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Given a measured geodesic lamination on a hyperbolic surface, grafting the surface

along multiples of the lamination defines a path in Teichmüller space, called the grafting

ray. We show that every grafting ray, after reparameterization, is a Teichmüller quasi-

geodesic and stays in a bounded neighborhood of some Teichmüller geodesic. As part

of our approach, we show that grafting rays have controlled dependence on the starting

point; that is, for any measured geodesic lamination λ, the map of Teichmüller space

which is defined by grafting along λ is L-Lipschitz with respect to the Teichmüller

metric, where L is a universal constant. This Lipschitz property follows from an

extension of grafting to an open neighborhood of Teichmüller space in the space of

quasi-Fuchsian groups.

1 Introduction

Let S be a closed surface with finite genus, possibly with finitely many punctures. Let

X be a point in Teichmüller space T (S) and let λ be a measured geodesic lamination on

X of compact support. The pair X and the projective class [λ] determine a Teichmüller

geodesic ray that starts at X and where the associated vertical foliation is a multiple of
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2 Y.-E. Choi et al.

λ [15, 19]. Let G(t, λ, X), t≥ 0, denote the point on this ray whose Teichmüller distance

from X is t. The pair X and λ determines another ray in T (S) defined by grafting X along

sλ, for s ∈R+. We denote the resulting Riemann surface by gr(sλ, X). (See [18, 25, 35] for

background on grafting.)

In this paper, we show that each grafting ray stays in a bounded neighborhood

of a Teichmüller geodesic.

Theorem A. Let X ∈ T (S) be ε-thick and let λ be a measured geodesic lamination on X

with unit hyperbolic length. Then, for all t≥ 0, we have

dT (gr(e2tλ, X),G(t, λ, X))≤ K,

where the constant K depends only on ε and the topology of S (it is independent of λ

and X). �

Here dT is the Teichmüller distance and we say that X ∈ T (S) is ε-thick if the

injectivity radius of the hyperbolic metric on X is at least ε at every point.

The proof of Theorem A actually produces a bound on the distance that depends

continuously on the point in moduli space determined by X; the existence of a constant

depending only on the injectivity radius is then a consequence of the compactness of the

ε-thick part of moduli space. However, the dependence on the injectivity radius of X is

unavoidable.

Theorem B. There exists a sequence of points Xn in T (S) and measured laminations λn

with unit hyperbolic length on Xn such that, for any sequence Yn in T (S),

sup
n,t≥0

dT (gr(e2tλn, Xn),G(t, λn,Yn))=∞. �

We now outline the proof of Theorem A. The main construction (carried out

in Sections 2–4, culminating in Proposition 4.5) produces an explicit family of quasi-

conformal maps between the Riemann surfaces along a grafting ray and those of a

Teichmüller geodesic ray starting from another point Y ∈ T (S). This is done in the case

where S has no punctures. Unfortunately, the quasi-conformal constant for these maps

and the distance dT (X,Y) depend on the pair (X, λ), whereas for the main theorem we

seek a uniform upper bound.
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Grafting Rays Fellow Travel Teichmüller Geodesics 3

Such a bound is derived from the construction in several steps. First, we show

that there exist points Xstd ∈ T (S) for which the quasi-conformal constants are uniform

over an open set in ML(S) (Section 4). Then, using the action of the mapping class group

and the co-compactness of the ε-thick part of T (S), we show that, for any ε-thick surface

X and any λ ∈ML(S), there exists Xstd near X for which the uniform estimates apply to

(Xstd, λ).

At this point, we have proved the main theorem up to moving the basepoints of

both the grafting ray and the Teichmüller geodesic ray by a bounded distance from

the given X ∈ T (S). The proof is concluded by showing that both the grafting and

Teichmüller rays starting from these perturbed basepoints fellow travel those starting

from the original point X.

For the Teichmüller ray case, we use a recent theorem of Rafi [32] (generalizing

earlier results of [17, 23]), which states that Teichmüller geodesics with the same vertical

foliation fellow travel, with a bound on the distance depending only on the thickness ε

and the distance between the starting points.

It remains to show that grafting rays in a given direction λ fellow travel. In

Section 6, we show that λ-grafting defines a self-map of Teichmüller space that is uni-

formly Lipschitz with respect to the Teichmüller metric, and since the Lipschitz constant

is independent of λ, the fellow traveling property of grafting rays follows. The key to this

Lipschitz bound is a certain extension of grafting to quasi-Fuchsian groups.

In order to describe this extension, we regard grafting as a map

gr :ML(S)× F(S)→ T (S),

where ML(S) is the space of measured laminations on S and F(S)� T (S) is the realiza-

tion of Teichmüller space as the set of marked Fuchsian groups, which is a real-analytic

manifold parameterizing hyperbolic structures on S. By a construction of Thurston, this

map lifts to a projective grafting map Gr :ML(S)× F(S)→P(S), where P(S) is the space

of marked complex projective structures.

Interpreting Teichmüller space as the “diagonal” in quasi-Fuchsian space

QF(S)� T (S)× T (S), we show that projective grafting extends to a holomorphic map

defined on a uniform metric neighborhood of F(S) in QF(S). Here we give QF(S) the

Kobayashi metric, which is the sup-product of the Teichmüller metrics on T (S) and T (S).

Theorem C. There exists δ > 0 such that projective grafting extends to a map Gr :

ML(S)×QF δ(S)→P(S) that is holomorphic with respect to the second parameter,
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4 Y.-E. Choi et al.

where QF δ(S) is the open δ-neighborhood of F(S) with respect to the Kobayashi met-

ric on QF(S). �

Composing this map Gr with the forgetful map π : P(S)→ T (S), we also obtain

a map gr= π ◦ Gr :QF δ(S)→ T (S), holomorphic in the first factor, which is the exten-

sion that we use in the proof of Theorem A. Note that the original grafting map

gr : ML(S)× T (S)→ T (S) is not holomorphic with respect to the usual complex struc-

ture on T (S); the holomorphic behavior described in Theorem C can only be seen by

considering Teichmüller space as a totally real submanifold of QF(S).
We remark that the existence of a local holomorphic extension of Gr(λ, ·) (or

gr(λ, ·)) to a neighborhood of a point in F(S) follows easily from results of Kourouniotis

or Scannell–Wolf (see Section 6.1 for details), but that extension to a uniform neighbor-

hood of F(S) (i.e., the existence of δ) is essential for application to Theorem A and does

not follow immediately from such local considerations.

Using the holomorphic extension of grafting and the contraction of Kobayashi

distance by holomorphic maps, we then establish the Lipschitz property for grafting.

Theorem D. There exists a constant L such that, for any measured lamination λ ∈
ML(S), the grafting map grλ : T (S)→ T (S) is L-Lipschitz; that is, given any two points

X and Y in T (S), we have

dT (gr(λ, X),gr(λ,Y))≤ LdT (X,Y). �

In Section 7, we combine the rectangle construction with the fellow traveling

properties for grafting and Teichmüller rays to derive the main theorem for compact

surfaces. In Section 8, we show how the preceding argument can be modified to prove

Theorem A in the case S has punctures.

Finally, in Section 9 we construct an example illustrating Theorem B.

1.1 Shadows in the curve complex

Given any point X ∈ T (S) and a projective class [λ] of a measured geodesic lamination

on X, there are different ways to geometrically define a ray that starts at X and “heads

in the direction of [λ]”; examples include the Teichmüller ray, the grafting ray, and the

line of minima [20]. Given any path in Teichmüller space, by taking the shortest curve

on each surface, we get a path in the complex C(S) of curves of S, which is often called
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Grafting Rays Fellow Travel Teichmüller Geodesics 5

the shadow of the original path. Masur and Minsky [24] showed that the shadow of a

Teichmüller geodesic is an unparameterized quasi-geodesic in C(S). A consequence of

Theorem A is that the shadow of a grafting ray remains a bounded distance in C(S)
from the shadow of a Teichmüller geodesic ray. Hence, it follows that the same is true

of the grafting ray. In the case of a line of minima, though it may not remain a bounded

distance from any Teichmüller geodesic, it was shown [2] that its shadow fellow travels

that of its associated Teichmüller geodesic. It is interesting that although these paths

are defined in rather different ways, at the level of the curve complex, they are essentially

the same.

1.2 Related results and references

Using a combinatorial model for the Teichmüller metric, Dı́az and Kim [3] showed that

the conclusion of Theorem A holds for grafting rays of laminations supported on simple

closed geodesics. However, the resulting bound on distance depends on the geometry

of the geodesics in an essential way, obstructing the extension of their method to more

general laminations by a limiting argument.

Grafting rays were also studied by Wolf and the second author in [5], where it

was shown that, for any X ∈ T (S), the map λ 
→ gr(λ, X) gives a homeomorphism between

ML(S) and T (S). In particular, Teichmüller space is the union of the grafting rays based

at X, which are pairwise disjoint. In light of Theorem A, we find that this “polar coordi-

nate system” defined using grafting is a bounded distance from the Teichmüller expo-

nential map at X.

2 The Orthogonal Foliation to a Lamination

Throughout Sections 2–7, we assume that S has no punctures. In this section, we con-

struct, for every X ∈ T (S) and every measured lamination λ, a measured foliation H(λ, X)

orthogonal to λ in X. This is a kind of approximation for the horizontal foliation of

G(t, λ, X), which we do not explicitly know. In the case where λ is maximal (i.e., the com-

plement of λ is a union of ideal triangles), the measured foliation is equivalent to the

horocyclic foliation constructed by Thurston in [36].

2.1 A measured foliation orthogonal to λ

Let g be a geodesic in H2. Consider the closest point projection map onto g, which takes

each point in H2 to the point on g to which it is closest. The fibers of the projection
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6 Y.-E. Choi et al.

foliate H2 by geodesics perpendicular to g. Analogously, if {gi} is a collection of disjoint

geodesics, then the closest point projection to
⋃

gi is well defined , except at the points

that are equidistant to two or more geodesics in {gi}. These points form a (possibly

disconnected) graph where the edges are geodesic segments, rays, or lines. The fibers of

the projection foliate H2 by piecewise geodesics.

The lamination λ lifts to a set λ̃ of disjoint infinite geodesics that is invariant

under deck transformations. Let θ̃ be the graph of points where the closest point projec-

tion to λ̃ is not well defined and let θ be the projection of θ̃ to X. We call the set θ = θ(λ, X)

the singular locus of the closest point projection map. As above, the fibers defined by the

projection provide a foliation of H2, which projects down to a foliation of X. Thus, we

obtain a singular foliation H=H(λ, X) on X orthogonal to λ. The foliation has singular-

ities at the vertices of θ , where the number of prongs at a singularity coincides with the

valence of the vertex. The leaves of H are piecewise geodesics whose nonsmooth points

lie on θ . For later purposes, we prefer to maintain the nonsmooth structure of H along

θ . A leaf of H that joins two vertices is called a saddle connection.

