F(Y) ≥ dWP(Z, Y)

R0
F(Y0) ≥ dWP(Z, Y)

R0
R1.

Downloaded from https://academic.oup.com/imrn/advance-article-abstract/doi/10.1093/imrn/rny002/4847021
by Bora Laskin Law Library user
on 19 February 2018



Limit Sets of Weil-Petersson Geodesics 19

Rearranging the above inequality, we have

dWP(Z, Y) ≤ R0

R1
F(Y)

and hence if R > R0 and F(Y ) ≤ R, then we have dWP(Z, Y) ≤ R0R
R1

. That is, F−1([0, R]) ⊂
BR0R/R1(Z), as required. �

Proof of Proposition 4.1. Any stratum in S(v) has the form S(v′) for a multicurve v′

containing v. Observe that the infimum of the function F on any stratum S(v′) in S(v)

is no less than the infimum of F on S(v). Let S(v′) in S(v) be a stratum in the closure

having minimal dimension, so that the infimum of F on S(v′) is equal to the infimum on

S(v). It suffices to show that the infimum of F on S(v′) is realized on S(v′).
Let {Xn}∞n=1 ⊂ S(v′) be an infimizing sequence for F on S(v′); that is

lim
n→∞ F(Xn) = inf

X∈S(v′)
F(X). (4.1)

Let R < ∞ be such that F(Xn) ≤ R for all n ≥ 1. Lemma 4.3 then implies that there exists

D > 0 such that dWP(Z, Xn) ≤ D for all n ≥ 1.

By the triangle inequality, the lengths of the geodesic segments [X1, Xn] are

bounded by 2D. Let S1, . . ., Sm be the connected component of S\v′. Then S(v′) is

isometric to pr odm
j=1 Teich(Sj) with the product of WP metrics on each factor. Let

ζn : [0, Tn] → pr odm
j=1 Teich(Sj) be the parametrization of [X1, Xn] by arc length. Let

prj :
m∏

j=1

Teich(Sj) → Teich(Sj)

be the projection to the j-the factor and let ζ
j
n : [0, Tj

n] → Teich(Sj) be parametrization by

arc length of prj ◦ ζn. Note that Tj
n ≤ 2D for j = 1, . . ., m. So for a fixed j, trimming the

intervals and reparametrization we get a sequence of geodesic segments ζ
j
n : [0, Tj] →

Teich(Sj) of equal length. We may then apply Theorem 2.13 (Geodesic Limit Theorem)

to the sequence of geodesic segments ζ
j
n : [0, Tj] → Teich(Sj). Let the multicurves σ

j
i ,

i = 0, . . ., kj + 1, the multicurve τ̂ j, the partition tj
0 < . . . < tj

kj+1, and the piecewise

geodesic ζ̂ j be as in the theorem. Also let the elements of mapping class group ψ
j
n and

ϕ
j
l,n, l = 1, . . . , kj be as in the theorem. Note that by the theorem when kj ≥ 1 we have

that ζ̂ j(tj
1) ∈ S(σ

j
1) and limn→∞ ϕ

j
1,n(ζ

j
n(tj

1)) = ζ̂ j(tj
1).
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20 J. Brock et al.

Since the geodesics ζ
j
n have a common starting point prj(X1), it follows that ψ

j
n is

the identity map for all n. Hence, if kj = 0, then after possibly passing to a subsequence

the points prj(Xn) converge.

First suppose that kj = 0 for all j = 1, . . ., m, then after possibly passing to

a subsequence all sequences prj(Xn) converge as n → ∞. As a result the points Xn

converge and we are done.

Now we suppose that kj ≥ 1 for some j, let β ∈ σ
j
1, and we derive a contradiction.

Note that prj(X1) and prj(Xn) are in Teich(Sj). Claim 4.9 in the proof of Theorem 4.1 in

[29] tells us that for Bers markings μ(prj(X1)) and μ(prj(Xn)) and curves βn = (ϕ
j
1,n)−1(β),

dβn

(
μ(prj(X1)), μ(prj(Xn))

)
→ ∞.

as n → ∞.

Now recall that ϕ
j
1,n = T j

1,n ◦ ψ
j
n, also that T j

1,n is the composition of a power of

the Dehn twist about the curve βn and powers of Dehn twists about curves disjoint from

βn. Moreover, as we saw above ψn is identity. Thus βn ≡ β for all n. Therefore the above

limit becomes

dβ

(
μ(prj(X1)), μ(prj(Xn))

)
→ ∞

as n → ∞. We may then choose a sequence {nk}∞k=1 so that

dβ

(
μ(prj(Xnk)), μ(prj(Xnk+1))

)
→ ∞ (4.2)

as k → ∞. �

Claim 4.4. There exists a sequence of points {Ynk}k on the geodesic segments

[Xnk , Xnk+1 ] with the property that the distance between Ynk and S(v′ ∪ β) goes to 0.

Proof. It suffices to show that there is a sequence of points Ynk on [Xnk , Xnk+1 ] so

that the distance between prj(Ynk) and S(β) ⊂ Teich(Sj) goes to 0. If the distance

between prj(Xnk) and S(β) goes to 0, the sequence Ynk = Xnk is the desired sequence.

Otherwise, there is a lower bound for the distance between prj(Xnk) and S(β). Moreover,

by Corollary 2.16 we have

dWP(prj(Xnk),S(β)) ≤
√

2πβ(prj(Xnk)).
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Thus we obtain a lower bound for β(prj(Xnk)). Appealing to Theorem 2.14, the annular

coefficient limit (4.2) provides a point Yj
nk

on [prj(Xnk), prj(Xnk+1)] so that β(Yj
nk

) → 0,

and hence again by Corollary 2.16 the distance between Yj
nk

and S(β) goes to 0. Now the

points Ynk on [Xnk , Xnk+1 ] with prj(Ynk) = Yj
nk

are the desired points. �

It follows from the above claim and the convexity of the function F that

F(Ynk) ≤ max
{
F(Xnk), F(Xnk+1)

}
. (4.3)

Therefore, {Ynk} is also an infimizing sequence for the function F on S(v). Let Yk
′ be the

closest point to Ynk in S(v′ ∪ β). Since the distance of the points Ynk and S(v′ ∪ β) goes

to 0 we have that

dWP
(
Ynk , Y ′

k

) → 0

and therefore F(Ynk) and F(Yn
′) have the same limit since F is 2–Lipschitz. Therefore

{Yk
′}k is a infimizing sequence for the function F in the stratum S(v′ ∪ β), but this

stratum has dimension less than that of S(v′). This contradiction finishes the proof

of the proposition.

Now we can describe the biinfinite piecewise geodesics gω
e ⊂ Teich(S) which

approximate the geodesics ge, the axes of the pseudo-Anosov mapping classes f e as

follows. First, appealing to Proposition 4.1, let X0 ∈ S(ρ−1(α)) be a point where the

function F(X) = dWP(X, ρ(X)) is minimized in the closure of the stratum S(ρ−1(α)).

As already observed, on S(ρ−1(α)), we have fe = De
αρ = ρ since De

α acts trivially on

ρ(S(ρ−1(α))) = S(α). Consequently, f e(X0) = ρ(X0), and we may concatenate the geodesic

segment ω = [X0, ρ(X0)] with its f e–translates to produce an f e–invariant, biinfinite

piecewise geodesic in Teich(S):

gω
e = · · · ∪ f −2

e (ω) ∪ f −1
e (ω) ∪ ω ∪ fe(ω) ∪ f 2

e (ω) ∪ · · · (4.4)

Proposition 4.5. The path gω
e is a biinfinite piecewise geodesic that fellow travels ge,

and the Hausdorff distance between gω
e and ge tends to 0 as e → ∞.

For the proof of the proposition we need the following theorem which is a

characterization of the short curves along the geodesic ge. In the following let E > 0

be the constant from Theorem 2.8.
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Theorem 4.6. There exists ε > 0 so that for all e > E and every point of ge, at most one

curve on S has length less than ε, and such a curve is in the set {f k
e (α)}k∈Z (with α as in

§3). Moreover, let te be the translation length of f e, then after reparametrization of ge

we have that the minimal length of the curve f k
e (α), k ∈ Z along ge is realized at kte and

tends to zero as e → ∞.

Proof. Let ν±
e , as before, be the laminations determined by the sequences of curves

{f k
e (α)}±∞

k=0. There is a uniform bound for all subsurface coefficients of the pairs (ν−
e , ν+

e )

except those of {f k
e (α)}k∈Z. This follows from the fact that in Theorem 2.8 the upper

bound R depends only on the parameters from Definition 2.6 and the initial marking μ

which is the same for all f e.

Similarly we have

df k
e (α)

(
ν−

e , ν+
e

) +� e (4.5)

for all k ∈ Z, where the additive error is independent of e.

Let 
e : [−∞, +∞] → P(S) be a hierarchy path between the pair (ν−
e , ν+

e ) (see

[28]). Since the pair has non-annular R–bounded combinatorics 
e is stable in P(S)

[6, Theorem 4.3] [29, Theorem 5.13]. Therefore, 
e and Q(ge), the image of ge under

Brock’s quasi-isometry (2.9) D–fellow travel, where the constant D ≥ 0 depends only

on R. �

Lemma 4.7. There is an ε2 > 0, so that for all e > E, ge visits the ε2–thick part of

Teich(S) infinitely often in both forward and backward times.