Proposition 2.1. The hyperbolic arc-length along λ induces a transverse measure on

H(λ, X). �

Proof. Let η be a smooth embedded arc in X. First suppose that the interior of η is

contained in a component of X \ θ (the endpoints of η may be contained in θ ) and that

at every interior point η is transverse to H. Let η̃ be a lift of η. Then the closest point

projection onto λ̃ projects η̃ to an arc on a leaf of λ̃. (In the case where an endpoint of η̃ is

in θ̃ , project the endpoint to the same leaf of λ̃ as the nearby interior points.) Define the

measure on η to be the length of this arc. In the case where η is contained in θ , observe

that although the closest point projection of η̃ to λ̃ is not well defined, any choice of

projection has the same length because θ̃ is equidistant to the corresponding leaves of

λ̃. Define the measure on η to be the length of this arc. If the interior of η intersects θ

at a point p, we say that η is transverse to H at p if, on a small circle C centered at p,

the points of η ∩ C separate the points of � ∩ C , where � is the leaf of H through p. In

general, if η is transverse to H at every point, we define the H-measure of η to be the sum

of the H-measures of the subarcs
⋃

[η ∩ (X \ θ)] and any subarcs in η ∩ θ . In this way, we

equip H with a transverse measure that coincides with arc-length along λ. �

Note that neither H nor its transverse measure depends in any way on the mea-

sure on λ.
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Grafting Rays Fellow Travel Teichmüller Geodesics 7

Fig. 1. A rectangle R foliated by leaves of H in the case where λ is a weighted multicurve (of

which three segments are shown in bold). The leaves of H are piecewise geodesics, smooth away

from θ , and orthogonal to λ at each intersection. The left and right edges of R are contained in ω.

3 Rectangle Decomposition

We now describe a decomposition of X into rectangles using the orthogonal foliation

H=H(λ, X).

Choose an arc ω contained in θ that contains no singularities of θ . For every

point p on ω and a choice of normal direction to ω, consider the arc of H starting from

p in that direction. By Poincaré recurrence (see, e.g., [7, Section 5.1]), this arc either

ends at a singular point of θ or intersects ω again. We call such an arc exceptional if it

intersects a singular point of θ or an endpoint of ω before intersecting the interior of ω.

In particular, we consider any arc starting from an endpoint of ω to be exceptional. Let

P ⊂ω denote the set of endpoints of exceptional arcs. Label the normal directions of ω

as n1,n2. Then P = P1 ∪ P2, where Pi corresponds to endpoints of exceptional arcs in the

normal direction ni.

The first return map of H is defined on the set of pairs (p,ni) where p∈ω, i ∈
{1,2}, and p /∈ Pi; that is, the first return map is naturally a self-map of

(ω \ P1)× {n1} ∪ (ω \ P2)× {n2}.

An open interval of ω \ Pi flows along H in the direction ni until it returns to another

(possibly overlapping) interval of ω sweeping out a rectangle that has two edges attached

to ω (see Figure 1). We refer to it as a rectangle, despite the fact that the edges along H are

jagged, because the endpoints of the edges that are attached to ω give four distinguished

points on the boundary. We call these points the vertices of the rectangle.
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8 Y.-E. Choi et al.

If H(λ, X) has no saddle connections, this decomposes X into a union of

rectangles. If H(λ, X) has saddle connections, then the union of the rectangles may only

be a subsurface of X, whose boundary is made of saddle connections. We will, however,

assume below in (H1) that H(λ, X) has no saddle connections.

The interiors of the rectangles are disjoint and contain no singularities. For every

rectangle R we call the pair of opposite edges that are subarcs of ω the vertical edges

of R. We refer to the other pair of opposite edges, which are subarcs of leaves of H, as

the horizontal edges of R. The rectangle decomposition obtained from a transversal ω

in this way is denoted by R(ω, λ, X).

3.1 Topological stability of the decomposition

Suppose that μ is a maximal measured lamination, that is, the complement of μ is a

union of ideal triangles. The foliation H(μ, X) has a three-prong singularity at the cen-

ter of each ideal triangle. If λ is close to μ in the usual weak topology of ML(S) then,

because μ is maximal, the lamination λ is also close to μ in the Hausdorff topology (see

[36, pp. 24–25; 37]). Since H(λ, X) varies continuously with the support of λ, the singu-

larities of H(λ, X) remain isolated from one another and are the same in number and

type. Similarly, the part of the singular graph θ(μ, X) that lies outside a small neighbor-

hood of the support of μ will be close (in the C 1 topology of embedded graphs) to the

corresponding part of θ(λ, X).

We emphasize that the constructions above are not continuous in any neighbor-

hood of μ in the measure topology of ML(S); rather, maximality of μ implies continuity

at μ, since for maximal laminations convergence in measure and in the Hausdorff sense

are the same.

Let us further assume that H(μ, X) and ω satisfy the following conditions:

(H1) The foliation H(μ, X) has no saddle connections (and, in particular, it is

minimal).

(H2) The horizontal sides of rectangles in R(ω,μ, X) containing the endpoints

of ω do not meet the singularities of H(μ, X).

Then we can conclude that, for λ sufficiently close to μ and an arc ωλ ⊂ θ(λ, X) suffi-

ciently close to ω, the rectangle decomposition R(ωλ, λ, X) is well defined and is topo-

logically equivalent (i.e., isotopic) to R(ω,μ, X). First, note that ωλ is still disjoint from

λ and transverse to H(λ, X). Moreover, the condition (H1) ensures that every point in P1

and P2 corresponds to a unique point in ωλ. (Note that if H(μ, X) had a saddle connection,
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Grafting Rays Fellow Travel Teichmüller Geodesics 9

both saddle points would project to the same point in ω. But the corresponding points

in H(λ, X) may project to different points in ωλ.) Thus, the rectangle decompositions

R(ω,μ, X) and R(ωλ, λ, X) are topologically equivalent.

In order to analyze rectangle decompositions for laminations near a given one, it

will be convenient to work with an open neighborhood U ⊂ML(S) of μ and to extend the

transversal ω to a family of transversals {ωλ : λ ∈U }. We require that this family satisfy

the following conditions:

(T1) For each λ ∈U , the arc ωλ lies in the singular locus θ(λ, X), and its end-

points are disjoint from the vertices of θ(λ, X).

(T2) The family of transversals is continuous at μ, meaning that, for any λn∈U

such that λn→μ in the measure topology, the transversals ωλn converge to

ω=ωμ in the C 1 topology.

Note that, for any maximal lamination μ ∈ML(S), we can start with a transversal ω in

an edge of its associated singular locus and construct a family satisfying the conditions

above on some neighborhood of λ in ML(S). For example, we can take ωλ to be the

arc in θ(λ, X) whose endpoints are closest to those of ω. The C 1 convergence of these

arcs as λ→μ follows from the convergence of the singular graphs, once we choose the

neighborhood of λ in ML(S) so that the original arc ωμ has a definite distance from the

support of any lamination in the neighborhood.

3.2 Geometric stability of the decomposition

To quantify the geometry of a rectangle decomposition, rather than its topology, we

introduce parameters describing aspects of the shape of a rectangle R∈R(ω,μ, X). Let

H=H(μ, X) and define

hR(μ)=H-measure of a vertical edge of R.

By construction, the vertical edges of R have the same H-measure, so this is well defined,

and is equal to the length of any arc in R∩ μ.

Since we are assuming that H(μ, X) has no saddle connections, each horizontal

edge of R either contains exactly one singularity of H or does not contain any singu-

larities, but ends at an endpoint of ω. In the former case, the singularity divides the

edge into two horizontal half-edges. Although in the latter case the edge is not divided,

we nonetheless refer to it as a horizontal “half-edge” and include it in the set IR of
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10 Y.-E. Choi et al.

horizontal half-edges of R. Define

lR(μ)=max
I∈IR

�(I ),

where �(I ) denotes the hyperbolic length of I .

Also define

mR(μ)=min
I∈IR

i(I, μ),

where i(·, ·) is the intersection number with the transverse measure of μ.

We consider the variation of the rectangle parameters over U , continuing under

the assumption that (H1), (H2), (T1), (T2) hold. By construction, the parameters hR(μ) and

lR(μ) depend continuously on the foliation H(μ, X) and on a compact part of the singular

locus θ(μ, X), both of which vary continuously with the support of μ in the Hausdorff

topology. Thus, both of these parameters are continuous at a maximal lamination. And

mR(μ) varies continuously with μ.

For future reference, we summarize this discussion in the following lemma.

Lemma 3.1. Suppose that μ is maximal and ω is a transversal such that the pair sat-

isfies (H1) and (H2). Then there is a neighborhood U of μ in ML(S) and a family of

transversals satisfying (T1) and (T2) such that the associated rectangle decompositions

are all topologically equivalent, and such that, for any λ ∈U , we have

lR(λ) < 2lR(μ);

mR(λ) >
mR(μ)

2
;

hR(λ) >
hR(μ)

2
.

(1)

�

4 Construction of a Quasi-conformal Map

Our plan is to use the rectangle decomposition to define a quasi-conformal map from

the grafting ray to a Teichmüller ray. In order to bound the quasi-conformal constant,

however, we need control over the shapes of the rectangles. Thus, we first consider a

standard surface Xstd for which the rectangle decomposition is well behaved.

We will need the following lemma.
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Grafting Rays Fellow Travel Teichmüller Geodesics 11

Lemma 4.1. For every maximal lamination μ, the set Vμ of Riemann surfaces Y ∈ T (S),
where H(μ,Y) has no saddle connections, is the intersection of a countable number of

open dense subsets of T (S). For each Y ∈ Vμ there is an arc ω in θ(μ,Y) satisfying (H2). �

Proof. Since every point in T (S) comes with a marking, we can consider μ and H(μ, X)

as a measured lamination and a measured foliation on S, respectively. Since μ is maxi-

mal, there is one singularity of H(μ, X) contained in each complementary ideal triangle.

Let A=A(μ) be the set of homotopy classes of arcs connecting the singular points of

H(μ, X). For any Y ∈ T (S), the set of homotopy classes of arcs connecting the singular

points of H(μ,Y) is identified with A via the marking map S→Y.

Let α be an arc in A, and consider the set Vα of points Y ∈ T (S) such that α is not

a saddle connection of H(μ,Y). Suppose that Z is in the complement of this set Vc
α . Let

Zt be the image of Z after applying a left earthquake along the measured lamination tμ

and let Ht=H(μ, Zt). An arc in A appears as a saddle connection of Ht if its Ht-measure

is zero. But the Ht-measure of each arc is a linear function of t; by the definition of

the earthquake flow, the Ht-measure of such an arc is equal to its H0 measure plus its

μ-measure times t. Since μ is maximal, every arc in A has to intersect μ and hence the

Ht-measure cannot remain constant. Therefore, Zt is in Vα for every t> 0. Since we can

apply the same argument for right earthquakes, it follows that Vc
α is a closed subset of

T (S) of codimension at least 1. Thus, Vα is an open dense subset of T (S). Since A consists

of a countable number of elements, the intersection

Vμ =
⋂
α∈A

Vα

is an intersection of a countable number of open dense subsets of T (S).
For Y ∈ Vμ, choose an arc ω0 ∈ θ(μ,Y). There are finitely many leaves of H(μ,Y)

that contain singularities, and these intersect ω0 in a countable set of points. Any subin-

terval ω⊂ω0 whose endpoints are in the complement of this set will satisfy (H2). �

4.1 The standard surface

Consider a pair of pseudo-Anosov maps ϕ and ϕ̄, so that the associated stable lamina-

tion ν and ν̄ are distinct and maximal. We perturb X to a Riemann surface Xstd so that

both orthogonal foliations H=H(ν, Xstd) and H̄=H(ν̄, Xstd) satisfy (H1). This is possi-

ble because, by Lemma 4.1, the intersection of Vν and Vν̄ is still dense and hence is

nonempty.
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12 Y.-E. Choi et al.

Let θ and θ̄ be the singular loci of H and H̄, respectively. We choose arcs ωstd

and ω̄std contained in θ and θ̄ , respectively, satisfying (H2). Let U and Ū be open neigh-

borhoods of ν and ν̄ as in Lemma 3.1. By making U and Ū smaller if necessary, we can

assume that they are disjoint. Let Ustd =U ∪ Ū and, for λ ∈Ustd, let R(λ) denote the rect-

angle decomposition R(ωλ, λ, Xstd).

For R∈R(ν) we know that lR> 0 and hR> 0 (this is true for any nondegenerate

rectangle). An arc contained in a leaf of H connecting two points in θ must intersect λ.

Therefore, such an arc connecting ωstd to itself or to a singular point of H (which also

lies in θ ) has to have a positive ν measure. Hence, mR is also positive. Similar statements

are true for ν̄. Define

L=max{lR : R∈R(λ), λ ∈Ustd};

M=min{mR : R∈R(λ), λ ∈Ustd};

H=min{hR : R∈R(λ), λ ∈Ustd}.

(2)

Then, by Lemma 3.1, H, M, and L are finite and positive. These constants give uniform

control over the shapes of all rectangles in any rectangle decomposition R(λ) for λ ∈Ustd.

For the rest of this section, we restrict our attention to laminations λ in Ustd

only. We prove that the grafting ray gr(sλ, Xstd) fellow travels a Teichmüller geodesic

with constants depending on Xstd, ωstd, ω̄std, and Ustd but not on λ (Proposition 4.5).

4.2 Rectangle decomposition of gr(sλ, Xstd)

The rectangle decomposition R(λ) can be extended to a rectangle decomposition of the

grafted surface gr(sλ, Xstd) that is adapted to its Thurston metric rather than the hyper-

bolic metric that uniformizes it. The surface gr(sλ, Xstd) is obtained by cutting Xstd along

the isolated leaves of λ and attaching a cylinder of the appropriate thickness in their

place; that is, the complement of the isolated leaves of λ in Xstd is canonically homeo-

morphic to the complement of the corresponding cylinders in the grafted surface. How-

ever, when λ has leaves that are not isolated, the complement of the cylinders changes as

a metric space. The length of an arc in the Thurston metric of gr(sλ, Xstd) disjoint from

the cylinders is its hyperbolic length plus its sλ-measure.

The rectangle decomposition R(λ) defines a rectangle decomposition Rs(λ) of

gr(sλ, Xstd) as follows. A rectangle R in R(λ) is extended to a rectangle Rs by cutting

along each isolated arc in λ ∩ R and inserting a Euclidean rectangle of width s times

the original λ-measure carried by the arc, as in Figure 2. Then Rs(λ) is the collection
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Grafting Rays Fellow Travel Teichmüller Geodesics 13

Fig. 2. The rectangle decomposition extends naturally to the grafted surface, replacing isolated

arcs of R∩ λ with Euclidean rectangles contained in the grafted annuli.

of rectangles Rs. The foliation H can be extended to a foliation Hs of gr(sλ, Xstd); inside

the cylinders corresponding to isolated leaves, Hs is the foliation by geodesic arcs (in

the Euclidean metric on the cylinder) that are perpendicular to the boundaries of the

cylinder.

4.3 Foliation parallel to λ ∪ θ

Let R be a rectangle in R(λ). We foliate R with geodesic arcs parallel to λ ∪ θ as follows.

A component of R \ (λ ∪ θ) is a geodesic quadrilateral that has a pair of opposite sides

lying in θ and λ, respectively. Consider this quadrilateral in the hyperbolic plane, where

these opposite sides are contained in a pair of disjoint infinite geodesics g1 and g2. If

g1 and g2 do not meet at infinity, the region between them can be foliated by geodesics

that are perpendicular to the common perpendicular of g1 and g2. If g1 and g2 meet

at infinity, the region between them can be foliated by geodesics sharing the same end-

point at infinity. This foliation restricts to a foliation of the quadrilateral by arcs. Apply-

ing the same construction for each component in each rectangle, we obtain a foliation

V = V(ωλ, λ, Xstd) of Xstd that is transverse to H. Note that, unlike H, the vertical foliation

V does not have a natural transve rse measure.

Similar to H, the foliation V can be extended to a foliation Vs of the grafted

surface gr(sλ, Xstd); inside cylinders corresponding to isolated leaves, V extends as the

orthogonal foliation to Hs.

4.4 Projections along Vs

Let R be a rectangle in R(λ). Orient R so that the notions of up, down, left, and right

are defined; these are still well defined for the grafted rectangle Rs ∈Rs(λ). We assume
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14 Y.-E. Choi et al.

Fig. 3. A portion of a rectangle Rs foliated by leaves of Vs in the case where λ is a weighted

multi-curve. The central rectangle is part of an annulus that has been grafted along λ. The top

and bottom edges of Rs are arcs in the leaves of Hs.

that the top and the bottom edges are horizontal and the left and the right edges are

vertical.

Fixing the rectangle Rs, we define the map πD from Rs to the bottom edge of Rs

to be the projection downward along the leaves of Vs and the map πU from Rs to the top

edge of Rs to be the projection upward along the leaves of Vs (see Figure 3). Also, define

a map h : Rs→R+ to be the height; that is, for p∈ Rs, h(p) is the Hs-measure of any arc

(transverse to H) connecting p to the bottom edge of Rs.

Lemma 4.2. There is a constant B> 0 depending only on Xstd such that, for every λ ∈
Ustd and Rs ∈Rs(λ) equipped with the Thurston metric, the following hold.

(1) The maps πU and πD are B-Lipschitz. Furthermore, the restrictions of these

maps to a leaf of Hs are B-bi-Lipschitz.

(2) The map h is B-Lipschitz. Furthermore, the restriction of h to a leaf of Vs is

B-bi-Lipschitz. �

Proof. The lemma clearly holds for the interior of added cylinders with B= 1 as πU,

πD, and h are just Euclidean projections. As mentioned before, in the complement of

these added cylinders, the Thurston length of an arc in Rs is the sum of the hyperbolic

length of this arc and its sλ-transverse measure. As one projects an arc up or down,

the sλ-measure does not change. Therefore, to prove the first part of the lemma, we

need only to prove it for the restriction of πU and πD to every component of R \ (λ ∪ θ).
Similarly, proving part two in each component of R \ (λ ∪ θ) is also sufficient. This

is because showing that h is Lipschitz with respect to the hyperbolic metric implies
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Grafting Rays Fellow Travel Teichmüller Geodesics 15

that it is Lipschitz with respect to the Thurston metric as well (since the Thurston

metric is pointwise larger [35, Proposition 2.2]). Also, the leaves of V reside in one

component.

Let Q be a component of R \ (λ ∪ θ). We know that Q is a hyperbolic quadrilateral

with one vertical edge e1 in λ and the other e2 in θ . Since H was defined by closest

point projection to λ, the top and bottom edges of Q make an angle of π/2 with the

edge e1. The hyperbolic length of e1 is bounded by the hyperbolic length of ω and the

maximum distance between e1 and e2 is bounded above by the diameter of Xstd; that is,

fixing Xstd and ω, the space of possible shapes (after including the degenerate cases) is

compact in Hausdorff topology. For each possible quadrilateral Q, the maps in question

are Lipschitz (including the degenerate cases where the length of e1 is zero, or e1 and

e2 coincide) and the Lipschitz constants vary continuously with shape. Hence, the maps

πU, πD, and h are uniformly Lipschitz.

Also, the restriction of πU and πD to leaves of H are always bijections and have

positive derivatives and the restriction of h to a leaf of V is a bijection and has a positive

derivative. Thus, there is a uniform lower bound for these derivatives and hence they

are uniformly bi-Lipschitz maps. �

4.5 Mapping to a singular Euclidean surface

For each rectangle Rs in Rs(λ) consider a corresponding Euclidean rectangle Es with

width equal to the sλ-measure of the horizontal edges of Rs and height equal to the Hs-

measure of the vertical edge. Recall that a horizontal edge of a rectangle Rs is divided

into two (or one; see Section 3.2) horizontal half-edges; the set of horizontal half-edges

of Rs is denoted by IRs . We also mark a special point on each the horizontal edge of

Es, dividing it into horizontal half-edges, so that the Euclidean length of the interval

associated to I ∈ IRs is equal to i(sλ, I ).

We fix a correspondence between horizontal half-edges of Rs and Es. Glue the

rectangles Es along these horizontal half-edges and the vertical edges with Euclidean

isometries in the same pattern as the rectangles Rs are glued in Rs(λ). Each horizon-

tal half-edge I appears in two rectangles, but i(sλ, I ) is independent of which rectan-

gle we choose. Similarly, the vertical edges appear in two rectangles each, but their

Hs-measures are independent of the choice of the rectangle. Hence, the lengths of cor-

responding intervals in Es match and the gluing is possible; it results in a singular

Euclidean surface Es. Our goal in this section is to define a quasi-conformal map F

between gr(sλ, Xstd) and Es.
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16 Y.-E. Choi et al.

Consider the rectangles in Rs(λ) as sitting in gr(sλ, Xstd) and the correspond-

ing rectangles as sitting in Es. The horizontal half-edges and the vertical edges of the

rectangles form a graph in gr(sλ, Xstd). First, we define a map fs from this graph to the

associated graph in Es. Note that, for the gluing to work, the map should depend on

the edge only and not on the choice of rectangle containing it. We map any horizontal

half-edge I ∈ IRs of the rectangle Rs linearly onto the associated interval in Es, where we

take I to be equipped with the induced Thurston metric. We map a vertical edge J to

the associated vertical edge in Es so that the Hs-measure is preserved. Note that fs is

distance nonincreasing.

Now that the map fs is defined on the 1-skeleton, we extend it to a map

Fs : gr(sλ, Xstd)→ Es,

as follows: for each rectangle Rs, we send leaves of V to geodesic segments in Es so that

Hs is preserved. More precisely, for every point p∈ Rs, consider the points q= fs(πU(p))

and q′ = fs(πD(p)). Then let Fs(p) be the point in the segment [q,q′] whose distance from

the bottom edge of Es is h(p). We observe the following lemma.

Lemma 4.3. The slope of the segment [q,q′] is uniformly bounded below. �

Proof. Consider the rectangle Es in R2 with the horizontal and the vertical edges par-

allel to the x-axis and the y-axis, respectively, and the bottom left vertex at the origin.

The height of Rs is at least H, so the same is true of Es. Hence, we need to show that the

x-coordinates of q and q′ differ by at most a bounded amount.

Let I be the interval connecting the top left vertex of Rs to πU(p) and let I ′ be

the interval connecting the bottom left vertex of Rs to πD(p). Note that i(sλ, I )= i(sλ, I ′).

Also, the Thurston length of I is equal to i(sλ, I ) plus the hyperbolic length of I , which

is bounded above by L and the same holds for I ′. Therefore, the Thurston lengths of

I and I ′ differ by at most 2L. It remains to be shown that the difference between the

x-coordinate of q and the Thurston length of I and the difference between the

x-coordinate of q′ and the Thurston length of I ′ are uniformly bounded.

To see this last assertion, note that, as p moves to the right along a leaf of H,

the difference between the Thurston length of I and the x-coordinate of q increases (the

derivatives of the map fs are always less than 1). Thus, this difference is an increasing

function that varies from zero to lR and hence is uniformly bounded by L. A similar

argument works for q′ and I ′. This completes the proof. �
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4.6 Bounding the quasi-conformal constant

We now bound the quasi-conformal constant of Fs. First we introduce some notation.

Given two quantities A and B, we say that A is comparable to B and write

A
∗� B, if

1

c
B ≤ A≤ cB,

for a constant c that depends on predetermined values, such as the topology of S, or

H,L,M as defined above. Similarly, A
+� B means that there is a constant c> 0 such that

B − c< A< B + c,

where the constant c may have similar dependencies. We say that A is of the order of B

and write A
∗≺ B if A≤ cB, for c as above. The notation A

+≺ B is defined analogously.