Proof. Let μ(ge(0)) be a Bers marking at ge(0), and let i be so that 
e(i) is within

distance D of Q(ge(0)). Then all non-annular subsurface coefficients of the pair (
e(i),

Q(ge(0))) are bounded by max{KD + KC, A} by the distance formula (2.2) for a choice

of threshold A. Moreover, by Theorem 2.5 all non-annular subsurface coefficients of

the pair (
e(i), ν+
e ) are bounded by an enlargement of R. Combining the bounds with

the triangle inequality in the curve complex of each subsurface then implies that

(μ(ge(0)), ν+
e ), the end invariant of ge|[0,∞), has non-annular bounded combinatorics,

independent of e. Theorem 2.17, then guarantees that for an ε2 > 0, independent of e,

the geodesic ray ge|[0,∞) visits the ε2–thick part of Teich(S) infinitely often. The proof

of that the geodesic ray ge|[0,−∞) visits the ε2–thick part of Teich(S) infinitely often is

similar. �
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Now we prove the following:

Lemma 4.8. There exists ε1 > 0, depending only on R, so that for all e > E the length

of each curve γ /∈ {f k
e (α)}k is bounded below by ε1 along ge.

Proof. Suppose that for a t ∈ R the length of γ at ge(t) is less than the Bers

constant. Then, γ ∈ Q(ge(t)) and thus γ is isolated at some i along 
e; for the discussion

about isolated annular subsurfaces see §2.9. By Lemma 2.18, there are constants w̄, b

depending only on R and a constant L such that for any s > w̄ and s′ +�b s,

min
{
γ (ge(t − s′)), γ (ge(t + s′))

} ≥ L.

Fix s, s′ as above and fix u < s′. Let J = [t − s′ + u, t + s′− u]. Then, Theorem 2.15

applies to the geodesic segment ge|[t+s′,t−s′] and implies that for any integer N ≥ 1, there

is an ε ∈ (0, L/2) so that

if inf
r∈J

γ (ge(r)) < ε, then dγ (μ(ge(t − s′)), μ(ge(t + s′))) > N, (4.6)

where μ(·) denotes a Bers marking at the given point.

According to Lemma 2.17 there is a constant B > 0 depending only on R such

that

dγ

(
μ

(
ge(t − s′)

)
, μ

(
ge(t + s′)

)) +�B dγ (
e(i − s), 
e(i + s)) . (4.7)

Further, suppose that γ is not in the set {f k
e (α)}k∈Z. Then the upper bound for

dγ (ν−
e , ν+

e ) and Theorem 2.5 for the parameters −∞, i − s, i + s, ∞ of 
e give us an upper

bound for the subsurface coefficient

dγ (
e(i − s), 
e(i + s))

depending only on R. So by (4.7) we get an upper bound for

dγ (μ(ge(t − s′)), μ(ge(t + s′))

depending only on R. On the other hand, since t ∈ J by (4.6) if γ (g(t)) gets arbitrary

small, then dγ (μ(ge(t − s′)), μ(ge(t + s′))) would become arbitrary large, which contradicts

the upper bound we just obtained. Therefore, there is a lower bound ε1 > 0 for the length
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of γ at time t which depends only on R. Since t was arbitrary the proof of the lemma is

complete. �

The length of each one of the curves in the set {f k
e (α)}k∈Z is strictly convex along

ge ([36]), and so has a unique minimum. The unique minimum for f k
e (α) occurs at the

f k
e –image of the point where α is minimized. Thus, we can parameterize ge by arc length

so that for te the WP translation length of f e, the length of the curve f k
e (α) is minimized

at ge(kte).

By Lemma 4.7 there is an ε2 > 0 so that for all e > E, ge visits the ε2–thick

part infinitely often in both forward and backward times. Let te
′∈ (0, te) be a time for

which ge(te
′) is in the ε2–thick part. But then ge(kte + te

′) is in the thick part for all

k. In particular, by convexity of the length of α, it follows that outside the interval

(−te + te
′, te

′), 2ε2 is a uniform lower bound for the length of α. Likewise, the length

of f k
e (α) is uniformly bounded below by 2ε2 outside the interval ((k − 1)te + te

′, kte + te
′).

Consequently, for k �= k′, the curves f k
e (α) and f k′

e (α) cannot simultaneously have length

less than 2ε2.

As we saw in Lemma 4.8 the only curves which can get shorter than ε1 along ge

are {f k
e (α)}k. Moreover, since we saw above that two of these curves cannot get shorter

than ε2 at the same time, the first statement of the theorem holds for ε = min{ε1, 2ε2}.
Let the laminations ν±

e be as before, and let 
e be a hierarchy path between ν−
e

and ν+
e . Recall that 
e is stable and that 
e and Q(g), D–fellow travel for a D that depends

only on R.

Note that by (4.5) each curve f k
e (α) (k ∈ Z) for e sufficiently large has a big enough

subsurface coefficient that f k
e (α) is in 
e(i) for an i in the domain of 
e by [28, Lemma 6.2

(Large link)]. Thus f k
e (α) is isolated at i along 
e (see §2.9). Let t be a time so that Q(ge(t))

is within distance D of 
e(i). Then for constants w̄, b, B from Lemma 2.18 and any s ≥ w̄

and s′ +�b s we have that

dγ (μ(ge(t − s′)), μ(ge(t + s′))) +�B dγ (
e(i − s), 
e(i + s)).

Thus the bound df k
e (α)

(ν−
e , ν+

e )
+� e and Theorem 2.5 for the parameters −∞, i − s, i + s, ∞

of 
e imply that

dγ (μ(ge(t − s′)), μ(ge(t + s′))) +� e.

Moreover, for the constant L > 0 form Lemma 2.18 we have that

min{γ (ge(t − s′)), γ (ge(t + s′))} ≥ L.
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Now fix s, s′, then Theorem 2.14 applies to geodesic segment ge|[t−s′,t+s′] and

implies that

inf
r∈[t−s′,t+s′]

f k
e (α)

(ge(t)) → 0

as e → ∞. But the minimal length of f k
e (α) is realized at kte so

lim
e→∞ f k

e (α)
(ge(kte)) = 0.

This completes the proof of the second statement of the theorem.

We continue to use te > 0 to denote the WP translation length of f e and assume

the geodesic ge is parameterized as in the proof of the theorem above. Then, in particular

the minimal length of f k
e (α) along ge is realized at time kte and f k

e (α)
(ge(kte)) → 0 as

e → ∞. Likewise, {(k − 1)te + t′
e}k∈Z denotes times when ge intersects the fixed thick part

of Teich(S). Also, note that the minimum of the length of f k
e (α) is realized at kte (k ∈ Z)

and lime→∞ f k
e (α)

(kte) = 0.

To prove Proposition 4.5 we also need the following lemma about the limit of

translation length of f e.

Lemma 4.9. The translation distance te of f e limits to |ω| the length of ω; that is,

lim
e→∞ te = dWP(X0, ρ(X0)) = |ω|,

where X0 ∈ S(ρ−1(α)), as before, is the point where dWP(X0, ρ(X0)) = infX∈S(ρ−1(α)) dWP(X,

ρ(X)).

Proof. Let Ye ∈ S(ρ−1(α)) be the closest point to ge(−te) (and hence closest to the entire

geodesic ge). Then fe(Ye) = De
αρ(Ye) = ρ(Ye), and hence

dWP(fe(Ye), Ye) = dWP(ρ(Ye), Ye) ≥ dWP(X0, ρ(X0)).

Moreover, ρ−1(α) = f −1
e (α) so the minimal length of ρ−1(α) along ge is realized at time −

te and ρ−1(α)(ge(−te)) → 0 as e → ∞. By Corollary 2.16 the distance between ge(−te) and

S(ρ−1(α)) is bounded above by
√

2πρ−1(α)(ge(−te)), so we obtain

dWP(Ye, ge(−te)) = dWP(fe(Ye), ge(0)) → 0
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as e → ∞. It follows then from the triangle inequality that

lim inf
e→∞ te = lim inf

e→∞ dWP(ge(−te), ge(0))

≥ lim inf
e→∞

(
dWP(Ye, fe(Ye)) − dWP(ge(−te), Ye) − dWP(fe(Ye), ge(0))

)

≥ dWP(X0, ρ(X0)).

On the other hand, since ge is the geodesic axis of f e, te is less than the distance

that f e translates along gω
e , which is precisely |ω| = dWP(X0, ρ(X0)). That is, te ≤ dWP(X0,

ρ(X0)), and hence

lim sup
e→∞

te ≤ dWP(X0, ρ(X0)).

Combining this with the above, we have lim
e→∞ te = dWP(X0, ρ(X0)), completing the proof

of the lemma. �

We are now ready for the proof of Proposition 4.5.

Proof of Proposition 4.5. We recall that ge intersects a fixed thick part of Teichmüller

space, independent of e, at the times (k − 1)te + te
′, for all k ∈ Z. Denote the closest

point on gω
e to the point ge((k − 1)te + te

′) by Xe,k. The distance between Xe,k and ge((k

− 1)te + te
′) must tend to zero as e → ∞. Otherwise, the strict negative curvature in

the thick part of Teich(S) would imply a definite contraction factor δ < 1 for the closest

point projection to ge restricted to gω
e for all e sufficiently large. Since Xe,k+1 = f e(Xe,k),

dWP(Xe,k, Xe,k+1) = |ω|. Now by the contraction of the projection on ge and Lemma 4.9 we

would have that

|ω| = lim
e→∞ te ≤ δ|ω|

an obvious contradiction. The sequence of points {Xe,k}k∈Z is f e–invariant and its

distance to ge tends to 0 as e → ∞. Appealing to the CAT(0) property of Teich(S), the

furthest point of gω
e to ge must also have distance tending to 0, and hence the Hausdorff

distance between ge and gω
e tends to 0, as desired. �

Corollary 4.10. The point X0 ∈ S(ρ−1(α)) where the minimum of the function F(X) =
dWP(X, ρ(X)) (restricted to S(ρ−1(α))) is realized lies in S(ρ−1(α)). Moreover,

lim
e→∞ ge([−te, 0]) = ω.
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Proof. First recall that f −1
e (α)

(ge(−te)) = ρ−1(α)(ge(−te)) and that α(ge(0)) goes to

0 as e → ∞. The distance between the point ge(−te) and the stratum S(ρ−1(α)) by

Corollary 2.16 is bounded above by
√

2πρ−1(α)(ge(−te)), and hence tends to zero. Thus

the point ge(−te) converges to the closure of S(ρ−1(α)). From Theorem 4.6, the only curve

which is very short (has length less than ε) at ge(−te) is ρ−1(α), so the point ge(−te)

converges to S(ρ−1(α)). Similarly we can see that ge(0) converges to S(α).