Proposition 4.4. Let s0 > 0. Then there is a constant k, depending on s0, such that, for

any λ ∈Ustd and s≥ s0, the map

Fs : gr(sλ, Xstd)→ Es

is k-quasi-conformal. �

Proof. Let p1 and p2 be two points in Rs. We will show

dTh(p1, p2)
∗�dR2(Fs(p1), Fs(p2)).

Let ε =dTh(p1, p2) . By Lemma 4.2 we have

dTh(πU(p1), πU(p2))
∗≺ ε, dTh(πD(p1), πD(p2))

∗≺ ε,

and

|h(p1)− h(p2)| ∗≺ ε.

For i = 1,2, let qi = fs(πU(pi)) and q′i = fs(πD(pi)). Note that the points q1,q2 lie on a hori-

zontal line, the top side of the rectangle Es, and similarly q′1,q
′
2 lie on the bottom of the
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18 Y.-E. Choi et al.

rectangle. Since fs is distance nonincreasing, we have

dR2(q1,q2)
∗≺ ε and dR2(q′1,q

′
2)

∗≺ ε.

Hence, the horizontal distance between the lines [q1,q′1] and [q2,q′2] is of order ε at every

height. Also, by Lemma 4.3 these lines have slope bounded below. For i = 1,2, the point

Fs(pi) lies on the line [qi,q′i] at height h(pi), so if we cut the lines [q1,q′2] and [q2,q′2] by

the pair of horizontal lines corresponding to these heights, then Fs(p1) and Fs(p2) are

opposite corners of the resulting quadrilateral.

A quadrilateral that has two opposite horizontal sides of length of order ε, a

height of order ε, and a definite angle at each vertex (guaranteed here by the slope con-

dition) has a diameter that is also of order ε, thus the distance between Fs(p1) and Fs(p2)

is also of order ε.

In the other direction, suppose δ=dR2(Fs(p1), Fs(p2)). The restriction of Fs to a

horizontal half-edge I is linear, with derivative equal to i(sλ, I ) divided by the Thurston

length of I , and we have
sM

L+ sM
≥ s0M

L+ s0M
,

so this derivative is bounded below independent of s. The corresponding upper bound

for the derivative of the inverse map gives

dTh(πU(p1), πU(p2))
∗≺ δ,

and, by Lemma 4.2,

|h(p1)− h(p2)| ∗≺ δ.

Consider the leaf l of H passing through p1 and let p be the intersection of l with the

leaf of V passing through p2. Since h restricted to a leaf of V is uniformly bi-Lipschitz,

the arc [p2, p] has length of order δ. Also, since πU restricted to a leaf of H is uniformly

bi-Lipschitz, the arc [p, p1] along a leaf of H has length of order δ. The triangle inequality

implies

dTh(p1, p2)
∗≺ δ.

The same argument works for every rectangle in Rs(λ); that is, the map F is uniformly

bi-Lipschitz and thus uniformly quasi-conformal. �
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4.7 The Teichmüller ray

The map Fs provides a marking for Es and thus we can consider Es as a point in T (S).
We will show that after reparameterization, this family of points traces a Teichmüller

geodesic ray. The surface Es defines a quadratic differential qs: locally away from the

singularities, Es can be identified with a subset of R2 sending the horizontal and the

vertical foliations to lines parallel to the x-axis and y-axis, respectively. We define qs in

this local coordinate to be dz2.

The leaves of the horizontal lines on Es (defined locally by y= constant) match

along the gluing intervals to define a singular foliation on Es. Then |dy| defines a trans-

verse measure on this foliation. From the construction, we see that this measured foli-

ation represents Hs. Similarly, the vertical lines on Es define a singular foliation with

transverse measure |dx| to give a measured foliation representing sλ.

The Euclidean area of Es is s · �Xstd(λ). Thus, scaling by 1/(s�Xstd(λ)), we get a unit

area quadratic differential qs on Es whose vertical and horizontal foliations are, respec-

tively,
√

sλ/
√
�Xstd(λ) and H/

√
s�Xstd(λ).

Letting s= e2t, we obtain the one-parameter family of quadratic differentials

qs =
[

et 0

0 e−t

]
q1.

It is well known that the underlying conformal structures of these quadratic differen-

tials traces a Teichmüller geodesic parameterized by arc length with parameter t.

We summarize the discussion in the following proposition.

Proposition 4.5. Let t0 ∈R. Then there is a constant q depending on t0 such that the

following holds: For any λ ∈Ustd there is a Riemann surface Yλ such that, for all t≥ t0,

dT (gr(e2tλ, Xstd),G(t, λ,Yλ))≤ q. �

This proposition is the final result in our study of the orthogonal foliation and

rectangle decomposition of a grafted surface, and it provides the basic relation between

Teichmüller geodesic rays and grafting rays in the proof of the main theorem.

Before proceeding with this proof, however, we need to estimate the effect (in

terms of the Teichmüller metric) of moving the basepoint of a grafting ray. This is

addressed in the next two sections, where we discuss projective grafting and its exten-

sion to quasi-Fuchsian groups, leading to the proofs of Theorems C and D. In Section 7,
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20 Y.-E. Choi et al.

these results will be combined with Proposition 4.5 in order to prove Theorem A for

surfaces without punctures.

5 Projective Structures, Grafting, and Bending

In this section, we collect some background material on complex projective structures,

grafting, and bending. We also establish some basic compactness results for projective

structures and their developing maps, which will be used in the proof of Theorem C. We

emphasize that in Sections 5 and 6 the argument does not depend on whether or not S

has punctures.

5.1 Deformation space

Let P(S) denote the deformation space of marked complex projective structures on the

surface S. Each such structure is defined by an atlas of charts with values in CP1 and

transition functions in PSL2C. If S has punctures, we also require that a neighborhood

of each puncture be projectively isomorphic to a neighborhood of a puncture in a finite-

area hyperbolic surface (considered as a projective structure, using a Poincaré conformal

model of H2). For background on projective structures, see [4, 11, 18, 35].

There is a forgetful projection map π :P(S)→ T (S), which gives P(S) the struc-

ture of a complex affine vector bundle modeled on the bundle Q(S)� T1,0T (S) of inte-

grable holomorphic quadratic differentials. We denote the fiber of Q(S) over X ∈ T (S) by

Q(X). A projective structure Z with developing map f : Z̃→CP1 is identified with the

quadratic differential S( f) on π(Z), where

S( f)=
(

f ′′

f ′

)′
− 1

2

(
f ′′

f ′

)2

is the Schwarzian derivative. This Schwarzian parameterization gives P(S) the struc-

ture of a complex manifold of complex dimension 3|χ(S)| = 2 dimC T (S).

5.2 Projective grafting and holonomy

A grafted Riemann surface carries a natural projective structure. A local model for this

projective grafting construction in the universal cover of a hyperbolic surface X is given

by cutting the upper half-plane H along iR+ and inserting a sector of angle t. The quo-

tient of this construction by a dilation z 
→ e�z corresponds to inserting a cylinder of

length t and circumference � along the core geodesic γ of a hyperbolic cylinder. Using
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Grafting Rays Fellow Travel Teichmüller Geodesics 21

this model to define projective charts on a grafted surface gr(tγ, X) gives a complex pro-

jective structure Gr(tγ, X) ∈P(S). As with grafting of complex structures, there is an

extension of this projective grafting map to

Gr :ML(S)× T (S)→P(S),

which satisfies π ◦ Gr= gr, that is, the underlying Riemann surface of the projective

structure Gr(λ, X) is gr(λ, X).

For projective grafting with small weight along a simple closed curve, the devel-

oped image of ˜Gr(tγ, X) is an open subset of Ĉ obtained from X̃ �H by inserting t-lunes

along the geodesic lifts of γ , adjusting the complementary regions in H2 by Möbius

transformations so that these lunes and hyperbolic regions fit together. The picture for

larger t is locally similar, but on a larger scale the developing map may fail to be injec-

tive.

Let X (S) denote the PSL2(C)-character variety of π1(S), that is,

X (S)=Hom(π1(S),PSL2(C))//PSL2(C),

where PSL2(C) acts on the variety Hom(π1(S),PSL2(C)) by conjugation of representa-

tions and // denotes the quotient algebraic variety in the sense of geometric invariant

theory (see [14; 28, Section II.4]). Let hol :P(S)→X (S) be the holonomy map, assigning

to each projective structure Z the holonomy representation hol(Z) : π1(S)→ PSL2(C), well

defined up to conjugacy, which records the obstruction to extending projective charts of

Z along homotopically nontrivial loops.

5.3 Bending

The composition of the grafting and holonomy maps

B = hol ◦ Gr :ML(S)× T (S)→X (S)

is the bending map (or bending holonomy map in [25, Section 2], a special case of the

quakebend of [6, Chapter 3]). If X ∈ T (S) corresponds to a Fuchsian representation ρX :

π1(S)→ PSL2R preserving a totally geodesic plane H2 ⊂H3, then B(λ, X) is a deformation

of this representation that preserves a pleated plane Pl : H2→H3 obtained by bending

H2 � X̃ along the lift of λ.
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22 Y.-E. Choi et al.

For later use, we describe this pleated plane explicitly in terms of the data (X, λ),

first in the case where λ= tγ is supported on a simple closed curve; see [6] for further

details. Lift the closed geodesic γ ⊂ X to a family γ̃ of complete hyperbolic geodesics in

H2. Given (x, y) ∈ (H2 \ γ̃ )× (H2 \ γ̃ ), let {g1, . . . , gn} ⊂ γ̃ denote the set of lifts of γ that

intersect the hyperbolic geodesic segment xy, ordered so that g1 is closest to x. Let

(pi,qi) ∈ R̂× R̂ denote the ideal endpoints of gi, with pi chosen so as to lie to the left

of the oriented segment �xy. Define the bending cocycle

βλ,X(x, y)= Et(p1,q1) · · · Et(pn,qn),

where Eθ (p,q) ∈ PSL2(C) is the elliptic Möbius transformation with fixed points p,q,

rotating counter-clockwise angle θ about p. If x and y are contained in the same compo-

nent of (H2 \ γ̃ ), then we define βλ,X(x, y)= id.

Thus, the map βλ,X : (H2 \ γ̃ )× (H2 \ γ̃ )→ PSL2(C) is locally constant in each vari-

able, with a discontinuity along each lift of γ , where the values on either side of g∈ γ̃
differ by an elliptic Möbius transformation fixing the endpoints of g. The bending cocy-

cle is related to the bending map B as follows: choose a basepoint O ∈ (H2 \ γ̃ ) and for

each α ∈ π1(S) define
ρX,λ(α)= βλ,X(O, ρX(α)O) · ρX(α).

Then B(λ, X) and ρX,λ are conjugate, that is, they represent the same point in X (S).
The developing map of Gr(tγ, X) has a similar description in terms of the bending

cocycle: we define f : (H2 \ γ̃ )→ Ĉ by

f(y)= βλ,X(O, y) · y,

where, in this formula, the Möbius map βλ,X(O, y) acts on the upper half-plane H2 (and

thus on y) by the usual linear fractional transformation. Unlike the pleating map, the

map f is discontinuous along each lift of γ , where it omits a t-lune in Ĉ. The developing

map of Gr(λ, X) fills in these lunes with developing maps for the projective annulus

γ × [0, t].

The bending map B, bending cocycle β, and the above description of the devel-

oping map all extend to the case of a general measured lamination λ ∈ML(S).

5.4 Quasi-Fuchsian bending

Let QF(S)⊂X (S) denote the quasi-Fuchsian space of S, consisting of conjugacy

classes of faithful quasi-Fuchsian representations of π1(S). By the Bers simultaneous
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uniformization theorem, we have a bi-holomorphic parameterization

Q : T (S)× T (S)→QF(S).

With respect to this parameterization, the space F(S)⊂QF(S) of Fuchsian groups is

exactly the diagonal {Q(X, X̄) | X ∈ T (S)}, and this is a properly embedded totally real

submanifold of maximal dimension.

By the uniformization theorem, we can identity the Teichmüller space with the

space of Fuchsian groups, T (S)�F(S). We use this identification to regard projective

grafting and bending as maps defined on ML(S)× F(S). Kourouniotis [21] showed that

the bending map extends naturally to a continuous map

B : ML(S)×QF(S)→X (S),

which is holomorphic in the second factor (since it is the flow of a holomorphic vector

field [22, Theorem 3], see also [10, Section 4]).

5.5 Developing maps and compactness

In the next section, we need a compactness criterion for sets of complex projective struc-

tures. Let Z ∈P(S) be a marked complex projective structure. An open set U ⊂ Z develops

injectively if the developing map of Z is injective on any lift of U to the universal cover.

By the uniformization theorem, the marked complex structure π(Z) ∈ T (S) under-

lying a projective structure Z ∈P(S) is compatible with a unique hyperbolic metric on Z

up to isotopy. We say that Z has an injective r-disk if there is an open disk in Z of radius

r (with respect to this hyperbolic metric) that develops injectively. Note that we assume

here that r is less than the hyperbolic injectivity radius of Z .

The following lemma is essentially an adaptation of Nehari’s estimate for univa-

lent functions [29].

Lemma 5.1. For any compact set K ⊂ T (S) and any δ > 0, the set of projective structures

Z ∈ π−1(K)⊂P(S) that contain an injective δ-disk is compact. �

Proof. The set of such projective structures is closed, so we need only show that it is

contained in a compact subset of P(S).
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Because K ⊂ T (S) is compact, the integrable quadratic differentials on the Rie-

mann surfaces in K have a definite amount of mass in each δ-disk, that is, there exists a

constant m(K, δ) > 0 such that

‖φ‖L1(D) ≥m(K, δ)‖φ‖L1(X), (3)

for all X ∈ K, φ ∈ Q(X), and any open disk D ⊂ X of hyperbolic radius δ. Here ‖ · ‖L1 is the

conformally natural norm on quadratic differentials:

‖φ‖L1(U ) =
∫

U
|φ|.

By Nehari’s theorem, if Z is a projective structure with Schwarzian differential

φ, then on any open set U ⊂ Z that develops injectively, we have

|φ| ≤ 3
2ρU , (4)

where ρU is the area element of the Poincaré metric of U .

Now suppose that Z contains an injective δ-disk D, and let 1
2 D denote the con-

centric disk with radius δ/2 with respect to the hyperbolic metric of Z . Applying (3) to
1
2 D and (4) to D, we have

‖φ‖L1(X) ≤ 1

m(K, δ/2)
‖φ‖L1( 1

2 D)

≤ 1

m(K, δ/2)

∫
1
2 D

3

2
ρD =

3area( 1
2 D, ρD)

2m(K, δ/2)
, (5)

where we use the notation area(Ω, ρ) for the area of a setΩ with respect to the area form

ρ. The quantity A(δ)= area( 1
2 D, ρD) depends only on δ, and using elementary hyperbolic

geometry, we find

A(δ)= 2π(1+ cosh(δ))

1+ 2 cosh
(
δ
2

) .
Therefore, (5) gives a uniform upper bound N(δ, K)= 3A(δ)/(2m(K, δ/2)) on the L1 norm

of φ.

Since ‖ · ‖L1(X) gives a continuously varying norm on the fibers of Q(S)�P(S), the

union of the closed N(δ, K)-balls over the compact set K ⊂ T (S) is compact. �
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5.6 Hyperbolic geometry of grafting

By construction, the grafted surface gr(tγ, X) has an open subset that is naturally identi-

fied with (X \ γ ). In this subsection, we study the geometry of this open set with respect

to the hyperbolic metric of gr(tγ, X). We do so by comparing the hyperbolic metric on

a grafted surface with the Thurston metric, which is obtained by gluing the Euclidean

metric of γ × [0, t] to the hyperbolic metric of X (see [35, Section 2.1]).

Since the Thurston metric is conformally equivalent to the hyperbolic metric on

gr(tγ, X), its length element can be expressed as ρTh = euρhyp, where ρhyp is the hyperbolic

length element and u is a real-valued function. The Gaussian curvature of the Thurston

metric is well defined except on the boundary of the grafting cylinder, and wherever

defined it is equal to 0 or −1. These bounds on the curvature correspond to the density

function u weakly satisfying

− 1≤Δhypu≤−1+ e2u, (6)

where Δhyp = 4
ρhyp

∂∂̄ is the Laplace–Beltrami operator of the hyperbolic metric on

gr(tγ, X) (see [16]). Approximating u by a smooth function and considering its Laplacian

at a minimum, it follows easily from the right-hand inequality of (6) that u≥ 0, i.e., the

Thurston metric is pointwise larger than the hyperbolic metric. Thus, u≤ eu, and since

the area of the Thurston metric is A= ∫
gr(tγ,X) e2uρ2

Th = (‖eu‖2)2, we have

‖u‖2 ≤ ‖eu‖2 ≤ A1/2. (7)

These area and curvature considerations are sufficient to give a pointwise upper

bound for u.

Lemma 5.2. If Y is a compact hyperbolic surface and u: Y→R+ is a function satisfying

inequalities (6) and (7), then we have

sup u≤M(A,Y),

where M is a continuous function of A∈R and of the image of Y in moduli space. �

An equivalent geometric statement of this lemma is: On any compact subset of

moduli space, the conformal metrics with bounded area and with curvatures pinched

in [−1,0] are uniformly bounded relative to the associated hyperbolic metrics.
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Proof. For any compact Riemannian manifold (M, g) and any nonnegative function

u with square-integrable derivatives satisfying Δgu≥ f , we have the Di Giorgi–Nash–

Moser maximum principle (see, e.g., [9, Theorem 9.20; 12, Section 4.2]):

sup u≤ C (M, g)(‖u‖2 + ‖ f‖2), (8)

where C (M, g) is a constant that for fixed M can be taken to vary continuously with g.

We apply this to the function u in the statement of the lemma, using the hyper-

bolic metric of Y, so C (M, g)= C (Y). By (6) we can use f ≡−1 and

(‖ f‖2)2 = area(Y, ρhyp)= 2π |χ(Y)|.

Substituting this and (7) into the right-hand side of (8) gives

sup u≤ C (Y)(A1/2 + (2π |χ(Y)|)1/2)=M(A,Y). �

The following corollary relates Lemma 5.2 to the geometry of grafting.

Corollary 5.3. There exists a continuous positive function r : ML(S)× T (S)→R+ such

that, for any (tγ, X) ∈ML(S)× T (S), the image of (X \ γ ) in gr(tγ, X) contains a ball of

radius r(tγ, X) with respect to the hyperbolic metric on gr(tγ, X). �

Proof. An equivalent statement is that there exists a point in gr(tγ, X) whose distance

from the grafting cylinder A is at least r(tγ, X).

Let x0 ∈ (X \ γ ) be a point whose distance from γ in the hyperbolic metric of X

is at least r0, where r0 is the radius of the inscribed disk of a hyperbolic ideal trian-

gle. Such a point always exists, since every complete hyperbolic surface with geodesic

boundary contains an isometrically embedded ideal triangle. We identify x0 with its

image in gr(tγ, X), which is a point whose Thurston distance from the grafting cylinder

A is at least r0.

We will show that the distance dhyp(x0, A) from x0 to A with respect to the hyper-

bolic metric on gr(tγ, X) is also bounded below.

The Thurston metric on gr(tγ, X) is obtained by gluing a hyperbolic surface of

area 2π |χ(S)| and a cylinder of area t�X(γ ). Therefore, we have

area(X, ρTh)= 2π |χ(S)| + t�X(γ )=: A(tγ, X).
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By Lemma 5.2, this area bound and the curvature of the Thurston metric imply that

sup eu≤ exp(M(A(tγ, X),gr(tγ, X))).

Since the length function is continuous on ML(S)× T (S), and gr : ML(S)× T (S)→ T (S)
is continuous, the right-hand side of this estimate is a continuous function f(tγ, X).

Let α be a minimizing geodesic arc from x0 to ∂A with respect to the hyperbolic

metric of gr(tγ, X). Then the length of this arc with respect to the Thurston metric is

∫
α

euρhyp ≤ (sup eu)

∫
α

ρhyp ≤ f(tγ, X)dhyp(x0, A).

Since x0 was chosen so that this length is at least r0, we have shown that

dhyp(x0, A)≥ r0

f(tγ, X)
. �

6 Grafting is Lipschitz

In this section, we prove Theorems C and D, after developing some preliminary results

about quasi-disks and quasi-Fuchsian groups.

6.1 Extension theorem

Let QF δ(S)⊂QF(S) denote the set of δ-almost-Fuchsian groups, that is, quasi-Fuchsian

groups of the form Q(X,Y)where dT (X,Y) < δ. Thus, QF δ(S) is a connected, contractible,

and open neighborhood of F(S) in QF(S).
Let dQF denote the Kobayashi distance function on

QF(S)� T (S)× T (S).

The Kobayashi metric on T (S) (or T (S)) is equal to the Teichmüller metric, and the

Kobayashi metric on a product of manifolds is the sup-metric. Thus, we can also

describe QF δ(S) in terms of dQF :

QF δ(S)= {ρ ∈QF(S) |dQF (ρ,F(S)) < δ}.
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As explained in the introduction, our first goal in this section is to show that

Gr :ML(S)× F(S)→P(S)

extends holomorphically to QF δ(S). The local existence of an extension Gr(λ, ·) near

F(S) is clear: The map Grλ : F(S)→ T (S) is known to be real-analytic (see [25, 33]), so

it has a holomorphic extension in a small neighborhood of the totally real manifold

F(S)⊂QF(S). Alternatively, the map hol : P(S)→X (S) is a local biholomorphism, so the

quasi-Fuchsian bending map Bλ : QF(S)→X (S) constructed by Kourouniotis (see [21])

can be locally lifted through hol to define Gr(λ, ·).
Unfortunately, it seems difficult to control the domain of definition of the exten-

sions that arise from these considerations. If using real-analyticity, one would need to

control the domain of convergence of a series representation for the grafting map, or

to analyze its analytic continuation. When using quasi-Fuchsian bending, the failure of

the holonomy map to be a topological covering [13] is a potential obstruction to lifting

the bending map to P(S) beyond a small neighborhood of a given point in T (S).
However, for our purposes the uniformity of this extension as X and λ vary

(i.e., the existence of the universal constant δ) is essential since extension on a smaller

neighborhood of a point in T (S) corresponds to a larger Lipschitz constant in the

Kobayashi metric argument of Section 6.4. We will establish such uniformity using a

geometric property of K-quasi-disks with K ≈ 1; however, we do not know whether

the restriction to small K is strictly necessary here. It is natural to ask the following

question.

Question. Does projective grafting extend to all quasi-Fuchsian groups, or further to

an open subset X (S) properly containing QF(S)? �

This question can also be interpreted in terms of the domain of integrability of

an incomplete holomorphic vector field on P(S), see [10].

6.2 Quasi-disks

The constant δ in our proof of Theorem C comes from the following lemma about quasi-

disks. Note that this constant is independent of the topological type of S.