Moreover, since ge is a geodesic and ge(0) = ρ(ge(−te)) the point ge(−te) converges

to X0 at which the minimum of the function F is realized. Also, ge(0) converges to ρ(X0).

By the non-refraction of the property of WP geodesics (Theorem 2.12) then the

interior of ω lies in Teich(S). The limiting behavior of the geodesic follows from the

CAT(0) property of the metric on Teich(S). �

The geodesic axis ge descends to a closed geodesic ĝe in M(S0,p) and ω descends

to a geodesic segment ω̂ in M(S0,p). The previous corollary immediately implies the

following.

Corollary 4.11. As e → ∞, we have convergence ĝe → ω̂ ⊂ M(S0,p).

For any e > 0, we let δe denote the geodesic segment from the midpoint of ω to

the midpoint of f e(ω). We also let ω− and ω+ denote the first and second half-segments

of ω, respectively (so ω = ω−∪ ω+ and ω−∩ ω+ is the midpoint of ω). Our construction in

the next section will use the following.

Lemma 4.12. Given ε > 0, there exists N > 0 so that for all e ≥ N, the triangle with

sides δe, ω+, and f e(ω−) has angles less than ε at the endpoints of δe, and the Hausdorff

distance between δe and ω+ ∪ f e(ω−) is at most ε.

Proof. By Proposition 4.5 and Corollary 4.10, the segment ge([− te
2 , te

2 ]) can be made

as close as we like to ω+ ∪ f e(ω−). Since ge([− te
2 , te

2 ]) and δe are both geodesics in a

CAT(0) space, and since their endpoints become closer and closer as e tends to infinity, it

follows that the distance between ge([− te
2 , te

2 ]) and δe tends to zero as e → ∞. Therefore,

the distance between δe and ω+ ∪ f e(ω−) tends to zero as e → ∞. This proves the second

statement of the lemma.

Short initial segments of δe and ω+ are both geodesics in a Riemannian manifold;

they have a common initial point, and the initial segment of δe converges to that of ω+

as e → ∞. It follows that the angle between δe and ω+ tends to zero as e → ∞. A similar
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argument (composing with f −1
e ) shows that the angle at endpoint of δe and f e(ω−) tends

to zero as e → ∞. This proves the first statement of the lemma. �

5 The non-uniquely ergodic case

Given a sequence of integers E ⊂ N in this section first we construct a WP geodesic

ray r that is strongly asymptotic to the piecewise geodesic gω
E in Teich(S) similar to the

construction in §4, but now for a non-constant sequence E ; see (5.3). The proof of strong

asymptoticity involves producing regions with definite total negative curvature on ruled

surfaces and an application of the Gauss–Bonnet Theorem (c.f. [6, 30]). The asymptoticity

to gω
E helps us to develop good control on lengths of curves along r in §5.2 and determine

the limit set of r in the Thurston compactification of Teichmüller space in §5.3. In §5.4

we prove a technical result required for determining the limit sets of rays in §5.3.

5.1 Infinite geodesic ray

Consider a sequence E = {ek}k ⊂ N with e0 > E and ek+1 ≥ aek for some a > 1 and all k,

to which we will impose further constraints later. We write φk, �k = φ1· · ·φk−1φk, and

�(E) = {γk}∞k=0 as in (3.1) and (3.2) in §3. Recall from (3.3) that γ k =�k−m(α) for all k ≥ m.

Moreover, recall that the sequence {γ k}k converges to a minimal non-uniquely ergodic

lamination ν in EL(S) by Corollary 3.2.

Let ω denote the Weil–Petersson geodesic segment connecting the point X0 ∈
S(ρ−1(α)) to ρ(X0) ∈ S(α) as in §4. Note that X0 ∈ S(ρ−1(α)) and so

�k(X0) ∈ S(�k(ρ−1(α))) = S(�k−1(α)) = S(γk+m−1). (5.1)

Write δk for the geodesic segment connecting midpoints of ω and φk(ω) (compare

with §4 and Lemma 4.12). The endpoint of δk on ω will be called its initial endpoint, and

the one on φk(ω) its terminal endpoint. The image of δk under any mapping class will

have its endpoints labeled as initial and terminal according to those of δk.

With this notation, we claim that the terminal endpoint of �k(δk+1) is the same

as the initial endpoint of �k+1(δk+2). Indeed, applying �−1
k to this pair of arcs, we have

δk+1 and φk+1(δk+2). The terminal endpoint of δk+1 is the midpoint of φk+1(ω). This is the

φk+1–image of the midpoint of ω, which is also the φk+1–image of the initial endpoint of

δk+1, as claimed.

Concatenating segments of this type defines a half-infinite path:

RE = δ1 ∪ �1(δ2) ∪ �2(δ3) ∪ �3(δ4) ∪ · · · . (5.2)
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FIG. 3. The concatenation of geodesic segments δ1, �1(δ2), . . ., �4(δ5) defining R5
E ⊂ RE and ω ∪

�1(ω) ∪ . . . ∪ �5(ω) ⊂ gω
E , together with the geodesic segment r5 connecting the endpoints of R5

E .

This path fellow-travels the concatenation of ω and its translates:

gω
E = ω ∪ �1(ω) ∪ �2(ω) ∪ �3(ω) ∪ · · · . (5.3)

By (5.1), projecting RE and gω
E to the curve complex (via the systole map) gives

paths fellow traveling {γk}∞k=0. By Proposition 3.1 and Theorem 2.8, it follows that these

are quasi-geodesics in the curve complex. Since the projection to the curve complex is

coarsely Lipschitz, so RE and gω
E are also quasi-geodesics.

We will also be interested in a truncation of RE after k steps:

Rk
E = δ1 ∪ �1(δ2) ∪ · · · ∪ �k−1(δk),

and let rk denote the geodesic segment connecting the initial and terminal point of the

broken geodesic segment Rk
E ; see Figure 3.

The angle between consecutive segments �k−1(δk) and �k(δk+1) will be denoted

θk. Applying �k−1, this is the same as the angle between δk and φk(δk+1). Observe that

the angle θk is at least π minus the sum of the angle between δk and φk(ω) and φk(δk+1)

and φk(ω) (with appropriate directions chosen). Since φk = D
ek+m−1
α ρ = fek+m−1 , by taking

ek+m−1 and ek+m sufficiently large, appealing to Lemma 4.12 we can ensure that θk is

as close to π as we like. In particular, we additionally assume that our sequence {ek}k

grows fast enough that

∞∑
k=1

π − θk < 1. (5.4)

We can also (clearly) assume that the integers ek are all large enough so that

θk ≥ π
2 for all k.
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Remark 5.1 While we have imposed growth conditions here to control angles, it is

worth mentioning that these are in addition to those conditions already imposed to

prove non-unique ergodicity.

Proposition 5.2. The geodesic segments rk limit to a geodesic ray r as k → ∞, and all

three of r, RE , and gω
E are strongly asymptotic (the distance between any pair of them

tends to zero).

Proof. According to the last part of Lemma 4.12, RE and gω
E are strongly asymptotic.

Therefore, it suffices to prove that rk has a limit r, and that this is asymptotic to RE .

Before proceeding, we note that �k(X0) lies in the stratum S(�k(ρ−1(α))) = S(�k−1(α)) =
S(γk+m).

Let {vi}∞i=0 denote the concatenation points of RE . Denote by Pk a ruled polygon

bounded by rk and Rk
E . This polygon has vertices v0, . . ., vk. Let θk

i denote the interior

angles of Pk at vi, for i = 0, . . ., k, and observe that for 0 < i < k, we have θi ≤ θk
i . In

addition, there are constants c0 < 0 and d0 > 0 so that the d0–neighborhood of vi in Pk

has Gaussian curvature K ≤ c0. Consequently, for any d < d0, if rk is disjoint from the

d–neighborhood Nd(vi) of vi, then since θk
i ≥ π

2 , Nd(vi) ∩ Pk contains a quarter-sector

of a disk of radius d centered at vi in a surface of curvature at most c0. Therefore, the

integral of the curvature K over Nd(vi) ∩ Pk satisfies

∫

Nd(vi)∩Pk

K dA ≤ c0πd2

4
.

By the Gauss–Bonnet Theorem (see, e.g., [11, Theorem V.2.5]), we have

∫

Pk

KdA +
k∑

i=0

(
π − θk

i

)
= 2π

which implies

θk
0 + θk

k −
k−1∑
i=1

(
π − θk

i

)
=

∫

Pk

KdA.

For any d > 0, let i1, i2, . . ., ij denote those indices i for which Rk
E is more than d away

from vi. Then by our assumption on the angles θ i in (5.4) we have

θk
0 + θk

k − 1 ≤ θk
0 + θk

k −
k−1∑
i=1

(
π − θk

i

)
=

∫

Pk

KdA

≤
j∑

=1

∫

Nv
∩Pk

KdA ≤ jc0πd2

4
.
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Since c0 < 0, this implies

j ≤
4

(
θk

0 + θk
k − 1

)

c0πd2 ≤
4|1 −

(
θk

0 + θk
k

)
|

|c0|πd2 ≤ 4(1 + 2π)

|c0|πd2 .

This bounds the number of vertices along Rk
E that can be further than d away

from rk by some number J(d), which is independent of k. Therefore, for any N > 0

and k, k′≥ N + 2J(d) + 1, there is a vertex vi of RE with N ≤ i ≤ min{k, k′} so that

rk and rk′ contain points xk and xk′ , respectively, which are within distance d of vi.

Therefore, xk and xk′ are within distance 2d of each other. Since RE is a quasi-geodesic,

the distance from vi to v0 tends to infinity with i. Consequently, as N tends to infinity,

the distance from xk and xk′ to v0 also tends to infinity. By convexity of the distance

function between two geodesic segments in a CAT(0) space, it follows that for any D >

0, the initial segments of {rk}k of length D form a Cauchy sequence in the topology of

uniform convergence. By completeness of Teich(S), these segments of length D converge.

Letting D tend to infinity, it follows that rk converges (locally uniformly) to a geodesic

ray r.

For any d > 0, suppose that vi is a vertex of RE further than 2d away from any

point of r. For k sufficiently large, it follows that rk is further than d from vi. Since

there are at most J(d) of the latter indices i, it follows that r must come closer than

2d from all but J(d) vertices. In particular, there exists N(d) so that for all i ≥ N(d), r

comes within 2d of vi. By convexity of the distance between geodesics in the WP metric,

the distance of any point on RE lying between consecutive vertices vi and vi+1 (for i

≥ N(d)) and r is no more than 2d. Therefore, the tail of RE starting at vN(d) is within

Hausdorff distance 2d from some tail of r. Since d was arbitrary, it follows that RE and

r are strongly asymptotic, as required. �

In the rest of this section let r : [0, ∞) → Teich(S) be the geodesic ray from

Proposition 5.2.

5.2 Curves along r

The following lemma is a straightforward consequence of the setup of curves {γ k}k in §3

and the choice of the segment ω in the previous section which we record as a convenient

reference.
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Lemma 5.3. For any k ≥ m − 1 the initial and terminal endpoints of �k−m+1(ω) are in

the strata S(γk) and S(γk+1), respectively. Furthermore, for any compact subsegment I

⊂ int(ω), the 2m consecutive curves

{γk−m+1, . . . , γk+m}

have bounded length on �k−m+1(I), with the bound depending on the choice of interval

I, but independent of k.

Proof. Recall that α = ρm(γ 0) = ρ(γ m−1), and hence X0 ∈ S(α) = S(γm−1). Consequently

�k−m+1(X0) ∈ S(γk), since �k−m+1(γ m−1) = γ k; see (3.4). Thus the initial endpoint of

�k−m+1(ω) is in S(γk). Since the terminal endpoint of �k−m+1(ω) is the initial endpoint of

�k−m+2(ω), this common endpoint lies in S(γk+1), proving the first statement.

The compact subsegment I ⊂ int(ω) is entirely contained in Teichmüller space,

and hence the curves γ 0, . . ., γ 2m−1 have bounded length in I. Since the �k−m+1–image

of these curves are precisely those listed in the lemma, the second statement also

follows. �

Theorem 5.4. There exists a sequence {tk}∞k=1 which is eventually increasing, such that

lim
k→∞

γk(r(tk)) = 0. Furthermore, for any ε > 0 sufficiently small, the set of curves with

length less than ε along r is contained in {γk}∞k=0 and contains a tail of this sequence,

{γ k}k≥N, for some N = N(ε) ∈ Z.

Proof. Since r is strongly asymptotic to gω
E by Proposition 5.2 we may choose tk so that

dWP(r(tk),S(γk)) → 0

as k → ∞. Then by the formula

dWP(r(tk),S(γk)) =
√

2πγk(r(tk)) + O
(
γk(r(tk))5/2

)

from Corollary 2.16, where the constant of the O notation depends only on an upper

bound for the length of γ k at the point r(tk), we see that

lim
k→∞

γk(r(tk)) = 0.
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Since gE passes through the strata {S(γk)}k in order (i.e., gω
E intersects S(γk) before

S(γk+1)), the times when r comes close to {S(γk)}k also occur in order. This proves the

first statement.

For the second statement, we note that the first statement implies that for any ε

> 0, there exists N(ε) > 0 so that for all k ≥ N(ε), γ k has length less than ε at some point

along r (in fact, at the point r(tk)). Moreover, by Lemma 5.3 �k−m+1(ω) goes from S(γk) to

S(γk+1), and no other curves become very short along �k−m+1(ω). Again appealing to the

fact that r is asymptotic to gω
E , it follows that for k sufficiently large, the only curves of

length less than ε on r([tk, tk+1]) are γ k and γ k+1. Therefore, for ε sufficiently small, the

only curves that can have length less than ε along r are from {γ k}k. �

Because r is asymptotic to gω
E , there is a version of Lemma 5.3 for r. We will

consider sequences {sk}k ⊂ [0, ∞) satisfying one of the following:

(C1) There exists ε > 0 such that tk + ε < sk < tk+1 −ε, or

(C2) lim
k→∞

|tk+1 − sk| = 0.

Corollary 5.5. Suppose that {sk}k ⊂ [0, ∞) is a sequence.

• If {sk}k satisfies (C1), then the 2m consecutive curves γ k−m+1, . . ., γ k+m have

bounded length at r(sk), independent of k, but depending on ε.

• If {sk}k satisfies (C2), then lim
k→∞

γk+1(r(sk)) = 0, and the 2m − 1 consecutive

curves γ k−m+2, . . ., γ k+m have bounded length at r(sk), independent of k.

Proof. Suppose that we are in case (C1). Then there exists a compact interval I ⊂ int(ω)

so that the Hausdorff distance between �k−m+1(I) and r([tk + ε, tk+1 −ε]) tends to zero

as k → ∞. By Lemma 5.3, γ k−m+1, . . ., γ k+m have bounded length along �k−m+1(I). Since

�k−m+1(I) remains bounded away from the completion strata of Teich(S), γ k−m+1, . . .,

γ k+m also have bounded length along r([tk + ε, tk+1 −ε]), as required.

For case (C2), the assumptions imply that dWP(r(sk),S(γk+1)) → 0 as k → ∞,

and hence γk+1(r(sk)) → 0 as k → ∞. The bound on the lengths of γ k−m+2, . . ., γ k+m

follows from case (C1) and convexity of the length-functions ([36]). Indeed, from case

(C1), we know that the curves γ k−m+2, . . ., γ k+m have uniformly bounded lengths at

r( tk+tk+1
2 ) and r( tk+1+tk+2

2 ), and hence all the curves have uniformly bounded length along

r([ tk+tk+1
2 , tk+1+tk+2

2 ]) by convexity of length-functions. �

As another application of Theorem 5.4, we can identify the ending lamination

of r.
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Corollary 5.6. The lamination ν is the ending lamination of the ray r.

Proof. By Theorem 5.4, lim
k→∞

γk(r(tk)) = 0. Since, by Theorem 2.11, the subsequence

{γk | k ≡ 0 mod m}

converges to ν̄0 in ML(S) (after appropriately scaling), it follows that the ending

lamination of r contains ν. Moreover, ν ∈ EL(S), and hence ν is the ending lamination

of r. �

5.3 The Limit set

By Corollary 5.6 the ending lamination of r is the minimal non-uniquely ergodic

lamination ν. Let ν̄h, h = 0, . . . , m − 1, be the ergodic measures supported on ν as in

Theorem 2.11. Theorem 1.2 follows immediately from the following theorem.

Theorem 5.7. The limit set of r in PML(S) is the concatenation of the edges

[
[ν̄0], [ν̄1]

]
, . . . ,

[
[ν̄m−1], [ν̄0]

]

in the 1 −skeleton of the simplex of projective measures supported on ν.

We will reduce this to a more technical statement, and then in the next

subsection, we will prove that technical statement. As we will be exclusively interested

in lengths of curves along r, for any curve δ and s ∈ [0, ∞), we write

δ(s) = δ(r(s)).

Our main technical result is the following theorem.

Theorem 5.8. Suppose that {sk}k ⊂ [0, ∞) is a sequence.

• If {sk}k satisfies (C1), then there exists xk > 0 such that for any simple closed

curve δ, we have

lim
k→∞

xki(δ, γk)

δ(sk)
= 1.
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• If {sk}k satisfies (C2), then there exist xk, yk ≥ 0 with xk + yk > 0 such that for

any simple closed curve δ, we have

lim
k→∞

xki(δ, γk) + yki(δ, γk+1)

δ(sk)
= 1.

Proof of Theorem 5.7 assuming Theorem 5.8. We will pass to subsequences in the

following, and to avoid double subscripts, for a subsequence of a sequence {ck}∞k=1, we

simply write {ck}k∈J, where J is the index set defining the subsequence. Likewise lim
k∈J

ck

will denote the limit of the subsequence as the indices from J tend to infinity.

Now suppose that [μ̄] ∈ PML(S) is a limit point of the ray r. That is, for some

sequence of times {sj}j ⊂ [0, ∞) and any two curves δ, δ′, we have

lim
j→∞

δ(sj)

δ′(sj)
= i(δ, μ̄)

i(δ′, μ̄)

(see §2.4). Since sj must tend to infinity as j → ∞, by passing to a subsequence, we

may assume that the sequence is increasing, and there exists an increasing sequence

{kj}j such that either |sj − tkj | → 0 or else there exists ε > 0 so that tkj + ε < sj <

tkj+1 − ε. Consequently, after reindexing, we assume (as we may) that our sequence is a

subsequence {sk}k∈J of some sequence {sk}∞k=1 satisfying either (C1) or (C2).