Lemma 6.1. There exists δ > 0 with the following property: Let Ω be a K-quasi-disk,

where K < 1+δ
1−δ . Let p,q ∈ ∂Ω, and denote by γ (t) the Poincaré geodesic with ideal
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endpoints p,q, parameterized by arc length. Then the map T : C→ Ĉ defined by

T(x+ iy)= Ey(p,q) · γ (x)

is locally 2-quasi-conformal. �

Recall from Section 5.3 that Et(p,q) is the elliptic Möbius transformation fixing

p and q, and rotating counterclockwise about p by angle t.

Proof of Lemma 6.1. We need to determine a value of δ such that T is a local diffeo-

morphism and that its dilatation is bounded by 1
3 (i.e., it is locally 2-quasi-conformal).

In fact, we need only study the derivative of T along y= 0, since T(z) and T(z+ iy)

differ by composition with an elliptic Möbius transformation, leaving the dilatation (and

the property of being locally diffeomorphic) invariant.

Also note that the condition we wish to establish is invariant under applying

Möbius transformations to Ω, so we can assume p= 0, q=∞ and that i ∈Ω lies on the

Poincaré geodesic (parameterized so that γ (0)= i), and we must show that T is a local

diffeomorphism at 0, and its dilatation at 0 is bounded by 1
3 .

Consider the Riemann map f : H→Ω normalized to fix {0, i,∞}. Then we have

γ (t)= f(i et).

By explicit calculation we find

D0T = 1

2

(
−Im f ′(i) −1

Re f ′(i) 0

)
,

which has dilatation μ(0)= f ′(i)−1
f ′(i)+1 . The proof will therefore be complete if, for some δ,

the normalized Riemann map satisfies | f ′(i)− 1|< 1
2 (which, using the formula above,

gives |μ(0)|< 1
3 ).

Suppose on the contrary that no such δ exists. Then there is a sequence of Kn-

quasi-disks Ωn with Kn→ 1, normalized as above, so that the associated Riemann maps

satisfy

| f ′n(i)− 1| ≥ 1
2 for all n. (9)

 at U
niversity of O

klahom
a on June 23, 2011

im
rn.oxfordjournals.org

D
ow

nloaded from
 

http://imrn.oxfordjournals.org/


30 Y.-E. Choi et al.

Fig. 4. The image of R under a K-quasi-conformal deformation of R (normalized to fix {0, i,∞})
lies in a log(K)-neighborhood of R with respect to the Poincaré metric of Ĉ \ {0, i}.

Since Ωn is obtained from H by applying a Kn-quasi-conformal homeomor-

phism fixing {0, i,∞}, the boundary ∂Ωn lies in a log(Kn)-neighborhood of R̂ in the

Poincaré metric of Ĉ \ {0, i,∞} (see [1, Section 3.D]), as pictured in Figure 4. Since

log(Kn)→ 0, the pointed domains (Ωn, i) converge to (H, i) in the Carathéodory topology,

and thus Riemann maps fn and their derivatives converge to the identity uniformly on

compact sets. In particular, f ′n(i)→ 1, contradicting (9). This contradiction establishes

the lemma. �

6.3 Proof of the extension theorem

Proof of Theorem C. To fix notation, let ρ = Q(X,Y) ∈QF δ(S). We construct the exten-

sion of grafting and verify its properties in several steps.

Step 1 : Construction for simple closed curves. We consider the lamination tγ ∈ML(S),
where γ is a simple closed geodesic and t∈R+. Recall that βtγ,X : (H \ γ̃ )× (H \ γ̃ )→
PSL2(C) is the bending cocycle map for (tγ, X), and as before fix a basepoint O ∈ (H \ γ̃ ).
Abusing notation, we abbreviate β(y)= βtγ,X(O, y).

While β : (H \ γ̃ )→ PSL2(C) does not extend continuously to H, there is a natural

way to extend it to a continuous map β̂ : Z̃→ PSL2(C), where Z = gr(tγ, X). Recall that Z̃

is obtained from X̃ by replacing each lift of γ with a Euclidean strip of width t foliated

by parallel geodesics. If z∈ Z̃ corresponds to a point x∈ (X̃ \ γ̃ ), then we let β̂(z)= β(x);
otherwise z belongs to a strip that replaces a lift g, and we define

β̂(z)= Es(p,q) · β̂(x0),
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where x0 is a point in the connected component P of X̃ \ γ̃ adjacent to g and closer to O,

and where s is the Euclidean distance from z to the edge of the strip meeting P . Thus,

while β(x) jumps discontinuously by an elliptic when x crosses a geodesic lift of γ in X̃,

the extension β̂(z) gradually accumulates the same elliptic as z crosses the associated

strip in Z̃ .

We can now define the developing map of Gr(tγ, ρ) in terms of β̂: Let f0 : Z̃→
CP1 be the composition of the lift of the map Z→ X that collapses the grafted cylinder

orthogonally onto γ with the Riemann map from X̃ to the domain of discontinuity Ω of

ρ covering X. Note that f0 is holomorphic on the part of Z̃ coming from X̃ − γ̃ . Define

f(z)= β̂(z) f0(z).

By Lemma 6.1, the map f : Z̃→CP1 is a local homeomorphism with complex dilatation

μ satisfying |μ| ≤ 1
3 . Identify Z̃ with the upper half-plane H equipped with a Fuchsian

action of π1(S). Extend μ to H̄ by reflection and let wμ : CP1→CP1 be the normalized

solution to the Beltrami equation.

The quotient of H by the wμ-conjugated Fuchsian action of π1(S) gives a Riemann

surface Zμ (a deformation of Z ) and the holomorphic map f ◦ (wμ)−1 : H→CP1 is the

developing map of a projective structure Gr(tγ, ρ) on Zμ with holonomy Btγ .

Thus, we have a map Grtγ : QF δ(S)→P(S) satisfying hol ◦ Grtγ = Btγ . Since the

developing map is a holomorphic map from Z̃μ, the conformal version of this quasi-

Fuchsian grafting operation is

gr(tγ, ρ)= π(Gr(tγ, ρ))= Zμ = (gr(tγ, X))μ where ρ = Q(X,Y).

Note that as in the case of Fuchsian grafting along a simple closed curve, this graft-

ing operation induces a decomposition of the surface gr(tγ, ρ) into a cylinder A and a

complementary surface X0 equipped with a conformal isomorphism to X \ γ . However,

in the quasi-Fuchsian case, the natural identification of A with γ × [0, t] is only quasi-

conformal (rather than conformal).

It is also easy to see that this procedure is a generalization of the usual pro-

jective grafting operation, since when ρ = Q(X, X) is Fuchsian, the Poincaré geodesic

joining 0 to∞ in the domain of discontinuity is the imaginary axis, the map T(z)= ez is

holomorphic, μ≡ 0, Zμ = Z = gr(tγ, X), and Gr(tγ, Q(X, X))=Gr(tγ, X).

Step 2 : Continuity and holomorphicity. We now analyze the continuity of this extension

of grafting as ρ = Q(X,Y) is varied in QF δ(S) (while the lamination tγ remains fixed).
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Recall that Fuchsian grafting is a real-analytic map, so Z = gr(tγ, X) varies smoothly

with ρ, as does the grafting cylinder A⊂ Z . The Poincaré geodesic in the domain of

discontinuity of ρ also depends real-analytically on ρ, since the limit set of ρ undergoes

a holomorphic motion as ρ varies in QF δ(S) and the Poincaré geodesic is the image

of a fixed line in H under the associated holomorphic family of Riemann maps. Thus,

the Beltrami coefficient μ, which is supported on the grafting cylinder A⊂ Z , varies

smoothly in the interior of A. Combining this with the smooth variation of the boundary

of A and the continuous dependence of solutions of the Beltrami equation on μ, we

conclude that both the deformed domain surface Zμ and the local charts of the projective

structure vary continuously with ρ. Thus, Grtγ : QF δ(S)→P(S) and grtγ : QF δ(S)→ T (S)
are continuous maps.

Since hol ◦ Grtγ = Btγ , and hol is a local homeomorphism, we can locally express

the extension of grafting as

Grtγ = hol−1 ◦ Btγ ,

where hol−1 is a suitable local branch of the inverse of hol. Note that the continuity

of Grtγ ensures that this description is valid on an open neighborhood of any point in

QF δ(S). Since Btγ and hol are holomorphic maps, it follows that Grtγ : QF δ(S)→P(S) is

itself holomorphic.

Step 3 : Extension to general measured laminations. For any λ ∈ML(S), let cnγn→ λ

where cn∈R+ and γn are simple closed curves. To study the convergence of grafting

maps, realize T (S) as a bounded open set Ω ⊂CN , which induces an identification of

P(S)� T1,0T (S) with the set Ω × CN ⊂C2N . In the rest of the proof, we use these identi-

fications to regard the grafting maps as tuples of holomorphic functions.

Since the usual grafting operation extends continuously to measured lamina-

tions, the holomorphic maps Grcnγn : QF δ(S)→P(S) (and thus also grcnγn
= π ◦ Grcnγn) con-

verge locally uniformly on the set F(S) of Fuchsian representations. To show that Grcnγn

converges locally uniformly to a holomorphic map Grλ : QF δ(S)→P(S), we need only

show that this family of maps is normal, since any two limit maps of subsequences

would then agree on F(S), a maximal totally real submanifold, and hence they would

agree throughout QF δ(S).

Normality is immediate for grcnγn
by the boundedness of the embedding of T (S)

in CN , thus these conformal grafting maps converge locally uniformly to grλ :QF δ(S)→
T (S).
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Remark 6.2. We have now established the extension of conformal grafting to QF δ(S).

As mentioned in the introduction, this is the only part of Theorem C that is used in the

proof of Theorem D. �

Suppose E ⊂QF δ(S) is compact. We will show that the restrictions of Grcnγn to E

are uniformly bounded. Let K ⊂ T (S) be a compact set in T (S) containing

F =
∞⋃

n=1

grcnγn
(E),

which exists by uniform convergence of grcnγn
on E . By Lemma 5.1, in order to construct

a compact set K̂ ⊂P(S) that contains

F̂ =
∞⋃

n=1

Grcnγn(E),

it suffices to show that all projective structures in F̂ have a δ-injective disk for

some δ > 0.

Recall that the Riemann surface gr(cnγn, Q(X,Y)) is a 2-quasi-conformal

deformation of gr(cnγn, X), and that the 2-quasi-conformal map f : gr(cnγn, X)→
gr(cnγn, Q(X,Y)) respects the inclusion of X \ γn into each of these surfaces. The devel-

oping map of Gr(cnγn, Q(X,Y)) is injective on each connected component of the lift of

(X \ γn) to ˜Gr(cnγn, Q(X,Y)). Since the set of grafted surfaces {X |Q(X,Y) ∈ E} is compact,

and the sequence cnγn is convergent in ML(S), Corollary 5.3 provides a uniform radius

r1 such that the image of X \ γn in gr(cnγn, X) contains an r1-ball with respect to the

hyperbolic metric on gr(cnγn, X).

The 2-quasi-conformal map f : gr(cnγn, X)→ gr(cnγn, Q(X,Y)) is uniformly 1
2 -

Hölder with respect to the hyperbolic metric [1, Section 3C], so the image of X \ γn in

gr(cnγn, Q(X,Y)) contains a hyperbolic ball of radius r2 = C
√

r1 for a universal constant

C . In particular, the developing map of Gr(cnγn, Q(X,Y)) has an r2-injective disk for all

n∈N and Q(X,Y) ∈QF δ(S), and we conclude that the sequence of maps Grcnγn converges

locally uniformly to a holomorphic map Grλ : QF δ(S)→P(S). �

Remark 6.3. Tanigawa showed that, for projective structures on compact surfaces, the

holonomy map is proper when restricted to π−1(K), where K ⊂ T (S) is any compact set

[35]. Combined with the continuity of the shear-bend map, this provides a shorter (if less

elementary) alternative to the last three paragraphs of the proof of Theorem C. However,

 at U
niversity of O

klahom
a on June 23, 2011

im
rn.oxfordjournals.org

D
ow

nloaded from
 

http://imrn.oxfordjournals.org/


34 Y.-E. Choi et al.

Tanigawa’s proof does not immediately extend to punctured surfaces, nor do those of

the similar properness results of Gallo–Kapovich–Marden [8]. �

6.4 The Kobayashi estimate

Using the extension theorem (C), we now prove the Lipschitz property for the grafting

map.