Suppose first that {sk}∞k=1 satisfies (C1), and pass to a further subsequence (with

index set still denoted J for simplicity) so that all k ∈ J are congruent to some h ∈{0, . . .,

m − 1} mod m. Then by our assumption and Theorem 5.8 we have

i(δ, μ̄)

i(δ′, μ̄)
= lim

k∈J

δ(sk)

δ′(sk)
= lim

k∈J

xki(δ, γk)

xki(δ′, γk)
= i(δ, ν̄h)

i(δ′, ν̄h)

where the last equality follows from the fact that [γk] → [ν̄h] in PML(S), for k ∈ J by

Theorem 2.11. But this implies that [μ̄] = [ν̄h] since δ, δ′ were arbitrary.

We further observe that if h ∈{0, . . ., m − 1}, then {sk := tk+tk+1
2 }k satisfies (C1),

and the computations just given show that for any subsequence {sk}k∈J such that k ≡ h

mod m for all k ∈ J, we have lim
k∈J

r(sk) = [ν̄h] in the Thurston topology. Consequently, all

the vertices of the simplex are in fact accumulation points.

Next, suppose that {sk}∞k=1 satisfies (C2), and again pass to yet another subse-

quence so that all k ∈ J are congruent to some h ∈ {0, . . ., m − 1} mod m. In this case,

we must pass to yet another subsequence so that [xkγ k + ykγ k+1] converges to some

[μ̄′] ∈ PML(S), for k ∈ J. Note that, since by Theorem 2.11 [γk] → [ν̄h] and [γk+1] → [ν̄h+1]
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(where we replace h + 1 by 0, if h + 1 = m), we have [μ̄′] ∈ [[ν̄h], [ν̄h+1]]. Then, by similar

reasoning we have

i(δ, μ̄)

i(δ′, μ̄)
= lim

k∈J

δ(sk)

δ′(sk)
= lim

k∈J

xki(δ, γk) + yki(δ, γk+1)

xki(δ′, γk) + yki(δ′, γk+1)

= lim
k∈J

i(δ, xkγk + ykγk+1)

i(δ′, xkγk + ykγk+1)
= i(δ, μ̄′)

i(δ′, μ̄′)
.

Here the second to the last equality follows from bilinearity of intersection number,

while the last equality follows since [xkγk + ykγk+1] → [μ̄′] in PML(S), for k ∈ J. Thus

again we see that [μ̄] = [μ̄′].
So, the limit set of r is contained in the required loop in the 1–skeleton of the

simplex of projective classes of measures on ν. If we fix h ∈ {0, . . ., m − 1} and consider

the arcs

{r([ tk+tk+1
2 , tk+1+tk+2

2 ]) | k ≡ h mod m},

it follows that the initial endpoints converge to [ν̄h] while the terminal endpoints

converge to [ν̄h+1] (again replacing h + 1 with 0 if h + 1 = m). Moreover, the accumulation

set of this sequence of arcs is a connected subset of [[ν̄h], [ν̄h+1]]. Any such set is

necessarily the entire 1–simplex. Therefore, the ray r accumulates on the entire loop,

as required. �

5.4 Proof of Theorem 5.8

Here we prove the required technical theorem used in the proof of Theorem 5.7.

Throughout what follows, we assume that {sk}k satisfies (C1) or (C2). Many of the

estimates can be carried out for both cases simultaneously.

From Corollary 5.5, the 2m − 1 curves γ k−m+2, . . ., γ k+m have bounded lengths

in r(sk), and since

γk−m+2, . . . , γk, γk+2, . . . , γk+m

fill S − γ k+1, there is a pants decomposition Pk containing the m–component multicurve

σk := γk ∪ . . . ∪ γk+m−1

such that β (sk) is bounded for all β ∈ Pk, independent of k (though the bounds depend

on ε in case (C1)). Write Pc
k = Pk \ σk.
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For an arbitrary curve δ and a curve β ∈ Pk, the contribution to the length of δ

from β in r(sk) is defined by the equation:

δ(sk, β) := i(δ, β)
(
wsk(β) + twβ(δ, sk)β(sk)

)
(5.5)

where twβ (δ, sk) is the twist of δ about β at r(sk) as is defined in (2.3), and wsk(β) is

the width of the largest embedded tubular neighborhood of β in r(tk) (i.e., the minimal

distance between boundary components of the neighborhood). By [10, §4.1], we have

wsk(β) = 2 log
(

1
β(sk)

)
. (5.6)

The following estimate for the hyperbolic length of a curve δ from [14, Lemmas

7.2, 7.3] will be our primary tool.

Theorem 5.9. Suppose that the sequence {sk}k satisfies (C1) or (C2). Then, for any curve

δ we have

∣∣∣δ(sk) −
∑
β∈Pk

δ(sk, β)

∣∣∣ = O
( ∑

β∈Pk

i(δ, β)
)
. (5.7)

Here the constant of the O notation depends only on the upper bound for the length of

the curves in Pk.

The proof of Theorem 5.8 now follows from estimating various terms in the sum

in the above theorem, and finding that one (in case (C1)) or two (in case (C2)) dominate

not only the other terms, but also the error term on the right.

Recall that for any simple closed curve δ, Theorem 2.9 implies that for all j

sufficiently large we have

i(δ, γj)
∗� A(0, j) (5.8)

where the multiplicative error depends on δ, but not on j. Combining (5.8) and

Lemma 2.10, we see that for all 0 ≤ h ≤ m − 1, we have

lim
k→∞

i(δ, γk+h)

A(0, k + m)
= 0. (5.9)

Observe that the curves γ k+h here are precisely the components of σ k. It turns out

that the intersection numbers with the other curves in Pk (not just those in σ k)
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are also controlled by A(0, k + m). This is essentially the Weil–Petersson analog of

[2, Theorem 9.15].

Lemma 5.10. For any βk ∈ Pk we have

lim
k→∞

i(δ, βk)

A(0, k + m)
= 0.

Proof. By (5.9) it suffices to prove the lemma when βk ∈ Pc
k, for all k.

Let μ be any fixed marking on S and let Yk be the component of the complement

S \ σ k that contains βk.

Claim 5.11. There exists I > 0, depending only on μ and δ so that i(πY(δ), βk) ≤ I.

Since δ and μ are a fixed curve and marking, we can assume that their

projections to all subsurfaces are uniformly close. Let Zk ⊆ Yk be any subsurface with

βk � Zk, and observe that since Zk is disjoint from the m consecutive curves in σ k,

Theorem 2.8 implies that it cannot be an annulus with core curve in the sequence {γ i}i.

By Corollary 5.5, at the point r(sk) the 2m − 1 curves γ k−m+2, . . ., γ k+m have length

bounded independent of k, and hence i(βk, γ l) is uniformly bounded for each l = k − m +

2, . . ., k + m. Since these curves fill S\γ k+1 and γ k+1 ∈ σ k, πZk(γl) �= ∅ for some k − m + 2

≤ l ≤ k + m, and hence dZk(γl, βk) is uniformly bounded. Thus, by the triangle inequality

and (2.5) we have

dZk(βk, δ)
+� dZk(γl, μ) ≤ R(μ).

Since this holds for all subsurfaces Zk ⊆ Yk, [13, Corollary D] tells us that i(πYk(δ), βk) is

uniformly bounded, as required.

Every arc of πYk(δ) comes from a pair of intersection points with curves in σ k.

Consequently, taking κ(δ) as the second paragraph of Theorem 2.9 and noting that A(0,

j) is increasing in j we have

i(δ, βk) ≤ I
k+m−1∑

d=k

i(δ, γd)
∗�κ(δ) I

k+m−1∑
d=k

A(0, d) ≤ mIA(0, k + m − 1).

Thus, setting K = mIκ(δ) the proof of lemma is complete. �

Next, we estimate the various terms of δ(sk, β) for β ∈ Pk.
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Lemma 5.12. Suppose that {sk}k is a sequence satisfying either (C1) or (C2). Then for

all k sufficiently large and β ∈ Pk, we have

twβ(δ, sk)
+� twβ(γ0, sk)

+�
{

ek if β = γk

0 β �= γk or γk+1.

If {sk}k satisfies (C1), then for all k sufficiently large, twγk+1(δ, sk)
+� 0.

Proof. By Theorem 2.8 and Proposition 3.1, {γ k}k is a quasi-geodesic ray in C(S) (the

curve complex of S). Thus, for any fixed curve δ and j sufficiently large, Theorem 2.3

implies that dγj(γ0, δ)
+� 0. To see this, note that for j sufficiently large the curve complex

distance between γ j and every curve on a geodesic connecting γ 0 to δ is at least 3 and

hence γ j intersects all curves on the connecting geodesic. Thus Theorem 2.3 implies a

uniform bound on dγj(γ0, δ). Since each β ∈ Pk is within distance 1 of γ k, similarly we

have dβ(γ0, δ)
+� 0 for all β ∈ Pk, once k is sufficiently large.

Suppose that {sk}k satisfies (C1). The filling set of curves γ k−m+1, . . ., γ k+m have

bounded length in r(sk). So, for all k sufficiently large and β ∈ Pk

twβ(δ, sk)
+� twβ(γ0, sk)

+� diamC(β)(γ0 ∪ γk−m+1 ∪ · · · ∪ γk+m).

If β ∈ Pc
k, then β /∈ {γ j}j, and so the term on the right is uniformly close to 0 by

Theorem 2.8. If β = γj �= γk, then j > k, and the only curves in the set γ k−m+1, . . .,

γ k+m which actually intersect γ j nontrivially must have index less than j. In this case,

Theorem 2.8 implies that the term on the right is also uniformly close to 0. When β =
γ k, again appealing to Theorem 2.8, the right-hand side is estimated (up to a bounded

additive error) by

dγk(γ0, γk+m)
+� ek.

This proves the lemma when {sk}k satisfies (C1). The proof when {sk}k satisfies (C2) is

nearly identical since the curves γ k−m+2, . . ., γ k, γ k+2, . . ., γ k+m have bounded length

and fill S \ γ k+1, so the only curve whose twisting we can no longer estimate is γ k+1.

Since the conclusion of the lemma is silent regarding the twisting about this curve in

case (C2), we are done. �

Proof of Theorem 5.8. In either case that {sk}k satisfies (C1) or (C2), define xk =
wsk(γk) + twγk(γ0, sk)γk(sk). Observe that γk(sk)

∗� 1, so by (5.6) wsk(γk)
+� 1 (these
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estimates depend on ε in case (C1), but not k). Moreover, from Lemma 5.12, for any curve

δ and k sufficiently large we have

twγk(γ0, sk)
+� twγk(δ, sk)

+� ek → ∞

as k → ∞. Consequently, we have xk
∗� ek and

δ(sk, γk)

xki(δ, γk)
= wsk(γk) + twγk(δ, sk)γk(sk)

wsk(γk) + twγk(γ0, sk)γk(sk)
→ 1 (5.10)

as k → ∞. Combining this with (5.8) and using the setup of integers A(0, k), for large k,

we have

δ(sk, γk)
∗� xki(δ, γk)

∗� eki(δ, γk)
∗� A(0, k + m) (5.11)

Now suppose that we are in case (C1) and βk ∈ Pk, but βk �= γk. As for γ k above,

we have βk(sk)
∗� 1

+� wsk(βk) (with errors depending on ε, but not k). Combining this

with (5.8) and Lemma 5.12, we have

δ(sk, βk)
∗� i(δ, βk).

Therefore, by (5.11) and Lemma 5.10, we have

δ(sk, βk)

xki(δ, γk)

∗� i(δ, βk)

A(0, k + m)
→ 0 (5.12)

as k → ∞.

Combining Theorem 5.9 with Lemma 5.10, (5.10), and (5.12), for any curve δ we

have

lim
k→∞

δ(sk)
xki(δ,γk)

= lim
k→∞

δ(sk,γk)
xki(δ,γk)

+ 1
xki(δ,γk)

( ∑
βk∈Pk and

βk �=γk

δ(sk, βk) + O
( ∑

βk∈Pk

i(δ, βk)
))

= 1,

as required.

When {sk}k satisfies (C2), xk is defined as above, and we define

yk = wsk(γk+1) + twγk+1(γ0, sk)γk+1(sk).
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According to Corollary 5.5, γk+1(sk) → 0 as k → ∞, and so by (5.6) we have

wsk(γk+1) → ∞

as k → ∞. Moreover, Lemma 5.12 ensures that for any curve δ and k sufficiently large,

we have

twγk+1(γ0, sk)
+� twγk+1(δ, sk).

Therefore,

lim
k→∞

δ(sk, γk+1)

yki(δ, γk+1)
= 1,

and combining this with (5.10) we have

lim
k→∞

δ(sk, γk) + δ(sk, γk+1)

xki(δ, γk) + yki(δ, γk+1)
= 1.

Because the estimate (5.12) still holds for any curve βk ∈ Pk where βk �= γk or γ k+1, we

can again apply Theorem 5.9 and Lemma 5.10 to deduce that for any curve δ we have

lim
k→∞

δ(sk)

xki(δ, γk) + yki(δ, γk+1)
= lim

k→∞
δ(sk, γk) + δ(sk, γk+1)

xki(δ, γk) + yki(δ, γk+1)
= 1,

completing the proof in case (C2), and hence in general. �

6 The uniquely ergodic case

Let r : [0, ∞) → Teich(S) be a WP geodesic ray, and denote the ending lamination of r by

ν; see §2.7. The following immediately implies Theorem 1.1 from the introduction.

Theorem 6.1. Suppose that ν is uniquely ergodic, then the limit set of r in PML(S)

(Thurston boundary) is the point [ν̄].

Proof. The proof of the theorem closely follows Masur’s proof of the analogous fact for

Teichmüller geodesics [26, Theorem 1]. Assuming [ξ̄ ] is any accumulation point of r, let

{ti}i be a sequence of times so that r(ti) → [ξ̄ ] as i → ∞ in the Thurston compactification

of Teichmüller space Teich(S)∪PML(S); see §2.4. According to the Fundamental Lemma

of [16, exposé 8], there exists a sequence {μ̄i}i ⊂ ML(S), such that

i(μ̄i, δ) ≤ δ(r(ti)),
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for all simple closed curves δ, as well as a sequence of positive real numbers {bi}i, so

that biμ̄i → ξ̄ ∈ ML(S) and bi → 0, as i → ∞.

Let ν̄ be a transverse measure on ν. Since ν is uniquely ergodic, and hence

minimal, there exists a sequence of Bers curves {γ i}i and positive real numbers {ci}i,

so that ciγi → ν̄ ∈ ML(S) and ci → 0, as i → ∞. Since the γ i are Bers curves, by the

inequality above there exists C > 0 so that

i(μ̄i, γi) ≤ γi(r(ti)) ≤ C.

Consequently, by continuity of the intersection form, we have

i(ξ̄ , ν̄) = lim
i→∞

i(biμ̄i, ciγi) = lim
i→∞

bicii(μ̄i, γi) ≤ C lim
i→∞

bici = 0,

and hence i(ξ̄ , ν̄) = 0. Because ν is uniquely ergodic, [26, Lemma 2] implies ξ̄ is a multiple

of ν̄, and therefore [ξ̄ ] = [ν̄]. Since [ξ̄ ] was an arbitrary accumulation point of r in

PML(S), the proof is complete. �

7 Appendix

In this appendix we provide the proofs of the results of §2.5 about sequences of curves.

As we mentioned there, many of the proofs closely follow the ones in [2], while others

have been streamlined since the writing of that paper. Here we mainly outline the

proofs that are similar, incorporating the required changes, and otherwise provide the

streamlined proofs.

7.1 Subsurface coefficient estimates

In the next Lemma, B0 is the constant from Theorem 2.4.

Lemma 7.1. (Local to Global) Fix any B ≥ B0 + 1, and let {δk}ωk=0 (ω ∈ Z
≥0 ∪ {∞}) be a

(finite or infinite) sequence of curves in C(S), with the property that δk−1 � δk, δk+1 � δk

and that dδk(δk−1, δk+1) ≥ 3B for all k ≥ 1. Then for all 0 ≤ i < k < j, we have that

δi � δk, δj � δk and that

|dδk(δi, δj) − dδk(δk−1,, δk+1)| ≤ 2B0. (7.1)
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Proof. To simplify the notation, write dk(i, j) = dδk(δi, δj). The proof is by induction on

n = j − i. The base case is n = 2, in which case i = k − 1, j = k + 1, and the conclusions

of the lemma hold trivially.

We suppose that γi � γk and that (7.1) holds for all i, j with i < k < j and j − i

≤ n, and prove them for n + 1. To that end, suppose that 0 ≤ i < k < j are such that j

− i = n + 1. We claim that dk(i, k − 1) ≤ B0. To see this, note that if i = k − 1, then the

claim holds obviously. Otherwise, i < k − 1 < k and k − i ≤ n, so by hypothesis of the

induction γi � γk and

dk−1(i, k) ≥ ek ≥ 3B − 2B0 > B0,

note that δk−1 � δk by assumptions of the lemma. Then Theorem 1.6 implies that dk(i, k

− 1) ≤ B0. By a similar reasoning, we have that dk(k + 1, j) ≤ B0, and so by the triangle

inequality

|dk(i, j) − dk(k − 1, k + 1)| ≤ dk(i, k − 1) + dk(j, k + 1) ≤ 2B0,

which is (7.1). Moreover, since dk(k, k + 1) ≥ 3B0 for the above inequality we have

that dk(i, j) ≥ B0 + 1 > 1 which implies that γi � γj, finishing the proof of lemma by

induction. �

Set B = max{3, B0 + 1, G0}, where G0 is the constant from Theorem 2.3 for a

geodesic in C(S). Set E0 = 3B + 4, and for the remainder of this subsection assume

that the sequence �(E) = {γk}∞k=0 satisfies P(E) from Definition 2.6, where E = {ek}∞k=0,

ek ≥ aek−1 for some a ≥ 1 and all k, and e0 ≥ E0 (and hence ek ≥ E0 for all k). Also

throughout this subsection let M be the monoid generated by {m, m + 1}. A simple

arithmetic computation shows that any integer which is greater than or equal to m2

− 1 is in M.

Lemma 7.2. For all i < k < j such that k − i, j − k ∈ M, for example, if k − i, j − k ≥ m2

− 1, we have that γi � γk, γj � γk and that

|dγk(γi, γj) − ek| ≤ 2B0 + 4.

Proof. As in the previous proof, we write dk(i, j) = dγk(γi, γj), and also write i(i, j) =
i(γ i, γ j) and πi(j) = πγi(γj).

We make a few observations from Definition 2.6. First, i(j, j + 1) = 0 for all j,

and hence if πk(j), πk(j + 1) �= ∅ for some k, then dk(j, j + 1) = 1. Second, for all k,

i(k, k + m), i(k, k + m + 1) �= 0. Consequently, πk(j) �= ∅ for all j, k with |j − k|∈{m, m
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+ 1}. Finally, observe that |dk(k − m, k + m) − ek|≤ 2. Thus, if i < k < j and k − i, j − k

∈{m, m + 1}, by the triangle inequality

|dk(i, j) − ek| ≤ 4. (7.2)

Now, for any sequence of integers {kj}j such that kj+1 − kj ∈{m, m + 1} for all j,

the sequence {γkj}j has the property that γkj−1 , γkj+1 � γkj and that dkj(kj−1, kj+1) ≥ 3B by

(7.2) and since ek ≥ E0. Hence the sequence {γkj}j satisfies the assumptions of Lemma 7.1.