Proof of Theorem D. We want to find an upper bound for d(gr(λ, X),gr(λ,Y)). Let

R= 1
2 log 1+δ

1−δ , where δ is as in Theorem C. It is enough to prove the Lipschitz property for

X,Y such that d(X,Y) < R/2, so we assume this for the rest of the proof.

Let r0, r1 < 1 be the radii of Euclidean disks concentric with Δ that represent

hyperbolic disks of radius R/2 and R, respectively, in the unit disk model of H2. Let

κ :Δ→ T (S) be the Teichmüller disk such that

(1) X = κ(0);
(2) Y= κ(r) for some r ∈R+, r < r0.

Note that Q(X, κ(z)) ∈QF δ(S) for all |z|< r1

Let dQF denote the Kobayashi metric on QF δ(S). Since z 
→ Q(X, κ(z)) is a holo-

morphic map of Δr1 into QF δ(S), we have dQF (Q(X, X), Q(X,Y)) < C d(X,Y), where C

depends only on δ (through r0, r1). Since grλ : QF δ(S)→ T (S) is holomorphic, it does not

expand the Kobayashi distance, and

d(gr(λ, X),gr(λ, Q(X,Y))) < C d(X,Y).

Exchanging the roles of X and Y and using the triangle inequality, we have

d(gr(λ, X),gr(λ,Y)) < 2C d(X,Y), establishing the theorem for L= 2C . �

Remark 6.4. Since it depends only on δ from Lemma 6.1, the Lipschitz constant L

in Theorem D is also universal. In particular, it does not depend on the genus of the

surface S. �

7 Conclusion of Proof

In terms of comparing Teichmüller geodesic rays and grafting rays, Theorem D allows

us to freely move the starting point of a grafting ray by a bounded distance. We shall

also need a similar result of Rafi for Teichmüller geodesic rays.
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Theorem 7.1 ([32, Section 7]). For any ε > 0 and d> 0 there exists a constant D> 0 so

that, for any X,Y ∈ T (S) where X is ε-thick and dT (X,Y)≤ d and any λ ∈ML(S), we have

dT (G(t, λ, X),G(t, λ,Y)) < D,

for all t≥ 0. �

We are now ready to prove Theorem A in the case where S has no punctures by

combining Proposition 4.5 and Theorems D and 7.1. The action of the mapping class

group will be used to bridge the gap between the considerations of Section 4, which give

uniform estimates only for certain points Xstd ∈ T (S) and for λ in an open set U ⊂ML(S),
and the general case of arbitrary λ and any ε-thick X.

Theorem 7.2. Let S be a compact surface, X ∈ T (S), and λ be a measured geodesic lam-

ination on X with unit hyperbolic length. Then, for all t≥ 0, we have

dT (gr(e2tλ, X),G(t, λ, X))≤ K,

where K is a constant depending on X but not on λ. �

Proof. Recall from Section 4.1 that U and Ū are disjoint open sets in ML(S) containing

ν and ν̄, where [ν] and [ν̄] are the stable laminations for ϕ and ϕ̄, respectively. We can

assume that the representatives ν and ν̄ are chosen so that they have unit length on Xstd.

Let [U ] and [Ū ] be the images of U and Ū , under the projection of ML(S) to PML(S).
Then there is a power n such that, for every measured lamination λ ∈ML(S), either

[ϕn(λ)] ∈ [U ] or [ϕ̄n(λ)] ∈ [Ū ].

The key point is that the value of n is independent of λ and depends only on sets U and

Ū . For the rest of the proof, assume [ϕn(λ)] ∈ [U ]; the case where [ϕ̄n(λ)] ∈ [Ū ] can be dealt

with similarly.

Let cλ be a constant such that cλ · ϕn(λ) ∈U . Then it follows from Proposition 4.5

that there is a Riemann surface Zϕn(λ) and a constant q= q(t0) such that, for all t≥ t0,

dT (gr(e2tcλϕ
n(λ), Xstd),G(t, ϕn(λ), Zϕn(λ)))≤ q.
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To get rid of cλ, choose tλ so that e2tλ = cλ and reparameterize using the parameter (t+ tλ).

Since ν has unit length on Xstd, all the measured laminations in U have length close to

1. Hence,

�Xstd(cλϕ
n(λ))= cλ�Xstd(ϕ

n(λ))

is close to 1. On the other hand, �Xstd(ϕ
n(·)), as a function on all measured laminations

of unit length on Xstd, attains a maximum and minimum value. Therefore, the cλ are

bounded above and below, independently of λ, and so the same is true of tλ. Thus, there

is a surface Yϕn(λ) (the marked conformal structure determined by the pair of measured

foliations e−tλϕn(λ) and etλH(ϕn(λ), Xstd)) and a constant q such that for all, t≥ 0,

dT (gr(e2tϕn(λ), Xstd),G(t, ϕn(λ),Yϕn(λ)))≤ q.

Let Y= ϕ−n(Yϕn(λ)) and X̂ = ϕ−n(Xstd). After moving the above Teichmüller ray and

grafting ray by ϕ−n, we have

dT (gr(e2tλ, X̂),G(t, λ,Y))≤ q.

From Theorem D we have

dT (gr(e2tλ, X),gr(e2tλ, X̂))≤ LdT (X, X̂),

and by Theorem 7.1 we have

dT (G(t, λ,Y),G(t, λ, X)) < D.

Now, combining these three inequalities and the triangle inequality, we have:

dT (gr(e2tλ, X),G(t, λ, X))≤ LdT (X, X̂)+ q+ D.

Note that X̂ is chosen independently of λ; the same n works for all λ. Therefore, dT (X, X̂)

depends only on X and choosing

K= LdT (X, X̂)+ q+ D

concludes the proof. The constant K depends on X only. �
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8 The Case of Punctures

Here we sketch how the argument of Sections 2–4 can be modified to prove

Proposition 4.5 when the surface S has finitely many punctures. By truncating small

neighborhoods of the punctures and doubling the resulting surface along its boundary,

we obtain a closed surface SD. For X ∈ T (S), the basic strategy is to truncate horoball

neighborhoods of the punctures and deform the complement slightly to a hyperbolic

surface with geodesic boundary, and then geometrically double this across the bound-

ary to get a surface in T (SD). For a measured lamination λ with compact support on S,

let λD be the measured lamination on SD, which is the union of λ and its mirror image.

Then Theorem 7.2 provides a map between the graftings along λD of the double and a

Teichmüller geodesic ray in T (SD). One can assure that this map is symmetric and obtain

a map from gr(e2tλ, X) to a Teichmüller geodesic. However, one needs to be careful so

that deforming the surface commutes with grafting.

8.1 Projection of a geodesic

We first recall a theorem that we shall use here and in Section 9.

Let Q be a surface of finite genus, possibly with finitely many punctures. Let Γ

be a collection of disjoint, homotopically distinct, simple closed curves on Q. Let R be

the closure of a component of S \ Γ . Extend Γ to a pants decomposition and define asso-

ciated Fenchel–Nielsen length and twist coordinates. By forgetting the Fenchel–Nielsen

length and twist coordinates associated to the curves in Γ but retaining all remaining

Fenchel–Nielsen coordinates, we obtain a projection

πR : T (Q)→ T (R).

Here, T (R) is the space of analytically finite, marked conformal structures on the interior

of R (so the boundary of R is pinched).

Let q0 be a unit area quadratic differential (see [34] for definition and background

information) and let qt=
[

et 0
0 e−t

]
q0 be the image of q0 under the Teichmüller geodesic flow.

Then the map G : [a,b]→ T (Q) sending t to the underlying conformal structure of qt is a

Teichmüller geodesic in T (Q). A description of the behavior of a Teichmüller geodesic is

given in [32]. We recall from [32] the following theorem that gives a sufficient condition

for πR(G(t)) to fellow travel a Teichmüller geodesic in T (R).
Let γ be a boundary component of R and let β be an essential arc in R with

both endpoints in γ . By the qt-length of β, we mean the qt-length of the shortest arc
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representing β that starts and ends on a qt-geodesic representative of γ . Denote this

length by �qt(β). Define

Mt(γ, R)=min
β

�qt(β)

�qt(γ )
,

where β ranges over all arcs in R with both endpoints on γ . If this quantity is large, then

there is an annulus around γ in G(t) that has large modulus.

Theorem 8.1 (Rafi [32]). Let G : [a,b]→ T (Q) be a Teichmüller geodesic, and let qt and R

be as above. Then there exists a constant M> 0 such that if

Mt(γ, R) > M, (10)

for all t∈ [a,b] and for every boundary curve γ of R, then there is a geodesic GR : [a,b]→
T (R) such that

dT (R)(πR(G(t)),GR(t))= O(1).

Furthermore, if R is a thick component of the thick-thin decomposition of G(t) for every

t∈ [a,b], then the condition (10) can be replaced with

diamqt(R)

�qt(γ )
> M. (11)

�

8.2 The doubling argument

Let ε > 0 be a constant smaller than the Margulis constant and let XT be the surface

obtained from X by truncating horoball neighborhoods of the punctures, which are

bounded by horocycles of lengths ε.

Lemma 8.2. There is a constant K0 such that the following holds: For any X ∈ T (S), any

measured lamination λ of compact support on S, and any sufficiently small ε, there is a

hyperbolic surface XB with geodesic boundaries of length ε and a K0-quasi-conformal

homeomorphism φ : XT→ XB that sends the geodesic representative of λ in XT isometri-

cally to the geodesic representative of λ in XB . �

Proof. By adding finitely many leaves, extend the support of λ to a maximal compact

geodesic lamination Λ⊂ X. Note that Λ no longer supports a measure. Each connected

component of X \Λ that contains a puncture is isometric to a punctured monogon (the
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Fig. 5. On the left is the truncated ideal triangle P T and on the right is the polygon P B to which it

is mapped. A horocyclic segment around 1 or −1 of length c< 1 is mapped to a horocylic segment

of length ccosh(ε/2) on the same horocycle.

result of symmetrically gluing two edges of an ideal triangle). We describe how to con-

struct the desired map on a truncated monogon.

Take a punctured monogon and cut it into an ideal triangle. Let P T be the trun-

cated ideal triangle, bounded by the horocyclic segment of length ε, as shown in Figure 5.

In the figure, the leaf of Λ is represented by the geodesic g joining −1 and 1. Now con-

sider the two geodesics with endpoints at −1 and 1, respectively, that are symmetric

across the geodesic joining 0 and ∞, such that their common perpendicular has length

ε, as shown on the right in Figure 5. Let P B be the polygon bounded by g, these two

geodesics, and their common perpendicular. To prove the lemma, it is sufficient to show

that there is a bi-Lipschitz homeomorphism h : P T→ P B that is the identity on g. We

need to take care defining h in the horoball neighborhoods of −1 and 1, since in the

surface X, the leaf of Λ corresponding to g accumulates.