Then by the lemma, for any  with i <  < j, γ � γi, γ � γj and

|dk
(ki, kj) − ek

| ≤ 2B0 + 4.

Therefore, if i < k < j and k − i, j − k ∈ M, then

|dk(i, j) − ek| ≤ 2B0 + 4.

This completes the proof of the inequality in the statement of the lemma. �

Lemma 7.3. The map k �→γ k is a 1–Lipschitz, (K, C)–quasi-geodesic, where K = C = 2m2

+ 2m − 1.

Proof. First, suppose that i < j with j − i ≥ 2m2 + 2m − 1. Then by Lemma 7.2 for each

k ∈ {i + m2, i + m2 + 1, . . ., j − m2}, we have that γk � γi, γk � γj and that

dγk(γi, γj) ≥ ek − 2B0 − 4 ≥ B ≥ 3. (7.3)

Thus the curves γ i, γ j fill the annulus with core curve γ k. This implies that any curve

that intersects γ k must intersect one of γ i or γ j. Moreover, the 2m curves γ k for k = i +

m2, . . ., i + m2 + 2m − 1 fill S, so γ i, γ j also fill S.

Next, suppose that j > i + 2m2 + 2m − 1 and write j = i + q(2m2 + 2m − 1)

+ r, where q, r are non-negative integers with 0 ≤ r < 2m2 + 2m − 1. Set the curve

δk = γi+k(2m2+2m−1), for k = 1, . . ., q − 1. Then the curves

γi, δ1, . . . , δq−1, γj
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form a sequence in C(S). As we saw above any two distinct curves in the sequence fill S,

and by (7.3) for all 0 < k < q we have

dδk(γi, γj) ≥ B > G0.

So, by Theorem 2.3, a geodesic from γ i to γ j must have a vertex disjoint from δk, for

all k = 0, . . ., q. Since any two curves δk, δk′ in the sequence fill S, no curve can be

disjoint from more than one of them, and hence the geodesic must contain at least q + 1

vertices, so

d(γi, γj) ≥ q = j − i − r

2m2 + 2m − 1
≥ 1

K
(j − i − C)

where K = 2m2 + 2m − 1 and C = 2m2 + 2m − 1. Since this inequality trivially holds

if j − i < C and i < j, the required lower bound follows. Moreover, since γ k, γ k+1 are

disjoint, the map is 1–Lipschitz. Finally the upper bound for the (K, C)-quasi-geodesic is

immediate from the fact that the map is 1-Lipschitz. �

For each k ≥ 0, let μk := {γ k, . . ., γ k+2m−1}.

Lemma 7.4. There exists M > 0 such that for any subsurface W � S which is neither S

nor an annulus with core curve some γ k, we have

dW(μi, μj) ≤ M

for all i, j.

Proof. First, let μk
′ = {γ k, . . ., γ k+2m−2, γ ′

k+2m−1} where γ ′
k+2m−1 is as in Definition 2.6.

From the definition, any curve in μk and curve in μ′
k+1 have uniformly bounded

intersection number (bounded by m2b2). Consequently, there exists M0 > 0 such that

for any subsurface W and any k, we have

dW
(
μk, μ′

k+1

) ≤ M0.

Next, observe that μ′
k+1 and μk+1 differ by Dehn twisting γ ′

k+2m about γ k+m

(which has zero intersection number with all curves in μ′
k+1 except γ ′

k+2m). Therefore,

there exists another constant M1 > 0 so that as long as W is not the annulus with core

γ k+m, we have

dW(μ′
k+1, μk+1) ≤ M1.
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Indeed, for any such W, πW(μ′
k+1) ∩ πW(μk+1) �= ∅, and so we may take M1 to be at most

the sum of the diameters of πW(μ′
k+1) and πW(μ′

k+1) which is at most 4.

From these two inequalities, we see that for any subsurface W which is not the

annulus with core γ k+m, the triangle inequality implies

dW(μk, μk+1) ≤ M0 + M1.

From this it follows that for any D > 0 and |j − i|≤ D,

dW(γi, γj) ≤ D(M0 + M1) (7.4)

whenever W is not an annulus with core curve γ k, for some k.

Finally, suppose that W is any subsurface which is not S and not an annulus

with core curve γ k, for some k. By Lemma 7.3, k �→γ k is a quasi-geodesic in C(S). So

there is a uniform bound for the number its vertices that are within distance 1 of ∂W.

Consequently, there exists D0 > 0 (independent of W) and i0 so that if k /∈ [i0, i0 + D0],

then πW(γk) �= ∅. By Theorem 2.3, there exists G = G(K, C) so that the projections of both

sequences {γk}i0
k=0 and {γk}∞k=i0+D0

to W have diameter at most G. Combining this with

(7.4) and setting M = 2G + D0(M0 + M1), we have

diamC(W)

({γk}∞k=0

) ≤ 2G + D0(M0 + M1) = M.

Since M is independent of the subsurface W, this completes the proof. �

Proof of Theorem 2.8. The fact that {γ k}k is a 1–Lipschitz (K, C)–quasi-geodesic is

Lemma 7.3. Klarreich’s work [19, Theorem 4.1]) describing the Gromov boundary of the

curve complex then implies that there exists a ν ∈ EL(S), so that any accumulation point

of {γ k}k in PML(S) is supported on ν.

Any accumulation point of {γ k}k in the Hausdorff topology of closed subset of S

contains ν, and hence for a subsurface W ⊆ S, πW(ν) ⊆ πW(γ k) for all k sufficiently large.

Consequently the equations on the left of (2.4) and (2.5) follow from Lemmas 7.2 and 7.4,

respectively, setting R = max{M, 2B0 + 4}. For any marking μ, the pairwise intersection

between curves in μ and in μ0 are bounded by some finite number, and hence dW(μ, μ0)

is uniformly bounded by some constant D > 0, independent of W. Setting R(μ) = R +

D, the equations on the right-hand side of (2.4) and (2.5) then follow from those on the

left-hand side, together with the triangle inequality. �
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7.2 Intersection number estimates

We now assume that E = {ek}k grows exponentially, with ek ≥ aek−1 for some a > 1 and

all k ≥ 1. The aim is to estimate intersection numbers in terms of the numbers A(i, k)

defined in (2.6). We begin with the upper bound.

Lemma 7.5. If �(E) = {γk}k satisfies P(E) with ek ≥ aek−1 for some a > 1, then there

exists κ > 0 such that

i(γi, γk) ≤ κA(i, k).

Moreover, we may take κ to be decreasing as a function of a.

Sketch of proof. The proof is a rather complicated induction, but is essentially

identical to the proof of Proposition 5.5 from [2]. We sketch the proof for completeness.

We first recall from [16, exposé 4], that for any simple closed curves β, δ, δ′, and

integer e, we have

∣∣∣i(De
β(δ′), δ) − |e|i(δ′, β)i(δ, β)

∣∣∣ ≤ i(δ, δ′). (7.5)

Since γk+m = Dek
γk(γ

′
k+m) and i(γ ′

k+m, γ k) = b, we can apply this to estimate i(γ i, γ k+m) to

obtain

∣∣∣i(γi, γk+m) − beki(γi, γk)

∣∣∣ ≤ i(γi, γ
′
k+m).

The right-hand side can be bounded as follows. Since the curves γ k−m, . . ., γ k+m−1 fill S,

these cut any simple closed curve δ into N arcs, where

N =
k+m−1∑
j=k−m

i(δ, γj).

Now apply this cutting procedure to both γ ′
k+m and γ i. Any pair of resulting arcs

(one from γ ′
k+m and one from γ j) are either disjoint, intersect at most once if they

lie in a complementary disk, or intersect at most twice if they lie in a once-punctured

complementary disk. Thus

i
(
γi, γ

′
k+m

) ≤ 2
k+m−1∑
j=k−m

i(γi, γj)

k+m−1∑
j=k−m

i
(
γ ′

k+m, γj
)

.
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Moreover, the assumption on the values of intersection numbers of γ ′
k+m and the curves

γ j, j = k − m, . . ., k + m − 1 from Definition 2.6 implies that

k+m−1∑
j=k−m

i
(
γj, γ

′
k+m

) ≤ (m + 1)b′.

Consequently, setting B = 2(m + 1)b′, we have

∣∣∣i(γi, γk+m) − beki(γi, γk)

∣∣∣ ≤ B
k+m−1∑
j=k−m

i(γi, γj), (7.6)

and hence

i(γi, γk+m) ≤ beki(γi, γk) + B
k+m−1∑
j=k−m

i(γi, γj).

The goal is to show that i(γ i, γ k+m) ≤ κA(i, k + m) for some κ > 0. The proof is by

induction on (k + m) − i, and the constant κ is actually a limit of an increasing sequence

of constants K(1) < K(2) < K(3) < . . .. To see what these constants should be, we assume

by induction that i(γ i, γ j) ≤ K(j − i)A(i, j) for all i < j with j − i < k + m, then dividing

both sides of the inequality above by A(i, k + m), we have

i(γi, γk+m)

A(i, k + m)
≤ beki(γi, γk)

A(i, k + m)
+ B

k+m−1∑
j=k−m

i(γi, γj)

A(i, k + m)

≤ K(k − i)
bekA(i, k)

A(i, k + m)
+ B

k+m−1∑
j=k−m

K(j − i)
A(i, j)

A(i, k + m)

≤ K(k + m − 1 − i)
(
1 + B

k+m−1∑
j=k−m

a−� k−i
m �

)

= K((k + m − i) − 1)(1 + 2mBa−� k−i
m �)

The right-hand side above suggests the recursive/inductive definition

K(k + m − i) := K((k + m − i) − 1)(1 + 2mBa−� k−i
m �).

(Note that the right-hand side depends only on the difference k − i and not on i and

k independently). For a > 1, one shows (using a comparison with a geometric series,
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after taking logarithms) that K(j) so defined is bounded, and since it is increasing, it

converges to a constant κ > 0. Since K(j) < κ for all j, the inequality above proves the

lemma. See [2, Proposition 5.5] for the details. �

Since we are assuming fewer non-zero intersection numbers in the current work

than in [2], the lower bounds we obtain are weaker, and the proof is slightly more

complicated than the one in §5 of [2]. Fortunately, the weaker estimates suffice for our

purposes.

Lemma 7.6. If ek ≥ aek−1 for a > 1 sufficiently large and all k ≥ 0, then there exists κ ′

> 0 such that

i(γi, γk) ≥ κ ′A(i, k)

whenever

1. 0 ≤ i ≤ 2m − 1 and k ≥ i + m2 + m − 1, or

2. k − i ≥ 2m and i ≡ k mod m.

Proof. Fix some constant a0 > 1 and assume to begin that ek ≥ a0ek−1, and let κ

> 0 be the constant from Lemma 7.5. We will eventually take a larger a > a0, but we

observe that upper bound on intersection numbers from Lemma 7.5 remains valid with

this choice of κ.

Now, recalling that A(i, k + m) = bekA(i, k), dividing (7.6) by A(i, k + m), we have

i(γi, γk+m)

A(i, k + m)
≥ i(γi, γk)

A(i, k)
− B

k+m−1∑
j=k−m

i(γi, γj)

A(i, k + m)
.

Combining this with Lemmas 2.10 and 7.5 we have

i(γi, γk+m)

A(i, k + m)
≥ i(γi, γk)

A(i, k)
− κB

k+m−1∑
j=k−m

A(i, j)

A(i, k + m)

≥ i(γi, γk)

A(i, k)
− 2mκBa−� k−i

m �

Recursively substituting, we see that for any n ≥ 0 such that i < k − nm,

i(γi, γk+m)

A(i, k + m)
≥ i(γi, γk−nm)

A(i, k − nm)
− 2mκB

n∑
s=0

a−� k−i
m �+s (7.7)
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In this situation, taking a > a0 > 1 sufficiently large, we can make the term

2mκB
n∑

s=0

a−� k−i
m �+s

as small as we like, independent of n (since this is a partial sum of a geometric series

with common ratio a). Specifically, we choose a > a0 > 1 large enough so that for all

k − i ≥ m and n ≥ 0, the sum is bounded above by κ ′, where

κ ′ = 1

2
min

{
1

A(i, j)
| 0 ≤ i ≤ 2m − 1 and i < j ≤ m2 + 3m − 2

}
.

Now, suppose that 0 ≤ i ≤ 2m − 1 and that k ≥ i + m2 + m − 1, and write k = j +

m (so j ≥ i + m2 − 1). Let n ≥ 0 be such that

i + m2 − 1 ≤ j − nm ≤ m2 + 3m − 2,

which is possible since i + m2 − 1 ≤ m2 + 2m − 2. By Lemma 7.2, γi � γj−nm, so i(γ i,

γ j−nm) ≥ 1, and therefore

i(γi, γj+m)

A(i, j + m)
≥ i(γi, γj−nm)

A(i, j − nm)
− 2mκB

n∑
s=0

a−� j−i
m �+s ≥ 2κ ′ − κ ′ = κ ′.

That is, i(γ i, γ k) ≥ κ ′A(i, k), proving part (i).

Next, let k, i be any two positive integers such that k − i ≥ 2m and i ≡ k mod m.

Write k = j + m and let n ≥ 0 be such that j − nm = i + m. Then by (7.7) we have

i(γi, γj+m)

A(i, j + m)
≥ i(γi, γj−nm)

A(i, j − nm)
− 2mκB

n∑
s=0

a−� j−i
m �+s

= i(γi, γi+m)

1
− κ ′ ≥ 2κ ′ − κ ′ = κ ′.

The last inequality follows from the fact that κ ′ ≤ 1
2 and i(γ i, γ i+m) = b ≥ 1. This proves

(ii), and completes the proof of the lemma. �

Proof of Theorem 2.9. The first paragraph of the theorem follows immediately

from Lemmas 7.5 and 7.6, setting κ0 = max{κ, 1
κ ′ }. The second paragraph is the next

lemma. �
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Lemma 7.7. For any curve δ, there exists κ(δ) > 0 and N(δ) ∈ Z so that for all k ≥ N(δ),

we have

i(δ, γk)
∗�κ(δ) A(0, k).

We only sketch the proof since this is exactly the same statement and proof as

in Lemma 5.11 from [2].

Sketch of proof. The idea is that from the estimates in Lemma 7.5 and 7.6, we have

some κ0, n0 > 0 so that for all 0 ≤ i ≤ 2m − 1 and k ≥ n0,

i(γi, γk)
∗�κ0 A(0, k).

Since μ0 = γ 0 ∪. . . ∪ γ 2m−1 fills S, this means that the set of laminations { γk
A(0,k)

}k≥n0 ⊂
ML(S) form a compact subset of ML(S). By Theorem 2.9, this sequence can only

accumulate on points of ML(S) supported on ν. So, for any curve δ, there is a compact

neighborhood of the accumulation points and a number κ(δ) > 0 on which intersection

number with δ lies in the interval
[

1
κ(δ)

, κ(δ)
]
. But then for k sufficiently large, γk

A(0,k)
is in

this neighborhood and hence

i(δ, γk)

A(0, k)
=

(
δ,

γk

A(0, k)

) ∗�κ(δ) 1

as required. �

7.3 Convergence in ML(S)

Lemma 7.7, together with (7.5), are the key ingredients in the proof of the following,

which is identical to Lemma 5.13 from [2].

Proposition 7.8. For each h = 0, . . ., m − 1,

lim
i→∞

γh+im

A(0, h + im)
= ν̄h

in ML(S), where ν̄h is a measure supported on ν.
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Sketch of proof. Applying (7.5) to estimate i(γ k+m, δ) using the fact that γk+m =
Dek

γk(γ
′
k+m), and applying Lemma 7.7 we may argue as in the proof of Lemma 7.5 we have

|i(γk+m, δ) − beki(γk, δ)| ≤ i
(
γ ′

k+m, δ
) ≤ B

k+m−1∑
l=k−m

i(γl, δ)

≤ Bκ(δ)

k+m−1∑
l=k−m

A(0, l).

Dividing both side by A(0, k + m) and applying Lemma 2.10 this implies

∣∣∣∣i
( γk+m

A(0, k + m)
, δ

)
− i

( γk

A(0, k)
, δ

)∣∣∣∣ ≤ 2mBκ(δ)a−� k
m �.

From this and a geometric series argument, we deduce that for all h = 0, . . ., m −
1, the sequence

{
i
(

γh+im
A(0,h+im)

, δ
)}∞

i=0
is a Cauchy sequence of real numbers, and hence

converges. By Lemma 7.7, the limit is non-zero, and since this is true for every simple

closed curve δ, the sequence
{

γh+im
A(0,h+im)

}∞
i=0

converges to some ν̄h ∈ ML(S), supported on

ν by Theorem 2.8. �

The next lemma is the analog of Theorem 6.1 from [2]. The proof is essentially

the same, but since the required intersection number estimates are weaker here, we

sketch the proof nonetheless.

Lemma 7.9. For each h, h′∈{0, . . ., m − 1} with h �= h′, we have

lim
i→∞

i(γh+im, ν̄h)

i(γh+im, ν̄h′
)

= ∞.

Consequently, ν̄h is not absolutely continuous with respect to ν̄h′
.

Sketch of Proof. As in the proof of [2, Theorem 6.1], it clearly suffices to prove that for

i sufficiently large,

i(γh, γh+(i+1)m)i(γh+im, ν̄h)
∗� 1

and

lim
i→∞

i(γh, γh+(i+1)m)i(γh+im, ν̄h′
) = 0.
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Appealing to Proposition 7.8 to estimate ν̄h by γh+km
A(0,h+km)

for large k � i, and Theorem 2.9,

we have

i(γ0, γh+(i+1)m)i(γh+im, ν̄h)
∗� A(0,h+(i+1)m)A(h+im,h+km)

A(0,h+km)
= 1

The last equality here follows from a simple calculation using the formula (2.6) for A(i, j)

(see the proof of [2, Theorem 6.1] for details). The multiplicative error here can be made

arbitrarily close to κ2
0 (taking k sufficiently large).

Similarly, we estimate ν̄h′ = γh′+km
A(0,h′+km)

and apply Theorem 2.9 to obtain

i(γ0, γh+(i+1)m)i(γh+im, ν̄h′
)

∗≺ A(0,h+(i+1)m)A(h+im,h′+km)
A(0,h′+km)

∗≺ a−i

The first multiplicative error can be made arbitrarily close to κ2
0 (again by taking

k sufficiently large). The second bound follows from a calculation and Lemma 2.10, with

multiplicative error depending only on whether h > h′ or h′ > h (see [2] for details). �

Proof of Theorem 2.11. All that remains is to prove that ν̄0, . . . , ν̄m−1 are ergodic

measures. At this point, the proof is identical to the proof of the analogous statement

Theorem 6.7 from [2], appealing to the facts proved so far. This proof involves a detailed

analysis of Teichmüller geodesics, drawing specifically on results of Lenzhen–Masur [22]

and the fourth author [32]. As this would take us too far afield of the current discussion,

we refer the reader to that paper for the details. �
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