Denote the left and right vertical edges of P T by gT
− and gT

+ , respectively, and

denote the left and right edges of P B by gB
− and gB

+, respectively. Consider the horocyclic

segments of length 1 that join g to gT
− and g to gT

+ . Foliate the horoball neighborhoods

they bound with horocyclic segments, as indicated partially in the figure. If J is such a

segment that joins a point p on g to gT
+, then define h to map J linearly onto the horocyclic

segment in P B that joins p to gB
+. As a result, the portion of gT

+ contained in the horoball

neighborhood H of 1 is mapped isometrically (by a parabolic isometry fixing 1) onto

gB
+ ∩ H . The analogous statement holds for gT

− . Note that the construction is symmetric

with respect to the geodesic joining 0 and∞.
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If J has length c, then it follows from elementary calculations that h(J) has

length ccosh(ε/2). Thus, for any sufficiently small ε, it follows that the map h is bi-

Lipschitz on the two horoball neighborhoods so that the Lipschitz constant is uniformly

bounded.

It is easy to extend h to a symmetric bi-Lipschitz map on the remainder of P T;

a horoball neighborhood of the ε-horocycle in P T can be mapped to a quadrilateral in

P B whose one edge is the common perpendicular in P B and whose adjacent edges are

contained in gB
− and gB

+. The map can be further extended to the remaining compact

part easily. �

For t> 0 let

Xt= gr(e2tλ, X).

The surface Xt can also be truncated to a surface XT
t and the map φ in Lemma 8.2 extends

by identity to a K0-quasi-conformal map φt from XT
t to a surface XB

t with geodesic

boundary. Now double the surface XB along its boundaries to obtain a closed surface

XD. Then the marking map S→ X extends naturally (up to a Dehn twists around the

boundary) to a homeomorphism SD→ XD. We fix this marking map and consider XD as

an element of T (SD).

We argue as in Section 4, but this time we choose ω to be a disjoint union of two

arcs with a component in each half of XD that is preserved under the reflection. Then,

by Theorem 7.2, for all t≥ 0 we have uniformly quasi-conformal maps between

XD
t = gr(e2tλD, XD) and YD

t = G(t, λD,Y
D),

for some surface YD ∈ T (SD). But since all the initial data are symmetric, from the con-

struction we can conclude that this map is symmetric as well; that is, if YB
t is one half

of YD
t , then there are uniformly quasi-conformal maps

ft : XB
t →YB

t .

Let Γ be the set of curves in SD preserved by the reflection, that is, the curves

corresponding to ∂XB . Every curve in Γ has length ε in the Thurston metric of XD
t . Since

the hyperbolic metric on XD
t is pointwise smaller than the Thurston metric, it follows

that every curve in Γ has length less than ε in XD
t . Since the distance between XD

t and

YD
t is bounded by some constant q, the curves in Γ have length less than e2qε in YD

t [38].
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In particular, by choosing ε small enough, we can ensure that the lengths of curves in Γ

are small as we like in YD
t .

As discussed above, we have a projection

π : T (SD)→ T (S),

which pinches all the curves in Γ . Let Yt= π(YD
t ). We can again truncate Yt to a surface

YT
t . It follows from the proof of Lemma 8.2 that there is a K0-quasi-conformal map

ψt : YT
t →YB

t . To summarize, we have

gr(e2tλ, X)= Xt
cut� Xt

T φt−→ XB
t

ft−→YB
t

ψt←−Yt
T glue� Yt.

After gluing back the neighborhoods of the punctures, the map

ψ−1
t ◦ ft ◦ φt : Xt

T→Yt
T

can be extended to a quasi-conformal map between Xt and Yt whose quasi-conformal

constants are uniformly bounded for all t≥ 0.

It remains to be shown that Yt fellow travels a geodesic in T (S). For this, we use

Theorem 8.1. Consider the family of quadratic differentials qD
t associated to the geodesic

YD
t and let γ be a curve in Γ . We need to show that Mt(γ, S) is large. Here, S is considered

as one component of SD \ Γ . Let S′ be the other component. Note that since γ is disjoint

from λD (it is completely vertical), it has a unique geodesic representative in qt. Since

the hyperbolic length of γ is small in YD
t , there is a pair of annuli with large modulus

on either side of the qt geodesic representative of γ [27]. More precisely, we have (see

[2, Section 5])
1

�YD
t
(γ )
� log max{Mt(γ, S),Mt(γ, S′)},

but by symmetry, the right-hand side can be replaced by log Mt(γ, S). Hence, if ε is suf-

ficiently small, then Mt(γ, S) is sufficiently large. Thus, it follows from Theorem 8.1 that

Yt, t≥ 0, fellow travels a Teichmüller geodesic. This completes the proof.

9 Example Showing that the Theorem is Sharp

In this section, we will prove Theorem B. We use Minsky’s product region theorem as

stated below.
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9.1 Product region theorem

Let S be a surface of finite genus, possibly with finitely many punctures. Let Γ be a

collection of disjoint, homotopically distinct, simple closed curves on S and let R be a

component of S \ Γ . As discussed in Section 8.1, we have a projection πR : T (S)→ T (R).
In addition, for each γ ∈ Γ , take Hγ to be a copy of the hyperbolic upper half-plane, and

define πγ : T (S)→Hγ to be

πγ (X)= sγ (X)+ i/�X(γ ),

where sγ is the Fenchel–Nielsen twist coordinate associated to γ . Let ε > 0 be a constant

smaller than the Margulis constant and let Tthin(Γ, ε)⊂ T (S) be the subset in which all

curves γ ∈ Γ have hyperbolic length at most ε > 0.

Theorem 9.1 (Minsky [26]). For ε sufficiently small, if X,Y ∈ Tthin(A, ε), then

dT (S)(X,Y)
+�max

R,γ
{dT (R)(πR(X), πR(Y)),dHγ

(πγ (X), πγ (Y))},

where the additive constant depends only on ε and the topological type of S. �

9.2 Construction of the example

Theorem B. There exists a sequence of points Xn in T (S) and measured laminations λn

with unit hyperbolic length on Xn such that, for any sequence Yn in T (S),

sup
n,t≥0

dT (gr(e2tλn, Xn),G(t, λn,Yn))=∞. �

Proof. Let S be a surface of genus 2. First we construct the sequences Xn and λn. Let γ

be a separating curve on S and denote the components of S \ γ by R and R′. Fix a pair

of curves α and β in R that intersect exactly once and a pair of curves α′ and β ′ in R′

intersecting exactly once. Let Xn be any hyperbolic surface where

�Xn(γ )= 1/n and �Xn(α)
∗� �Xn(β)

∗� �Xn(α
′) ∗� �Xn(β

′) ∗� 1.

In particular, this implies that R and R′ are thick parts in the thick-thin decomposition

of Xn for all sufficiently large n.
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Now choose λ and λ′ to be measured laminations with supports in R and R′,

respectively, so that

�Xn(λ)= �Xn(λ
′)= 1.

Note that this implies in particular that the intersection numbers i(α, λ), i(β, λ) are

bounded above. We also assume that λ and λ′ are co-bounded; that is, the relative twist-

ing (see, e.g., [2, Section 4.2]) of λ and α, and that of λ and β around any curve in R is

uniformly bounded. And assume that the analogous statement holds for α′, β ′, and λ′ in

R′. Define

λn=
(

1

n

)
λ+

(
n− 1

n

)
λ′.

Now we examine the grafting ray gr(e2tλn, Xn) and will show that at t= (log n)/2

the hyperbolic metric of gr(e2tλn, Xn), when restricted to R, does not differ much from

the metric of Xn. For convenience let grn= gr(nλn, Xn). Recall that, for any curve δ, its

hyperbolic length on �grn
(δ) on grn is less than its length in the Thurston metric. And the

length of δ in the Thurston metric is less than �Xn(δ)+ ni(δ, λn) [25]. Therefore,

�grn(α)≤ �Xn(α)+ ni(α, λn)
∗≺ 1+ n · 1

n
i(α, λ)

∗≺ 1.

Similarly,

�grn(β)≺ 1.

Since α and β intersect once, an upper bound for the length of one provides a lower

bound for the length of the other. Hence,

�grn
(α)

∗� �grn
(β)

∗� 1.

This implies that the restrictions of the hyperbolic metrics of Xn and grn to R are not far

apart. Then it follows from Theorem 9.1 that

dT (R)(π(Xn), π(grn))= O(1), (12)

where π : T (S)→ T (R) is the projection as defined above.
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Let Yn be any sequence of points in Teichmüller space. If dT (Xn,Yn)→∞, then

we are done. Otherwise, there is a constant C such that

sup
n

dT (Xn,Yn)≤ C.

We examine the behavior of the Teichmüller geodesic G(t, λn,Yn) and use Theorem 8.1 to

show that, for Gn= G((log n)/2, λn,Yn), we have

dT (R)(π(Yn), π(Gn))
+� log n

2
.

First, on Yn, for any simple closed curve δ we have [38]

e−2C ≤ �Yn(δ)

�Xn(δ)
≤ e2C,

so that

�Xn(δ)
∗� �Yn(δ) (13)

with multiplicative constants depending on C. In particular, this implies that �Yn(γ )
∗�

1/n, and R and R′ are thick components in the thick-thin decomposition of Yn for all

sufficiently large n. Furthermore, because λ and λ′ were chosen to be co-bounded, it

follows from [30] that along the geodesic ray G(t, λn,Yn), t≥ 0, the curve γ is the only

curve that is very short, and R and R′ remain thick.

Let qt,n be the unit area quadratic differential on G(t, λn,Yn)with vertical foliation

in the class of λn. Consider the representatives of R and R′ with qt,n-geodesic boundaries

and let dt,n and d′t,n be their qt,n-diameters, respectively. In order to apply Theorem 8.1,

we need to show that dt,n/�qt,n(γ ) is very large. For convenience, let q= q0,n, d=d0,n, and

d′ =d′0,n. Since γ is disjoint from λn, its q-geodesic representative is unique and is a union

of vertical saddle connections. We have (see [2, Section 5.2])

n� 1

�Yn(γ )
� log

max{d,d′}
�q(γ )

.

If d≥d′, then it follows that

n� log
d

�q(γ )
.
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If d≤d′, then let η denote the horizontal foliation of q. Since R′ is thick in Yn, it follows

from [31] and (13) that

�q(λ
′) ∗�d′�Yn(λ

′) ∗�d′�Xn(λ
′).

Then we have

1= i(λn, η) >
n− 1

n
�q(λ

′) ∗�d′�Xn(λ
′) ∗�d′.

Hence, we get

n� log
max{d,d′}

lq(γ )
≺ log

1

�q(γ )
.

Therefore, �q(γ )
∗≺ e−O(n). Thus, for n large enough, d/�q(γ ) is large.

Since the horizontal length of γ is zero, �qt,n(γ )= e−t�q(γ ). On the other hand,

since dt,n can decrease at most exponentially fast (in fact, in this example, it is basically

constant), we have dt,n
∗� e−td. Thus, dt,n/�qt,n(γ ) remains large for all t≥ 0, as desired.

Then, it follows from Theorem 8.1 that, for all t≥ 0,

dT (R)(π(Yn), π(G(t, λn,Yn)))
+� t.

In particular,

dT (R)(π(Yn), π(Gn))
+� log n

2
. (14)

By Theorem 9.1, dT (Xn,Yn)≤ C implies

dT (R)(π(Yn), πR(Xn))= O(1). (15)

Also, by Theorem 9.1, we have

dT (grn,Gn)
+�dT (R)(π(grn), π(Gn)). (16)

Now, applying the triangle inequality and using Equations (12), (14), (15), and (16)

we have

dT (grn,Gn)
+� log n

2
,

which goes to infinity as n→∞. This completes the proof. �
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